Ellipsometry of Ni_{1-x}Pt_x and Related Silicides

Acknowledgments:

Dr. Stefan Zollner, Travis Willett-Gies, Eric DeLong; Harland Tompkins (affiliated) Dr. Igor Vasiliev, Tarek Tawalbeh (theory) Ahmet Ozcan, Christian Lavoie (IBM); Mark Raymond (Globalfoundries) R.J. Davis (Ohio State) - samples

New Mexico State University

CV

- BS: University of Jordan, Amman, Jordan (2002-2006)
- MS: University of Jordan, Amman, Jordan (2006-2009)
- MS: New Mexico State University, Las Cruces, NM, fall 2012
- Ph.D. candidate, New Mexico State University (spring 2010-present)

Ellipsometry Publications

- C.V. Weiss, J. Zhang, M. Spies, <u>L.S. Abdallah</u>, S. Zollner, M.W. Cole, and S.P. Alpay, *Bulk-like dielectric properties from metallo-organic solution-deposited SrTiO₃ films on Pt-coated Si substrates*, J. Appl. Phys. **111**, 054108-1-9 (2012).
- C. M. Nelson, M. Spies, <u>L.S. Abdallah</u>, S. Zollner, Y. Xu, and H. Luo, *Dielectric function of LaAIO₃ from 0.8 to 6.6 eV between 77 and 700 K*, J. Vac. Sci. Technol. A **30**, 061404-1 (2012).
- S. G. Choi, J. Hu, <u>L.S. Abdallah</u>, M. Limpinsel, Y. N. Zhang, S. Zollner, R. Q. Wu, and M. Law, *Pseudodielectric function and critical-point energies of iron pyrite*, Phys. Rev. B 86, 115207 (2012).
- <u>L.S. Abdallah</u> et al., Compositional dependence of Ni_{1-x}Pt_x alloys (0< x <0.25) determined by spectroscopic ellipsometry, Thin Solid Films (in print).
- <u>L.S. Abdallah</u> et al., Optical conductivity of Ni_{1-x}Pt_x alloys (0< x < 0.25) from 0.76 to 6.6 eV, AIP Advances 4, 017101 (2014).
- <u>L.S. Abdallah</u> et al., Optical Conductivity of Ni_{1-x}Pt_xSi Monosilicides (0<x<0.3) from Spectroscopic Ellipsometry, submitted to J. Vac. Sci. Technol.
- <u>L.S. Abdallah</u> et al., *Infrared Optical Conductivity of Ni*_{1-x}*Pt*_x *Alloys and Ni*_{1-x}*Pt*_x*Si Monosilicides from Spectroscopic Ellipsometry*, (in preparation).

Ellipsometry Presentations

- A.A. Medina, L.S. Abdallah, and S. Zollner, Temperature dependence of the dielectric function of Germanium by spectroscopic ellipsometry, Four Corners Section Meeting of the APS, Tucson, AZ, Oct. 20-21 (2011).
- L.S. Abdallah et al., Dielectric function of Ni-Pt alloys from 0.6 to 6.6 eV by spectroscopic ellipsometry, Four Corners Section Meeting of the APS, Tucson, AZ, Oct. 2011.
- L.S. Abdallah et al., Dielectric function of Ni-Pt alloys from 0.6 to 6.6 eV by spectroscopic ellipsometry, APS March meeting, Boston, MA, 29 February 2012.
- M. Spies, L.S. Abdallah, S. Zollner, C.V. Weiss, J. Zhang, S.P. Alpay, and M.W. Cole, *Dielectric and optical properties of SrTiO*₃ films deposited from metallo-organic solution, APS March meeting, Boston, MA, 1 March 2012.
- C.M. Nelson, M. Spies, L.S. Abdallah, and S. Zollner, Y. Xu and H. Luo, *Preparation of Abrupt LaAIO*₃ Surfaces Monitored by Spectroscopic Ellipsometry, AVS Symposium, Albuquerque, NM (May 2012).
- C.M. Nelson, M. Spies, L.S. Abdallah, and S. Zollner, Y. Xu and H. Luo, *Preparation of Abrupt LaAIO3 Surfaces Monitored by Spectroscopic Ellipsometry*, The Seventh Multifunctional Materials Workshop (MFM-7), Gamboa, Panama, (August 2012).
- L.S. Abdallah et al., Compositional dependence of the dielectric function and optical conductivity of NiPt alloy thin films, APS Four Corners Section, Socorro, NM (2012).
- Cesar A. Rodriguez, C.M. Nelson, L.S. Abdallah, and S. Zollner, *Determination of RGB color coordinates from spectroscopic reflectance measurements*, Four Corners Section Meeting of the APS, Socorro, NM (2012).
- L.S. Abdallah et al., Composition dependence of the optical constants of NiPt alloys determined by spectroscopic ellipsometry, Conference for Undergraduate Women in Physical Sciences, Lincoln, NE (October 2012).
- A.A. Medina, L.S. Abdallah, and S. Zollner, Temperature Dependence of the Dielectric Function of Germanium by Spectroscopic Ellipsometry, AVS Symposium, Tampa, FL (2012).
- C.M. Nelson, M. Spies, L.S. Abdallah, S. Zollner, Y. Xu, and H. Luo, *Preparation of Abrupt LaAIO3 Surfaces Monitored by Spectroscopic Ellipsometry*, AVS Symposium, Tampa, FL (2012).
- L.S. Abdallah et al., Compositional dependence of the dielectric function and optical conductivity of NiPt alloy thin films, AVS Symposium, Tampa, FL (2012).
- L.S. Abdallah et al., Optical Constants of Ni-Pt and Ni-Pt-Si Thin Films, AVS Chapter Symposium, Albuquerque, NM (2013).
- C.A. Rodriguez, K. Mitchell, S. Zollner, T. Willett-Gies, and L.S. Abdallah, Optical Constants of Thin Film Metal Oxides, AVS Chapter Symposium, Albuquerque, NM (2013).
- L.G. Pineda, L.S. Abdallah, and S. Zollner, Optical Properties of Bulk Nickel as a Function of Temperature, Rio Grande Symposium, Albuquerque, NM, 07 October 2013.
- L.G. Pineda, L.S. Abdallah, and S. Zollner, Optical Properties of Bulk Nickel as a Function of Temperature, APS Four Corners Section Meeting, 10/18-19/2013, Denver, CO.
- L.S. Abdallah et al., Optical Constants of Ni1-xPtx Monosilicides From Spectroscopic Ellipsometry, APS Four Corners Section Meeting, 10/18-19/2013, Denver, CO.
- C.M. Nelson, T. Willett-Gies, A. Ghosh, L.S. Abdallah, S. Zollner, *Electronic and Vibrational Properties of Nickel Oxide (NiO) using Spectroscopic Ellipsometry*, AVS Symposium, Long Beach, CA (2013).
- L.S. Abdallah et al., Optical Constants of Ni1-xPtx Monosilicides From Spectroscopic Ellipsometry, AVS Symposium, Long Beach, CA (2013).
- S. Zollner, C.M. Nelson, T. Willett-Gies, L.S. Abdallah, and A. Ghosh, Dielectric function of NiO and Si from 25 meV to 6 eV: What's the difference?, APS March meeting, Denver, CO, 3-7 March 2014.
- L.S. Abdallah et al., Infrared optical conductivity for Ni1-xPtx alloys and Ni1-xPtxSi monosilicides, APS March meeting, Denver, CO, 3-7 March 2014.
- L.S. Abdallah et al., Infrared optical conductivity for Ni1-xPtx alloys and Ni1-xPtxSi monosilicides, AVS Surface Analysis conference, Albuquerque, NM, 2-6 June 2014.

New Mexico State University

Outline

- Electromagnetic Radiation as a Probe for Materials Properties
- Ellipsometry: Experimental setup
- Ellipsometry Data Analysis
- Motivation: Ohmic contacts for CMOS devices
- First Result: Optical Constants of Ni_{1-x}Pt_x Alloys
- Second Result: Optical Constants of Ni_{1-x}Pt_xSi Monosilicides
- Third Result: Infrared Optical Properties of Ni_{1-x}Pt_x Alloys and Ni_{1-x}Pt_xSi Monosilicides.

New Mexico State University

Electromagnetic Radiation

- Each material has electronic states at unique energy levels.
- When you expose a material to radiation from all wavelengths, only the λ that matches that level can interact with the electronic state.

- VIS/UV radiation alters the electron energies of loosely bound electrons of atoms or molecules
- IR radiation causes changes in the vibrational energy of molecules.

- Learn about materials properties

Infrared light: Visible and UV light:

Lattice vibrations

Electronic properties and band structure

New Mexico State University

- Optical constants for optical applications.
- Microstructure (surface roughness, crystallinity).
- Composition.

Ellipsometry:

- Light wave can be described as superposition of two electric field components
- <u>s and p polarization</u>
- Plane of incidence.
- s and p waves: oscillatory directions
- of the electric field
- **p**: parallel
- s: perpendicular
- Ellipsometry measures
- change in the polarization state: Δ amplitude ratio: ψ

change in the polarization state

Amplitude ratio

Fundamental Equations Of Ellipsometry:

Data analysis

Motivation: NiSi thickness metrology

MOSFET: metal-oxide-semiconductor field-effect transistor

- Low resistivity
- Low formation temperature
- Low Si consumption

32 nm SOI CMOS (Greene et al.) industrial self-aligned silicide process

NiPtSi

NiPtSi

NiPtSi

Ni Silicide Formation

NiSi: Unstable at high temperatures

NiSi₂ Formation Agglomeration.

C. Lavoie ^{a,b,*}, C. Detavernier ^c, C. Cabral Jr. ^a, F.M. d'Heurle ^a, A.J. Kellock ^d, J. Jordan-Sweet ^a, J.M.E. Harper ^e

Microelectronic Engineering 83, 2042 (2006)

New Mexico State University

Ni-Pt Silicides

$NiSi + Si \rightarrow NiSi_2$ (higher resistivity)

(need to push this reaction to higher temperatures.)

$$Ni_{1-x}Pt_xSi + (1-x)Si \rightarrow (1-x)NiSi_2 + xPtSi$$

Pt delays NiSi₂ nucleation (entropy of mixing)

$$G(\text{NiSi/Pt})\langle G(\text{NiSi}_2) + G(Pt) \rangle$$

Formation of NiSi₂ is energetically disfavored

C. Lavoie ^{a,b,*}, C. Detavernier ^c, C. Cabral Jr. ^a, F.M. d'Heurle ^a, A.J. Kellock ^d, J. Jordan-Sweet ^a, J.M.E. Harper ^e

Microelectronic Engineering 83, 2042 (2006)

Optical constants of Ni_{1-x}Pt_x alloys (0 to 25% Pt)

New Mexico State University

Ellipsometry of thin metal films

High reflection coefficient

Zero band gap: almost any frequency of light can be absorbed. Outermost electrons shared by all the surrounding atoms

For metal films $k \neq 0$, ϵ is complex

 $\boldsymbol{\epsilon}$ decomposed into two components

Samples and Experimental Details

- Films were deposited using Physical Vapor Deposition.
- Different Pt concentrations (0%, 10%, 15%, 20%, 25%)
- with/without annealing (500°C for 30 s)

- Room temperature measurements.
- Fourteen angles of incidence (20° to 80°, steps of 5°)
- Broad photon energy range (0.6 to 6.6 eV), 20 meV steps, 300 data points per angle. 2 nm resolution (1 mm slits)
- Each measurement lasts 24 hours

Results

Band Structure of Nickel: Possible transitions

<u>Ni_{1-x}Pt_x optical conductivity for different compositions</u>

New Mexico State University

Total DOS

New Mexico State University

Discussion:

Oscillator Model:

- Drude oscillator (free electrons)
- Lorentz @ 1.5 eV (d-intraband transition)
- Lorentz @ 4.7 eV (interband transition)
- IR pole @ 0 eV (???, see IR analysis later)
- UV pole @ 11 eV
- Same peaks were observed in pure nickel
- Annealed samples show higher conductivity than as deposited samples due to improved crystallinity
- Absorption peak gets broader with increasing Pt content

Initial guess

New Mexico State University

Second Result

Optical constants of Ni_{1-x}Pt_xSi monosilicides (0 to 30% Pt)

22

New Mexico State University

Monosilicides (Ni_{1-x}Pt_x)Si

- Ni_{1-x}Pt_x (0%, 10%, 20%, 30% Pt)
- 500°C for 30 s

- Thickness of resulting silicide = 2*metal thickness
- SiO₂ is native oxide on NiSi.
- Three angles of incidence: 65° to 75°

Pseudo dielectric function for mono Ni silicide (0% Pt)

 Vary thickness of silicide to minimize Si substrate artifacts

New Mexico State University

New Mexico State University

Results: Optical Constants of Monosilicide

New Mexico State University

Dielectric function and optical conductivity for monosilicide

Literature results for NiSi and PtSi electronic structure

Bisi & Calandra (1981)

Transition metal Silicides: aspects of the chemical bond and trends in the electronic structure

New Mexico State University

E (eV)

Conclusion

- NiPtSi optical conductivity exhibits a metallic behavior due to the metallic content as well as interband transition due to silicon-related electronic states.
- Free carrier absorption is higher for pure metal than for the silicide. However, interband transition is higher for silicides.
- Interband transition peak gets broader with increasing Pt content in the silicide (can be explained in terms of NiPt DOS).

Third Result

Infrared Ellipsometry

- $-Ni_{1-x}Pt_x$ alloys
- Ni_{1-x}Pt_x Si monosilicides
- Pure Ni films (0% Pt, different thicknesses)

New Mexico State University

Visible Results: Pure Ni films (0%Pt/SiO₂/Si)

 $\hbar \omega > 1000 \text{ cm}^{-1}$: $\sigma_1 \uparrow$ with Pt \uparrow (d-intraband transitions Pt adds richer d-state band structure)

Nagel & Schnatterly, PRB, 1973; Hunderi, PRB 1973

7000

New Mexico State University

Ni films (0% Pt): Different thicknesses

Ola Hunderi, PRB, 1973

 σ_1 with t \uparrow reduced grain boundary scattering in thicker films

New Mexico State University

Ni_{1-x}Pt_xSi monosilicides: Ni_{1-x}Pt_x/Si followed by annealing

Si-O vibration fitted using Gaussian oscillator.

New Mexico State University

34

hω < 1000 cm⁻¹ : $σ_1↓$ with Pt ↑ Similar to Ni_{1-x}Pt_x alloys: Ni-Pt alloy scattering

 $\hbar \omega > 1000 \text{ cm}^{-1}$: $\sigma_1 \uparrow$ with Pt \uparrow More d-d interband absorption as Pt content increases

DC conductivity: $\omega \rightarrow 0$

Pure Ni/SiO₂/Si

t (Å)	E_{P1}	Γ_{d1}	E_{P2}	Γ_{d2}	$\sigma_0 \times 10^5$	$\sigma_{exp} \times 10^5$
100	14.5	0.08	6.3	10	3.5	
200	14.9	0.07	5.9	4.5	4.3	DC conductivity increases with
500	17.9	0.05	6.1	2.8	8.6	
1000	17.6	0.05	5.7	3.1	8.3	1.43 ^a

^a Conductivity of bulk Ni from Litschel and Pop [87].

Ni_{1-x}Pt_x/SiO₂/Si

x	annealed	E_{P1}	Γ_{d1}	E_{P2}	Γ_{d2}	$\sigma_0 \times 10^5$	$\sigma_{exp} \times 10^{5}$	5
0.10	no	6.8	1.4	10.6	0.11	1.42	0.23	
0.10	yes	6.7	1.6	12.2	0.09	2.26	0.29	
0.15	no	6.9	1.4	9.4	0.14	0.8	0.2	DC conductivity decreases with
0.15	yes	7	1.5	10.7	0.12	1.33	0.23	Pt content
0.20	no	7	1.4	9	0.16	0.7	0.19	T t content
0.20	yes	7	1.5	10.1	0.14	1.02	0.21	
0.25	no	7	1.6	8.9	0.17	0.6	0.18	
0.25	yes	7.1	1.6	10.2	0.15	0.9	0.22	

Ni_{1-x}Pt_xSi monosilicides/Si

x	E_{P1}	Γ_{d1}	E_{P2}	Γ_{d2}	A_1	E_1	Γ_1	A_2	E_2	Γ_2	E_3	A_3	$\sigma_0 \times 10^5$	σ _{exp} *10 ⁵
0	20.6	0.55	5.4	0.37	56	0.16	0.006	3.4	0.75	0.28	1.8	57.7	10.5	0.6
0.10	13.4	0.09	5.9	0.4	19.4	0.16	0.01	4.2	0.77	0.4	1.8	54.7	2.7	0.3
0.20	12	0.1	5.4	0.47	14.5	0.16	0.006	7.5	0.76	0.4	1.8	57	2.04	0.25
0.30	11	0.1	6.3	0.44	14.6	0.16	0.006	7.5	0.76	0.4	1.8	57	1.72	0.22

-Optical conductivity decreases with increasing Pt content.

- Electrical conductivity > optical conductivity

Conclusion

- Two carrier species in unreacted metal alloys (described by two Drude oscillators):
 - Separation in real space (interior or boundary of grains)
 - Separation in k-space (s- and d-electrons, different Fermi surface pockets)
 - d-intraband transitions with low energies
- Unreacted metals: Conductivity depends on Pt concentration in different ways
 - Low frequency: Increased alloy scattering (DC-like)
 - High frequency: Increased d-intraband transitions: Ni(3d) and Pt(5d) mixing
- Same results for Ni_{1-x}Pt_xSi monosilicides.
- Optical absorption (conductivity) increases with increasing metal thickness due to the reduced scattering from grain boundaries.
- Low-frequency conductivity is higher for (unreacted) metals than for silicides.

Open Questions

- Build a single model to fit MIR and NIR/VIS/UV data (250 cm⁻¹ to 6.6 eV)
- Interpretation of the Drude parameters (plasma frequency and scattering rate) for Ni-Pt alloys or silicides and comparison with DC electrical measurements.
- Comparison of Ni films with bulk Ni (mid-IR and UV)
- Temperature dependence of optical constants (especially near the Curie temperature)
- Optical constants of NiO Understand surface of metallic Ni (water layer or NiO native oxide)
- Far-infrared (100 cm⁻¹) and Terahertz measurements of optical constants Measurements in a magnetic field (University of Nebraska-Lincoln)
- FTIR ellipsometry of NiO as a function of temperature (near Neel temperature)

New Mexico State University

Special Thanks

- Travis Willett-Gies
- Cayla Nelson
- -Nalin Fernando
- Cesar Rodriguez
- Khadijih Mitchell
- Nathan Nunley
- Laura Pineda
- Eric Delong
- Amber Medina
- Dennis Trujillo
- Luis Barrera

