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Abstract. We have developed a semi-empirical model for the short-range 
deformation-potential (DP) interaction in bulk (elemental or compound) 
semiconductors (not semiconductor alloys), which governs the transfer of carriers 
between different equivalent or non-equivalent conduction band (c0) valleys. Our 
formalism treats the electron-phonon interaction in the rigid-ion approximation 
and uses parametrized models for describing electrons (empirical local 
pseudopotential method) and phonons (shell models). The parameters for 
electrons and phonons were taken from the literature and no additional parameter 
was introduced to model the electron-phonon coupling. This model, when 
applied to the scattering times of electrons between different CB valleys in GaAs, 
gives reasonable agreement with a number of recent ultrafast optical experiments 
and resolves apparent contradictions between them. The present model can also 
be used in Monte-Carlo simulations of electronic transport under high-field 
conditions. Our main conclusion is that the simple formula for intervalley 
scattering due to Conwell (based on parabolic c0 valleys for the electrons, an 
Einstein model for the phonons, and a single coupling constant describing t h e  
interaction) can only qualitatively explain most experiments and leads to differing 
values of the strength of the DP interaction. The ful l  electronic band structure and 
all six phonon modes have to be taken into account in order to obtain a 
consistent picture 

1. Introduction 

The performance of electronic and optoelectronic devices 
(based on silicon or GaAs-type semiconductors) opera- 
ting under hot-carrier conditions is usually modelled 
with Monte-Carlo simulations [1,2]. It is obvious, how- 
ever, that the quality of such simulations will depend 
critically on  the physical models used [3]. It is helpful to 
perform experiments to test these models, such as elect- 
rical [4] or cw or ultrafast laser experiments [SI, but 
information on processes governing hot-electron devices 
can also be obtained from areas in physics that have 
traditionally been considered to be outside the scope of 
hot-carrier conferences, like band-structure calculations 
[SI, superconductivity [7-91, temperature [IO, 1 I]  and 
pressure [I21 variations of optical gaps, indirect ab- 
sorption [13], or modulation techniques [I41 such as 
electroreflectance using synchrotron radiation [lS] and 
spectroscopic ellipsometry [ 161. 

The aim of this paper is to come closer to finding a 
quantitative theoretical description (based on informa- 
tion obtained with the techniques mentioned above) for 

tPresent address: IBM T J Watson Research Center. PO Box 218. 
Yorktown Heights. NY 10598, USA. 

the transfer of carriers between different conduction band 
(CB) valleys which leads to negative differential resistance 
and the Gunn effect [17]. This problem has been at the 
centre of hot-carrier physics for many years [18], but is 
still not solved satisfactorily. We will first describe the 
various methods that can be used to model electrons, 
phonons and their interactions in bulk semiconductor 
crystals and choose the one most appropriate for our 
goal. We then apply our method to discuss the scattering 
of electrons between different CB valleys in GaAs and 
compare it with three experiments that have appeared in 
the literature in recent years [19-211. We stress that we 
do  not report the results of Monte-Carlo simulations in 
this work. We rather investigate the physical models and 
calculate scattering times that are to be used as input to 
the Monte-Carlo programme. 

2. How t o  model electrons, phonons and their 
interaction 

By definition [I], the Monte-Carlo method, as applied to 
charge carrier transport in semiconductors, simulates the 
motion of electrons inside a crystal, subject to the action 
of external fields and of given scattering mechanisms (see 
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table 2.5 in [Z]). It is a numerical method to solve the 
Boltzmann equation [I] and therefore needs to evaluate 
the transition probability P for the scattering of a carrier 
from a state Ink) with wavevector k in band n and energy 
E,,* to a different state I n ' k ) ,  given by Fermi's 'Golden 
Rule', which enters the collision term: 

1 
P(nk, n ' k )  = __ 

Tak,n'k 

H,, is the Hamiltonian of the scattering process, 7 the 
scattering time and R,, the energy of the elementary 
excitation (for example, a phonon) created or annihilated 
in the process. 

Price 1221 stated at the second hot-carrier conference 
in Denton that analytical formulae are generally able to 
give a better account of a physical phenomenon than can 
be provided by a numerical description. The goal of 
obtaining such analytical expressions clearly had to be 
abandoned (since the accuracy of simple distribution 
functions like a shifted Maxwellian is often poor) in 
favour of Monte-Carlo simulations or numerical solution 
of complicated systems of coupled nonlinear differential 
equations [23]. In the early stages of such simulations 
[l,2,24] there was an attempt to keep the description of 
the electronic and vibrational structure and of the vari- 
ous scattering processes simple and analytical. This 
approach, i.e. the numerical solution of an analytical 
Boltzmann equation, led to tremendous success and 
could supply all the physics in most situations, including 
the explanation of the Gunn effect through negative 
differential resistance, but sometimes failed to yicld 
quantitative agreement with experiments [20]. 

Indeed, one of the early papers [25] seems to suggest 
that a single parameter, a coupling constant, was all that 
was needed to model a particular interaction, and calls 
for experiments to measure these parameters for the 
relevant interactions. This misconception bas led to a 
vast amount of experimental data, but also to great 
confusion and unnecessary contradictions in the liter- 
ature (especially ahout the strength of the short-range 
UP interaction responsible for intervalley transfer, see 
[26]), and may still be prevalent. This trend has been 
reversed in more recent work [27,28] where the full 
electronic hand structure is included in the simulations. 

Equation ( I )  shows that there are three ingredients to 
a Monte-Carlo calculation: electrons, elementary excita- 
tions (we will deal with phonons here) and their mutual 
interactions. Each of these ingredients can he described 
in three ways: (i) simply and analytically, explaining the 
basic physics of an effect and usually leading to quali- 
tative agreement with experiments; (ii) with ab initio 
calculations that are very sophisticated, but sometimes 
not accurate enough (given a finite amount of CPU time) 
to be useful; (iii) by parametrized model calculations that 
are accurate and simple enough to be incorporated into 
Monte-Carlo simulations, but still provide the full 
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picture of electrons, phonons and their interaction neces- 
sary for quantitative agreement with experiments. 

2.1. Electrons 

The electronic structure enters Monte-Carlo calculations 
in at least two places. (i) The electronic energies as a 
function of wavevector are contained in the 6-function of 
equation (1) and have to be known in order to  integrate 
over all possible decay channels (final states In', U)) and 
to obtain the lifetime [ZZ] 

Tnk = Jd'kP(nk, n ' k ) .  

Experimental information about these energies can be 
obtained from photoemission measurements to fix the 
valence bands (vB) [29]. Optical modulation spectros- 
copy data for the gaps can be added to  yield the CB 
energies at high-symmetry points [30], although some 
questions remain controversial, e.g., the position of the L- 
valleys in InP  [30] or silicon. Little is known experimen- 
tally about the CBs at general points in the Brillouin zone, 
especially about the effective masses in the satellite 
valleys [30,31]. (ii) The electron wavefunctions that enter 
the matrix element in equation (1) can only he obtained 
individually for a given n by means of band structurc 
calculations. The total magnitude of all wavefunctions in 
the valence band, i.e. the valence charge, can sometimes 
be detcrmincd using x-rays, but certain restrictions apply 

The simplest theory to treat electrons in a semicon- 
ductor is the effective-mass model. It can be improved 
by taking into account ellipsoidal CB valleys (like in Si 
Oi Ge) [Zj, highcr CB barid minimn L??,??:, EGX- 
parabolicity (for high carrier energies) [31] and warping 
[35] (in the VB). Such models lead to a basic understand- 
ing of the physics, but often not to a quantitative analysis 
of intervalley scattering (IVS). 

Very sophisticated band structure calculations, on 
the other band, using the ab initio pseudopotential [36] 
or linear muffin-tin orbitals (LMTO) calculations [30,37], 
based on the local-density approximation (LDA), give VB 
energies usually in good agreement with photoemission 
data [30], but underestimate the band gaps by typically 
1 eV or more (band gap problem). This difficulty can be 
overcome either with empirical corrections [37] or (by 
increasing the computational effort) with the so-called 
GW technique [6,38], but the results are still not accurate, 
general and reliable enough to be useful for modelling 
hot-carrier experiments [6]. 

We believe that the most accurate and convenient 
description of electronic states, as required in the field of 
hot carriers, can be obtained with empirical 
models that are fitted to experimental data. Such 
methods include the full-zone k.p method [37,39-411 
and the local empirical pseudopotential method (EPM) 
due to Cohen and Bergstresser [42,43]. Since both 
models were developed about 25 years ago and much 
more accurate experimental band structure data (in 
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particular, the important positions of the satellite valleys) 
have become available, it is usually necessary to obtain 
new sets of parameters for these models before any 
simulations can be performed, as shown recently for InP 

All the calculations presented here were performed 
with the EPM. The form factors were taken from [30,44]. 
We normally used a cut-off of 4.5 Ryd, corresponding to 
a basis set of about 60 plane waves. In order to avoid 
discontinuities in the electron-phonon coupling cons- 
tants (see below), we set the antisymmetric form factors 
VA(ll) and VA(12) equal to each other. 

~301.  

2.2. Phonons 

Most Monte-Carlo calculations (for bulk systems) have 
used the very simple Debye and Einstein models for the 
vibrational structure of the crystal, i.e. acoustic phonons 
are approximated by three modes with (possibly differ- 
ent) sound velocities, whereas the optical phonons are 
assumed to have a constant energy [I]. As shown 
previously, this approach is not sufficient to explain the 
width of the reentrant peak in hot-electron luminescence 
data 1451. In general, all six phonon modes and their 
dispersion in reciprocal space may have to be taken into 
account in hot-carrier experiments. 

We stress that a phonon is characterized by an energy 
and an eigenvector (determining the motion of the two 
atoms relative to each other). The energies can be found 
very accurately with neutron scattering [46,47], but 
knowledge of the eigenvectors requires a careful analysis 
of the scattering intensities [48]. The interference due to 
the motion of the two atoms may either destroy or 
enhance the strength of an interaction; therefore the 
information about the eigenvectors is essential to obtain 
scattering times. 

Modern supercell frozen-phonon calculations using 
norm-conserving pseudopotentials [49] or the full- 
potential LMTO technique [9] yield the phonon energies 
at high-symmetry points with great accuracy. A recent 
modification of the technique [SO] improves its efficiency 
at general points in the Brillouin zone. These calculations 
usually also yield the correct phonon eigenvectors 1491. 

In our calculations, we have used empirical phonon 
models fitted to neutron data [SI]. Computer programs 
found in the literature [52] readily yield both energies 
and eigenvectors, in much less time than the frozen- 
phonon technique. Whereas agreement with neutron 
data is good for the energies, six different models find six 
(considerably) dilferent eigenvectors [49]. We chose the 
ten-parameter shell model [SI] for all of our calculations, 
since this model gives best agreement with the experi- 
mental eigenvectors of [48]. 

2.3. Deformation-potential electron-phonon interactions 

Virtually all Monte-Carlo calculations describe elec- 
tron-phonon interactions with very simple models for 
electrons and phonons. They also assume that the 

strength of the interaction shows no dispersion in re- 
ciprocal space and therefore use constant coupling const- 
ants, usually obtained from fits to experimental data. 
This allows the matrix element in  equation (1) to be 
reduced to analytical form [1,2,24] in most cases and 
makes implementation in the computer code very simple. 
In the case of IVS, T is given by Conwell’s formula E241 

(3) 
where Nv is the number of (final) valleys with mass 
m,, AE the intervalley separation energy (to be set to 
zero for scattering to a valley with lower energy), R the 
energy of the intervalley phonon, N its occupation 
number, p the density of the crystal and E the energy of 
the electron (measured from the CB edge) whose scatter- 
ing time is computed. The strength of the interaction is 
determined by a single coupling constant D [2], the 
intervalley deformation potential (DP) [26]. We have 
shown recently, however, that the intervalley DPS do 
show dispersion 1531, which makes equation (3) a poor 
approximation. Furthermore, equation (3) implies that 
the interaction can be attributed to a single phonon 
mode (the ‘intervalley phonon’), which was proved wrong 
in [53,54]. 

The frozen-phonon technique allows the evaluation 
of DPS. Recent calculations for the interaction of electrons 
and holes with zone-centre phonons are in very good 
agreement with experiments, and sometimes even more 
reliable, see [55-57] and the review [26]. Unfortunately, 
the interaction with zone-boundary phonons (which is of 
interest for this work) has only been evaluated for silicon 
[SS, 591 and been applied to study the electron-phonon 
interactions in superconductors [SI. 

Experimentally, some DPS (for interaction with zone- 
centre phonons) can be obtained rather easily (and 
accurately) at high-symmetry points by measuring shifts 
or splittings of optical transitions under hydrostatic 
pressure or uniaxial strain [26J Hydrostatic (i.e. corre- 
sponding to completely symmetric deformations) DPS 
evaluated from such shifts are usually called relative DPS, 

since they are differences of the absolute DPS of the final 
and initial states observed in the transition. The absolute 
hydrostatic DPS themselves are much harder to find [26]. 
Little is known about the dispersion of relative and 
absolute DPS. Intervalley DPS (describing the short-range 
interaction of electrons with zone-edge phonons) cannot 
be determined directly, but only after a careful analysis of 
hot-carrier experiments [26]. 

It is worth noting an experimental fact known as 
Paul’s rule [60] obtained from gap shifts under hydrosta- 
tic pressure: The shifts of band gaps (due to the long- 
range part of the deformation-potentia1 interaction) be- 
tween the same sets of points in the Brillouin zone are 
about the same for all semiconductors. (In Paul’s rule the 
shifts are referred to a fixed pressure, but the rule applies 
nearly as well to shifts per unit change in volume, i.e. 
strain.) If one assumes that this rule holds also for the 
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short-range part of the interaction we come up with the 
following universal rule: The intervalley DPS coupling the 
same sets ofpoints in the Brillouin zone ( for  example DrL) 
have similar values for  Si ,  Ge and all I l l - V  semicon- 
ductors with zincblende structure. Experimental evidence 
for this rule has been obtained with temperature- 
dependent ellipsometric measurements of the broaden- 
ings of the E, gaps in Si, Ge, cr-Sn, AIAs, Gap, GaAs, 
GaSb, InP, InAs and InSb [16]. These data support the 
fact that the short-range deformation potential constants 
for the valence bands along r-L of Ge, a-Sn, GaAs, 
GaSb, InP, InAs and InSb vary by no more than $. The 
temperature shifts of the E, gaps in these materials also 
follow along the same lines [61]. The rule could not be 
proved for Si (completely different conduction hand 
structure), G a P  (very small spin-orbit splitting A,), AlAs 
and AlSb (material problems). 

In this work, we have used the rigid-pseudoion model 
to calculate intervalley DPS, where the Hamiltonian of the 
interaction is given by the scalar product of the gradient 
of the crystal potential (which we approximate by the 
pseudopotential used in the hand structure calculations) 
and the phonon eigenvector. Evaluating the coupling 
constants only requires a summation over the plane wave 
basis set, since the gradient operator reduces to a simple 
multiplication in reciprocal space. See [53] for details of 
the procedure and references to earlier work, including 
the important contributions by Cohen and Tsang [62] 
and Herbert [63]. 

Using this technique, we have evaluated intervalley 
DPS for the most common processes in AIAs, AISb, GaAs, 
GaSb, Gap, InP, InAs and InSb [53,64,65]. (Because of 
an inconsistency in the notation, the values in table I of 
[h4] have t n  he divided by $.) These results are in good 
agreement with the universal rule stated above. They are 
also in accord with independent results obtained by other 
groups with slightly different methods [63,66-681. In 
contrast to most previous work (with the exception of the 
early work by Herbert [63]) we not only calculate the 
intervalley DPS at high-symmetry points (r, X and L), but 
also study their dispersion for GaAs [53], InP [65], and 
GaP [69]. We show that there is considerable dispersion 
and therefore one has to perform the integration in 
reciprocal space (see equation (2)) with a numerical 
method [53]. 

3. Results 

We will compare the results of our calculations with three 
experiments that have been performed in recent years 
[19-211 to determine the strength of the short-range 
deformation potential interaction and measure IVS times. 

3.1. Time-resolved luminescence 

Shah et Q I  performed luminescence measurements on 
hulk GaAs samples at 300K using up-conversion de- 
tection with a time resolution of about 3M)fs 1191. They 
found a slow rise (nearly IO ps) of the bandgap lumines- 
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T (K) T (0 
Figure 1. Lifetimes (return times) of electrons at  ( a )  the 
Le and (b )  the X, conduction band minima a s  a function 
of lattice temperature T i n  the zero carrier-density limit, 
calculated with the rigid-pseudoion method, including all 
six phonon modes and the full dispersion of the electrons, 
phonons and electron-phonon matrix elements. The 
dotted curve in ( a )  shows the  lifetime at Le when the 
interaction with the TA phonons is switched off. The 
broken curve in (b )  gives the scattering time from X, to 
the L-valleys only, accounting for about 80% of all 
scattering processes at X,. The symbols show the 
experimental result determined by Shah et at [19] (a) and 
the lifetime at X calculated from usual Monte-Carlo 
parameters 1331 with equation (3) ( b ) .  

cence intensity with a laser energy of 2.04 eV (above the 
energy threshold for scattering into the L-valleys), but a 
much faster rise (less than 3 ps, limited by carrier-cooling 
in the central valley) at 1.66eV (below the threshold). A 
careful Monte-Carlo analysis of their spectra [I91 (in- 
cluding photoexcitation from all three valence bands, 
e:ectron-e:ectioii, iiitrav-'I-y .a1 c and ifitervalley carrier- 
phonon interaction as well as hot-phonon effects) reaches 
quantitative agreement with the transient spectra, if a 
lifetime in the L-valley (T-L return time) of 2.5ps is 
assumed, see the symbol 0 in figure l(a). 

We compare this experiment with our calculations in 
figure l(a), where the lifetime in the L-valley as a function 
of temperature is shown by the full curve. We obtain a 
lifetime of 2.2+0.5ps at 300K, in good agreement with 
the data of [19], and 6.6ps at 10K, when all six phonon 
modes and the dispersion of the electron-phonon matrix 
element [S3] are taken into account. The lifetimes would 
be much longer if the transverse acoustic (TA) phonon 
were neglected (dotted curve). 

Figure l(b) shows the lifetimes at the X-point (full 
curve). The broken curve shows the scattering time from 
X to the L-valleys only, which accounts for about 80% of 
all scattering processes at X, independent of temperature. 
Our lifetime of 130+20fs at 300K is in good agreement 
with the strength of IVS normally assumed in Monte- 
Carlo simulations, see the symbol 0 in figure I(b) and 
W1. 

3.2. Hotslectron photoluminescence spectroscopy 

Ulhrich et al observed luminescence from hot electrons in 
the conduction hand recombining with neutral acceptors 
in GaAs at 2 K and determined from these measurements 
the scattering times into the satellite valleys as a function 
of carrier energy [20]. The IVS times calculated from the 
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0 100 200 300 
E-E, (meV) 

Figure 2. Intervalley scattering rates for electrons (with 
wavevectors in different high-symmetry directions) in 
GaAs (r + L. X) at 10 K in the zero carrier-density limit, 
obtained from the rigid-pseudoion method (symbols). in 
comparison with the results of three hot-electron 
luminescence experiments [ZO, 54. 701 (curves). 

parameters they determined are given in figure 2 (full 
curve). We should note, however, that these results are 
controversial and in disagreement with [70] (broken 
curve) and [54] (dotted curve). Our results, obtained for 
electrons with wavevectors in the (loo), (110) and (111) 
directions, are shown by the symbols in figure 2 in 
comparison with the experimental data. It can be seen 
that the agreement with the data of Ulbrich et al is very 
good. See [45] for details. 

We should note the following. When the experiments 
of [19,20] are evaluated with Conwell’s formula, 
equation (3), they yield intervalley DPS different by a 
factor of two. This is due to the inadequacy of equation 
(3) and the strong contribution of TA phonons at room 
temperature (but not at low temperatures, where all 
phonons have the same occupation number, i.e. zero) at a 
finite wavevector, as discussed in [ll]. The contribution 
of the TA phonon is forbidden by symmetry [64], but this 
condition only holds at high-symmetry points and not at 
general points in the Brillouin zone where IVS processes 
take place. This is a consequence of the dispersion curves 
in [ 5 3 ] .  Our improved formalism agrees with both 
experiments. 

3.3. Femtosecond pump-probe measurements 

Bigot et al used 6fs optical pulses to study the carrier 
relaxation in GaAs at  300K at very early times and 
energies high above the X-minima [21]. We digitized 
their data and subtracted the band gap E,, (1.422eV at 
300K), the energy of the photoexcited heavy holes 
(m,/mhh = 0.126) and the TX separation (0.476eV, all 
data from [71]) from the laser photon energy to obtain 
the excess electron energy relative to the position of the 
X-valley; see the full squares in figure 3. (In the experi- 
ment, electron-hole pairs were created from all three VBS. 

We only consider excitation from the heavy hole band; 
therefore the strucure labelled LH will not he explained 
here.) The transmittance recovery times shown in the 
figure (obtained in a pump-probe configuration with 
carrier densities up to l O ‘ * ~ m - ~ )  reflect a number of 

15 ‘ 1 
-0.10-0.05 0.00 0.05 0.10 0.15 0.20 

Energy above X (eV) 

I , J 

Figure 3. Transmittance recovery times obtained in a 
femtosecond pump-probe experiment [21] with carrier 
densities up  tn 10’scm-’ (full squares). The experiment 
shows two features due to excitation of carriers from the 
heavyhole (HH) and light-hole (LH) bands. Calculated 
intervalley scattering times (full curve) as a function of 
excess electron energy in the r-valley (relative to the X- 
valley minimum, excitation from the heavy hole assumed) 
have the correct order of magnitude at sufficiently high 
energies. 

phenomena (including carrier-carrier scattering and 
phonon-induced intravalley relaxation), so a comparison 
of these data [21] with our calculated IVS times [45] can 
lead to only a partial understanding of the processes 
occurring on these time scales. The return of carriers 
from the satellite valley to the r-valley, on the other 
hand, does not have to be taken into account, since it is 
generally assumed that these carriers have a lifetime of 
more than 100 fs (see figure l), much longer than the time 
scales observed in the experiment. 

Our main purpose here is to demonstrate that our 
calculated IVS times (see the full curve in figure 3, the 
error bar showing the uncertainty in our calculation) 
have the correct order ofmagnitude, and probably no new 
physical concepts are necessary to explain these data. 
Indeed, the agreement with the experiment [21] above 
the energy of the X-minimum is much better than could 
be expected. 

The experiment creates electrons in the r-valley. 
These carriers will, if they have sufficient energy, scatter 
to the X-valley. The minimum energy required (in an 
absorption process) is the energy of the X-valley minus 
that of the intervalley phonon (10-30meV). The ab- 
sorption of an LO phonon (N = 0.48) is much less likely at 
300K than absorption of a TA phonon (N = 2.2), which 
has a similar coupling strength, see figure 5(b) in [45]. 
Typical scattering times to the X-valley range from 150 fs 
down to 20fs or less; see figure 4 in [45]. Carriers that do 
not have sufficient energy can only scatter to the L- 
valleys (T= 15Ofs or more). This behaviour is met well by 
the data, at  least for electron energies not less than 
30meV below the X-valley. The very short scattering 
times at low energies, however, have not been explained 
so far [21]. 
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4. Conclusion [IS] Aspnes D E  1976 Phys. Rev. B 14 5331 
r161 Zollner S. Goualan S. Garriea M. HumliEek I. Vifia L _ _  

and Cardona M 1990 Ai&.  Phys. Lett. 57 2838 
cl71 Gunn J B 1964 I S M  J .  Res. Dev. 8 141; 1963 Solid 

State Commun. 1 88 

We have suggested a number of numerical procedures for 
treating electrons, phonons and their interactions in bulk 
semiconductors. We have applied the rigid-ion empirical- Kroemer H 1964 Proc. IEEE 52 1736 
pseudopotential model t o  describe the short-range Sze S M 1981 Physics of Semiconductor Devices (New 
deformation-potential interaction and calculated inter- 
valley scattering times for GaAs, including the lifetimes 
(return times) of electrons a t  the conduction band 

York: Wiley) p 637 
[IS] Hilsum C 1978 Solid-State Electron. 21 5 
1191 Shah J, Deveaud B, Damen T C, Tsang W T, Gossard 

A C and Lueli P 1987 Phvs. Rev. Lett. 59 2222 ~ ~ ~~~~ 

minima at  L and X as well the out-scattering times from 
the r-vallev to the satellite vallevs. These calculations 

Oberli D Y, ShLh J and Damen T C I989 Phys Rev. B 
40 1323 

include all six phonon branches and the dependence of 
the electron-phonon coupling constants on  k. Several 
time-resolved spectroscopic experiments a r e  analysed on 
the basis of these results. It is shown that scattering by TA 
phonons, forbidden between states at  high-symmetry 
points, is essential to interpret the experimental data at  
room temperature. The reasonable agreement between 
our calculations and these experiments leads us t o  believe 
that intervalley scattering is finally a phenomenon that is 
satisfactorily well understood. 
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