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ABSTRACT

LATTICE DYNAMICS OF LaAlO3 AND MgAl2O4

BY

TRAVIS WILLETT-GIES, B.S.

Master of Science

New Mexico State University

Las Cruces, New Mexico, 2014

Dr. Stefan Zollner, Chair

In this thesis, I present the results of Fourier-transform infrared (FTIR) el-

lipsometry measurements taken on two bulk aluminate materials. These high-κ

metal oxides, lanthanum aluminate (LaAlO3) and magnesium aluminate spinel

(MgAl2O4), are commonly used as substrates in the semiconductor industry. By

understanding the vibrational modes of these two crystalline materials, we can

better predict and model the behavior of thin films grown on these substrates.

To determine the vibrational energies of these materials, we performed FTIR

ellipsometry measurements over a broad energy spectrum from 250 to 8000 cm−1.

As atomic lattice vibrations (phonons) have the same energy as infrared (IR)

photons, these vibrations will appear as peaks in the dielectric function, which

is obtained directly from the ellipsometric data. The resulting spectra can be fit

with a theoretical model which includes parameters of both transverse (TO) and
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longitudinal optical (LO) phonons. By performing a best-fit analysis to the mea-

sured spectra, we obtain energies and broadenings for the infrared-active phonons

of our chosen materials.

Using this technique, I was able to determine the parameters for all IR-active

phonons within the spectral range of the ellipsometer.These parameters are re-

ported here with unprecedented accuracy and compared with previous results

obtained by IR reflectivity. The results are in agreement with theoretical density

functional theory (DFT) calculations as well.
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1 INTRODUCTION

High-κ dielectric materials have generated great interest in the past decade

as possible replacements for silicon dioxide (SiO2) as gate oxide materials in semi-

conductor devices. As transistors decrease in size, the thickness of the oxide must

shrink proportionally. With SiO2, the gate thickness is such that quantum me-

chanical tunneling effects begin to cause significant leakage and inefficiency in the

device. Ignoring quantum effects, we can model the gate stack of a transistor as

a parallel plate capacitor with capacitance given by

C =
κε0A

t
(1)

where ε0 is the permittivity of free space, A is the area of the capacitor, t is the

thickness of the dielectric and κ is the static dielectric constant of the material,

which is defined as

κ = ε(0) (2)

The complex dielectric function ε(ω) can be evaulated at zero frquency as

ε(ω) = ε1(ω) + iε2(ω) (3)

where ε1 is related to energy stored and ε2 is related to loss of energy in the

material. We can see that, as A decreases proportionally to the gate dimensions,

the capacitance will decrease proportionally as well. To counter this effect, either

the thickness must be decreased or, as we approach the practical limits of SiO2,

the material should be replaced with one possessing a higher dielectric constant,

κ. This inevitability of Moore’s law has led to a large interest in high-κ materials

in recent years.

Their implemention in practical devices is still in very early stages and we have
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many aspects of the mechanisms these materials to study before they are to be

considered and widely used in industry applications. In this thesis, I present my

studies on atomic lattice vibrations when activated by infrared light. As electrons

move through a transistor channel along the interface between Si and gate oxide,

they interact with both materials and may scatter through several processes. If

they collide with the nucleus of an atom in either crystalline material, they may

cause it to oscillate. This absorbs energy from the electron and contributes to

increased power consumption by the device. It is therefore critical to understand

the energies and activity of these lattice vibrations. This knowledge is valuable

not only for application in transistors but for microelectronic devices in general.

LaAlO3and MgAl2O4have excellent lattice matches with many other oxide mate-

rials such as strontium titanate (SrTiO3).

1.1 Ellipsometry

I studied the phonons of LaAlO3 and MgAl2O4 using Fourier-transform in-

frared ellipsometry. For MgAl2O4, the electronic properties were also studied

using a visible to ultraviolet (VUV) ellipsometer, which measures the dielectric

function in the range of electronic transitions. This was done to determine the

bandgap of our sample which had been done for LaAlO3 in previous work by

Nelson et al. [1] Regardless of the wavelength, ellipsometry measures changes in

polarization state and intensity of an electromagnetic wave once it interacts with

a material, as shown in Fig. 1.

In practice ellipsometry uses a light source of the desired spectral region that

provides unpolarized light. In the infrared, this source is a globar, which is fed

into a Michelson interferometer whose moving mirror allows an entire spectrum to

be taken and analyzed at once. Many scans are run to increase the signal-to-noise

2



Figure 1: The principle of ellipsometry: Linearly polarized light reflected by a
surface becomes elliptically polarized. Spectroscopic ellipsometry measures the
change in the polarization state as a function of the wavelength. [2]

ratio and improve the data. In the visible or ultraviolet, the light from a more

traditional bulb is fed into a monochromator and the measurements are performed

by stepping through the wavelengths available in the source spectra. Either light

source is then linearly polarized using a polarizer, which may be fixed or rotating

depending on the design of the instrument. The linearly polarized light is then

directed at oblique angles towards a material. As the electric and magnetic fields

of the light interact with the field sources in the sample, the intensity is affected

differently in the plane of the surface (s-plane) and in the plane of incidence (p-

plane), which is defined by the plane containing the incident and reflected beams.

By measuring the intensity ratio in each plane, rp and rs, using a second polarizer,

the ellipsometer returns the ellipsometric angles: the amplitude ratio Ψ, and the

phase difference∆, given by

rp
rs

= ρ = tan Ψ ∗ ei∆ (4)

We transform this information into the complex pseudodielectric function by the
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equation published by Azzam and Bashara in their classic text on ellipsometry

entitled Ellipsometry and Polarized Light [3]

ε ≈ 〈ε〉 =

(
1− ρ
1 + ρ

2
)

tanφ2 sinφ2 + sinφ2 (5)

where φ is the angle of incidence and ρ is the complex reflectance ratio. This

approximation is only valid for bulk isotropic samples such as the materials studied

in this work. In general, the data must be modeled to determine the actual optical

constants of the sample or layer in question. However, in my thesis fits were used

solely to provide accurate parameters of the features being studied.

As the ellipsometer measures both Ψ and ∆, we can directly extract both

the real part, ε1(ω), and imaginary part, ε2(ω), as defined in Eq. (3), from the

experimental data. ε2(ω) is related to energy loss within the material so that when

ε2(ω) is plotted vs. light frequency, ω, we see peaks where the light is absorbed

into the medium. The data is then fit in software in an attempt to describe the

various features in the spectra. In the infrared, the absorptions correspond to

atomic vibrations known as phonons.

1.2 Phonons

Atoms in a crystal are held in place by the various forces of their neighbors.

These include chemical bonds, Van der Waals forces or electrostatic attraction.

These forces are primarily electric in nature and serve as a three dimensional

potential keeping the atom in its equilibrium position. When an external electric

field interacts with the positively charged nucleus of the atom, it is displaced and

experiences a restoring force caused by its neighboring atoms. If, as is the case

with electromagnetic radiation, the field is alternating with some frequency, the

atom will oscillate with a frequency and phase determined by the external field
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and the strength of its binding forces respectively. The units of this vibration

are quantized, exhibit quasiparticle behavior and are known as phonons. The

frequency of the atomic oscillation is equal to the frequency of the applied field.

For a mathematical explanation, see appendix A.

When this approach is expanded to the entire crystal, we begin to see dif-

ferent types of phonons and dependencies on orientation. An acoustic phonon

occurs when the entire crystal oscillates in phase with no change in average bond

length. This is the method by which sound propagates through a solid and acous-

tic phonons can be considered to be a sound wave of arbitrarily small energy and

frequency. Acoustic phonons are not visible using optical techniques. Optical

phonons are oscillations within the unit cell of the crystal with the mass of the

atom and strength of the bond determining the amplitude of oscillation. These

phonons only occur in materials with more than one atom and they may be acti-

vated by infrared light. In an ionic bond, if the positive and negative ion oscillate

opposite each other causing a time-dependent dipole moment which can couple to

an external field that may be provided, for example, by the ellipsometry beam.

This dipole can be along the wavevector of the external field and phonons of this

type are known as longitudinal optical (LO) phonons. The alternative is for the

dipole moment to be oriented perpendicular to the wave’s propagation through the

material and these transverse optical (TO) phonons correspond to the absorption

peaks that can be resolved in an infrared optical experiment.

1.3 Models

We describe phonon contributions to the dielectric function as uncoupled har-

monic oscillators using two different, but related, models. Trivially, we may de-

scribe the absorptions in the dielectric function obtained from an infrared ellip-
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sometry spectrum using a set of Lorentz oscillators, the derivation of which is

shown in appendix A.

ε (ω) = ε∞ +
∑
i

Aiω
2
i

ω2
i − ω2 − iγiω

. (6)

ε∞ is the sum of the electronic transition contributions to the dielectric function

which can be determined from visible ellipsometry, Ai is the amplitude, γi is the

broadening and ωi is the frequency of the ith TO phonon. Summing ε∞ with the

amplitudes gives a good approximation of the dielectric constant. LO phonon

parameters can be extracted from this model and can be compared with those

published from previous IR reflectance experiments. This is because propagation

of an LO phonon in a material requires the dielectric function to be zero. By taking

ε(ω)−1, known as the loss function, poles will be found at LO frequencies. However,

this model assumes the damping for LO and TO phonons can be described by a

single parameter. Gervais and Piriou that this is non-physical [4].

To obtain accurate parameters for both TO and LO phonons, we must consider

a factorized model including independent broadenings. Such a model can be

derived from (6) and was done so by Lowndes in 1970 [5].

ε (ω) = ε∞
∏
i

ω2
i,LO − ω2 − iγi,LOω

ω2
i,TO − ω2 − iγi,TOω

(7)

This can easily be inverted to obtain the loss function for plotting purposes and

verification of fit accuracy. It is important to note that, if γi,TO = γi,LO = γi, the

two models are identical for a single phonon.
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2 VIBRATIONAL PROPERTIES OF BULK LaAlO3 FROM FOURIER-
TRANSFORM INFRARED ELLIPSOMETRY

This article appears in Thin Solid Films as it is shown here. It is available on-

line at http://www.sciencedirect.com/science/article/pii/S004060901302049X

and will be published later this year in the volume covering the precedings of the

6th International Conference on Spectroscopic Ellipsometry held in Kyoto, Japan

from May 26, 2013 through May 31, 2013.

Vibrational properties of bulk LaAlO3 from Fourier-transform

infrared ellipsometry

Travis Willett-Gies, Eric DeLong, Stefan Zollner
Department of Physics, New Mexico State University, MSC 3D, P.O. Box 30001, Las Cruces,

NM 88003-8001, USA

We used Fourier-transform infrared spectroscopic ellipsometry to determine the
delectric function of twinned single-crystalline bulk lanthanum aluminate at 300
K in the region of lattice vibrations from 250 to 1000 cm−1. We fit the exper-
imental data using a classical sum of Lorentz oscillators as well as a factorized
model. We were able to determine the parameters of five infrared-active optical
phonons within our spectral range. Transverse phonons appear as peaks in the
imaginary part of the dielectric function which are clearly visible without fitting.
By transforming the data to obtain the loss function, we are able to observe the
longitudinal phonons as peaks in the imaginary part. The polar nature of LaAlO3

causes a strong splitting between the transverse optical (TO) and longitudinal
optical (LO) phonon energies. We report energies, amplitudes and broadenings of
five TO/LO phonon pairs and compare the two models used to describe the data.

2.1 Introduction

Lanthanum aluminate (LaAlO3) is widely used as a substrate material in ox-

ide epitaxy [6]. Recently, thin films of LaAlO3 have drawn considerable attention
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owing to the discovery of a two-dimensional electron gas in LaAlO3/SrTiO3 het-

erostructures [7, 8, 9]. During the early development of high-k gate dielectrics, the

semiconductor industry considered LaAlO3 as a replacement for SiO2 as a gate

dielectric, mostly because of its close lattice match with Si [10, 11, 12].

LaAlO3 is a polar perovskite with a distorted cubic crystal structure. It can be

viewed as an alternating stack of positively charged LaO and negatively charged

AlO2 planes. The distortions lead to a rhombohedral structure with space group

R3̄c or D6
3d (space group 167) at room temperature [13, 17, 15, 16, 14]. The

rhombohedral lattice constants of LaAlO3 are found to be a=b=5.365 Å and

c=13.111 Å using neutron powder diffraction [15, 14]. The long-wavelength optical

phonon modes expected for this crystal structure are given by the factor group

[17, 19, 18]

Γ
(
D6

3d

)
= 2A1u + 3A2g + A1g + 3A2u + 4Eg + 5Eu. (8)

The relationship between the cubic Pm3̄m or O1
h perovskite phonons and the

crystal field splittings due to the rhombohedral distortions are summarized in

Table 1 [17, 18, 19].

Near 800 K, LaAlO3 transforms from the rhombohedral to the cubic crystal

structure [17, 15, 14, 20]. Raman measurements of low-energy phonons with en-

ergy below 200 cm−1 have revealed that there is a soft phonon [17, 14] associated

with this transition. The energy splitting of the lowest-energy Eg/A1g phonon

pair (representing the rotation of an AlO6 octahedron) decreases with increas-

ing temperature. At 800 K, they merge into a zero-frequency phonon with F2u

symmetry [17, 14].

The vibrational structure of LaAlO3 has been studied both theoretically and

experimentally. Abrashev et al. [19] calculated the long-wavelength optical phonon
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frequencies using a semi-empirical shell model and plotted diagrams showing the

displacement patterns of the atoms involved in the vibration. They also included

the splittings between transverse (TO) and longitudinal (LO) optical phonons due

to the long-range polar interactions. More recently, Delugas et al. [21] presented

an ab initio density-functional and self-interaction-corrected calculation of the

optical phonon frequencies, in which the TO/LO splittings were ignored. None

of these calculations are sufficiently accurate for comparison with experimental

results for the phonon frequencies.

The factor group analysis in Eq. (8) describes the symmetry of the optical

phonons and how they can be observed experimentally. The results are summa-

rized in Table 1: One A1g mode and four Eg modes are Raman active. Three A2u

and five Eu modes are infrared active and can be observed with Fourier-transform

infrared (FTIR) ellipsometry. Finally, two A1u modes and three A2g modes are

silent and not accessible experimentally using first-order Raman or infrared mea-

surements.

While most Raman spectroscopy studies have focused on the temperature

dependence of the A1g and Eg soft modes and their implications about the phase

transition from the rhombohedral to the cubic crystal structure [17, 19, 14], the

higher-energy Raman modes have also been investigated [17, 19]. Four Raman

modes have clearly been identified, while the assignment of the fifth mode is

controversial. See Table 1 for a summary of experimental results.

The IR-active modes have been investigated by infrared reflectance or trans-

mittance measurements, usually followed by fitting of the dielectric function as a

sum of Lorentz oscillators [18, 22, 23, 24]. Three pairs of A2u/Eu modes, arising

from the crystal field splitting of the three cubic F1u(Γ) modes, lead to strong

features in the spectra [19]. One weak zone-folded Eu mode is also seen clearly,

9



Table 1: Summary of transverse optical phonon modes for LaAlO3 at 300 K. All
energies are listed in units of cm−1.

R3̄c Pm3̄m activity pattern energy
symmetry symmetry (exp)
Eg F2u(R) Raman AlO6 331

A1g F2u(R) Raman AlO6 1232

Eg F1u(R) Raman La 1522

Eg F1u(R)? Raman O 4702 (?)
Eg Eu(R)? Raman O 4872

A2u F1u(Γ) IR AlO-La 188(1)3

A2u F1u(Γ) IR O bend 427.0(1)3

A2u F1u(Γ) IR O stretch 650.79(5)3

Eu F1u(Γ) IR AlO-La 188(1)3

Eu F2u(Γ) IR O weak
Eu F1u(Γ) IR O bend 427(1)3

Eu F2g(R) IR Al 495.72(1)3

Eu F1u(Γ) IR O stretch 708.2(9)3

A1u F2u(Γ) silent NA
A1u F2g(R) silent Al NA
A2g F1u(R) silent La NA
A2g F1u(R) silent O NA
A2g A2u(R) silent NA
1Ref. [17]
2Ref. [19]
3This work using Eq. (11)

while the second Eu mode (derived from F2u, which is silent in the cubic parent

structure) has been considered too weak to be observable [19]. There is consider-

able disagreement in the literature about the exact phonon energies, amplitudes,

and broadenings used to fit experimental spectra.

In this work, we determined the energies, broadenings, and amplitudes of the

infrared-active optical phonons with very high accuracy using Fourier-transform

infrared ellipsometry. We also describe the symmetries of all phonons and their

relationships, such as rhombohedral splittings and the relationship to their cubic

phonon counterparts.

10



2.2 Experiment and Models

Two single-side polished, 2-in. LaAlO3 wafers with 0.5 mm thickness and (100)

surface orientation were obtained commercially [25]. To reduce the reflections

from the backside, one wafer was roughened further using a bead blaster. Our

substrates are twinned and the surface orientation refers to the pseudo-cubic struc-

ture. Additional information about the samples and their properties are given in

our earlier work [1], where we also report the dielectric function of LaAlO3 from

0.8 to 6.6 eV between 77 and 700 K. Most importantly for the present work, our

earlier research found ε∞=4.12±0.01 at 300 K.

Infrared ellipsometry measurements were performed on a J.A. Woollam FTIR-

VASE variable angle of incidence ellipsometer at the Center for Integrated Nan-

otechnologies user facility. This instrument is based on a fixed analyzer (at 0◦

and 180◦), a fixed polarizer (at ±45◦), and a rotating compensator. To increase

accuracy, two fixed positions for the analyzer and polarizer were chosen (four-zone

measurements), as this cancels experimental errors to first order in the analyzer

and polarizer position. We measured at four angles of incidence: 60◦, 65◦, 70◦,

and 75◦. Nominally, the instrument reports data between 250 and 8000 cm−1

but we restrict our analysis to the region of the lattice vibrations between 250

and 1000 cm−1. We did not observe features in the spectra above 1000 cm−1

other than normal dispersion. In the spectral range around 6000 cm−1, our FTIR

ellipsometry results are consistent with our earlier near-IR work [1].

For various reasons, FTIR ellipsometry measurements on a bulk LaAlO3 wafer

are quite challenging. On the one hand, the reflectance of LaAlO3 is quite low

(about 11% at normal incidence in the mid-IR), much lower than for a bulk

semiconductor or for a thin film on Si. In the region of the lattice vibrations,

11



the reflectance becomes very small [23, 26] near 300, 620, and 800 cm−1. On

the other hand, the phonon broadenings in LaAlO3 are very low (near 4 cm−1 or

less). We therefore select a resolution of 2 cm−1 for the FTIR spectrometer. These

conditions create noise below 350 and near 800 cm−1. We are thus forced to select

a data acquisition time of eight hours to improve the signal to noise ratio, using

20 FTIR scans per spectrum and 15 spectra for each revolution of the rotating

compensator.

Spectroscopic ellipsometry measures the ellipsometric angles ψ and ∆ as a

function of photon energy. These ellipsometric angles and the Fresnel reflectance

ratio ρ = ei∆ tanψ are related to the pseudo-refractive index n̂ and the pseudo-

dielectric function ε̂ = n̂2 of the sample through [27, 28]

ρ =
(n̂ cosφ0 − cosφ1) (cosφ0 + n̂ cosφ1)

(n̂ cosφ0 + cosφ1) (cosφ0 − n̂ cosφ1)
, (9)

where φ0 is the angle of incidence and φ1 the angle of refraction. For an ideal

sample without surface overlayers, n̂ and ε̂ are equal to the refractive index n

and the dielectric function ε = n2. ∆ equals zero or π for an ideal transparent

substrate (for an insulator outside of the region of lattice vibrations), because all

quantities in Eq. (9) are real. For our LaAlO3 substrates, the surface overlayers

are very thin (see Table I in Ref. [1]). The surface roughness is between 15 and

20 Å for our samples.

Normally, spectroscopic ellipsometry requires extensive data analysis to de-

termine the optical constants (the complex dielectric function ε = n2) from the

ellipsometric angles. This is not the case for our analysis. We can simply con-

vert the measured ellipsometric angles into the dielectric function using Eq. (9),

because the effect of surface roughness is negligible. The transverse optical (TO)

phonons appear as peaks in the dielectric function [29, 4]. Longitudinal optical
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(LO) vibrations are possible at energies where ε (ω)=0. LO phonons therefore

appear as peaks in the loss function Im (−1/ε).

To determine accurate phonon energies, amplitudes, and broadenings, we write

the dielectric function ε as a function of photon energy ω as a sum of uncoupled

damped harmonic oscillators [29, 4, 30]

ε (ω) = ε∞ +
∑
i

Aiω
2
i

ω2
i − ω2 − iγiω

. (10)

The first term ε∞=4.12±0.01 (see Ref. [1]) describes the contributions of electronc

transitions to the dielectric function. In principle, we expect eight terms in the

sum, one for each infrared active phonon. In practice, some of these phonons may

be very weak, while others may be degenerate. Normally, we use five oscillators

as described below.

The Lorentz model (10) is derived for charges oscillating in an electric field.

This model is classical and it assumes that the frictional force acting on the charge

is proportional to their velocity [29]. This results in harmonic damping and a

constant broadening term. (The LO broadening parameter is generally different

from the TO broadening, most often larger, but not independent.)

Anharmonic coupling of phonons causes the decay of optical phonons into

acoustic or other optical phonons with lower energy. Usually, the decay products

are zone-edge phonons with a high density of states. If the splitting between the

TO and LO phonons is large, then they will have different decay paths and their

damping constants γTO and γLO may differ. Therefore, the uncoupled Lorentz os-

cillator model (10) often gives a good description of experimental data, which can

be improved by assigning different damping parameters to LO and TO phonons
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yielding [30, 31, 5, 4]

ε (ω) = ε∞
∏
i

ω2
i,LO − ω2 − iγi,LOω

ω2
i,TO − ω2 − iγi,TOω

(11)

as the functional form for the infrared dielectric function of insulators. If we

set γi,TO = γi,LO = γi, then both descriptions (10) and (11) become equivalent

(at least for a single oscillator or for clearly separated narrow absorption lines)

[26, 31, 4].

2.3 Experimental Results

The ellipsometric angles ψ and ∆ from 250 to 1000 cm−1 for LaAlO3 at 300 K

are shown in Fig. 2. Data were taken at four angles of incidence (60◦, 65◦, 70◦, and

75◦). The shape of the ψ spectra can be understood using arguments presented

by Humĺıček [26] for α-quartz: The first reststrahlen band with ψ=45◦ extends

from the lowest TO phonon energy at 188 cm−1 (below our spectral range) to the

corresponding LO phonon near 280 cm−1. ψ then drops to a minimum located

at an energy that increases with the angle of incidence. The second restrahlen

band (ψ=45◦) extends from 427 cm−1 to 596 cm−1. It is interrupted by a small

dip at 496 cm−1 due to the third phonon. The energy of the second minimum

also increases with the angle of incidence. The third restrahlen band has an

irregular shape with contributions from two TO phonons located between 650

and 710 cm−1. After the the third restrahlen band, ψ drops again. For an angle

of incidence of 60◦, ψ reaches zero at 1200 cm−1. ψ converges to a steady state

determined by ε∞ near 2000 cm−1. ψ never rises above 45◦, which would be a sign

of optical anisotropy [26]. ψ increases and decreases smoothly at the restrahlen

bands (another potential sign of crystal anisotropy found in SiC) [32].

The mid-IR Brewster angle given by tanφB =
√
ε∞ is 63.8◦. Therefore, in the
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Figure 2: Ellipsometric angles ψ (top) and ∆ (bottom) for LaAlO3 at 300 K at
four angles of incidence from 60◦ to 75◦. Symbols: Experimental data. Lines: Fit
with Eq. (11) and parameters in Table 3. Solid and dashed vertical lines indicate
the location of transverse and longitudinal optical phonons, respectively.
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Table 2: Transverse optical phonon mode parameters (amplitude A, TO phonon
energy ω, and TO phonon broadening γ) for LaAlO3 at 300 K using a Lorentz
oscillator fit as in Eq. (10). 90% confidence limits for experimental results are
given in parentheses. The additional parameter ε∞=4.12±0.01 was fixed based
on our earlier work [1].

mode Ai (exp) ωi (exp) γi (exp)
(1) cm−1 cm−1

AlO-La 15.24(5) 182(f) 4(f)
O bend 4.121(7) 426.94(6) 3.7(1)
Al 0.008(1) 495.8(3) 3.8(7)
O stretch 0.285(1) 652.9(1) 21.3(1)
O stretch 0.031(1) 688.6(3) 31.4(5)

Table 3: Transverse (TO) and longitudinal (LO) optical phonon energies and
broadenings for LaAlO3 at 300 K derived from a Lowndes oscillator fit as in Eq.
(11), in units of cm−1. 90% confidence limits are given in parentheses. The
additional parameter ε∞=4.12±0.01 was fixed based on our earlier work [1]

.

mode ωi,TO γi,TO ωi,LO γi,LO

AlO-La 188(1) 0.4(1) 276.4(2) 3.7(7)
O bend 427.0(1) 5.0(1) 596.1(7) 7.2(1)
Al 495.72(1) 3.8(7) 495.5(3) 3.8(7)
O stretch 650.79(5) 22.5(7) 744.1(9) 12.1(1)
O stretch 708.2(9) 55.3(9) 702.2(9) 66(1)

mid-IR, ∆=π for our measurements at an angle of incidence of φ=60◦, while ∆=0

for φ=65◦ or larger. ε drops below 3 at 1200 cm−1 and thus ∆=0 between 800 and

1000 cm−1 for all our incidence angles. Just below the main phonon peak at 427

cm−1, ε1 is very large and therefore the Brewster angle is above 75◦. Therefore,

∆ = π in this range for our incidence angles (60◦ to 75◦). ε1 drops below the

main phonon resonance (427 cm−1) and therefore ∆ drops to 0 as the Brewster

angle crosses the angle of incidence. The weaker TO phonons between 495 and

710 cm−1 cause more gradual changes in ∆. Below 300 cm−1, ∆ rises again due

to the influence of the TO phonon at 188 cm−1 (below our spectral range).

An excellent description of the ellipsometric angles can be achieved using a fit
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with the Lorentz model in Eq. (10) and the parameters in Table 2. The average

mean square deviation between our experimental data and the Lorentz model

is only 40% larger than the experimental errors. The low-frequency dielectric

constant is given by [29]

εs = ε∞ +
∑
i

Ai = 23.81± 0.06 (12)

using the parameters in Table 2. The dominant contribution arises from the

strong TO phonons at 188 and 427 cm−1. This infrared optical measurement is

in excellent agreement with electrical measurements [33] at 145 GHz and with

density functional calculations [21].

An even better description of our experimental data (where the mean square

deviation is slighly smaller than the experimental errors) is achieved with Lowndes’

model in Eq. (11) and the parameters in Table 3. At the scale in Fig. 2, it is not

possible to pinpoint the improvements in the fit with the Lowndes model compared

to the Lorentz oscillator model.

Therefore, we compare the dielectric functions and loss functions for both

models in Figs. 3, 4, 5 and 6. As a reminder, TO phonons appear as peaks in

ε2 and LO phonons appear as peaks in Im (−1/ε). The Lorentz model has the

following issues describing the experimental data, which are clearly improved by

the Lowndes model: (1) The minimum and maximum of ε1 between 600 and 700

cm−1 are too shallow. (2) The asymmetry of the peak in ε2 at 650 cm−1 is not

described well. See especially near 600 cm−1. (3) The minima and maxima in

Re (−1/ε) and the peaks in Im (−1/ε) are too shallow.

The static dieletric constant can also be calculated from Eq. (11) by setting ω =

0, leading to the common Lyddane-Sachs-Teller (LST) relation for multiphonon
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Figure 3: Pseudodielectric function for LaAlO3 at 300 K calculated from the data
in Fig. 2 using Eq. (9). Symbols: Experimental data. Lines: Fit with Eq. (10).
Peaks corresponding to transverse optical phonons are found at 427, 496, 653, and
689 cm−1.

18



-3

-2

-1

0

1

2

 

 

R
e(

-1
/

)

200 400 600 800 1000

0

1

2

3

4

5

6

 

 

Im
(-

1/
)

Energy (cm-1)

AlO-La O(b)

O(s)

    Al
(x100)

Figure 4: Loss function −1/ε for LaAlO3 at 300 K calculated from the data in Fig.
2 using Eq. (9). Symbols: Experimental data. Lines: Fit with Eq. (10). Peaks
corresponding to longitudinal optical phonons are found at 277, 596, 703, and 744
cm−1.

19



systems

ε0 = ε∞
∏
i

ω2
i,LO

ω2
i,TO

= 22.3± 0.3 (13)

with parameters and errors taken from Table 3. The largest sources of error

are uncertainties in the high-frequency dielectric constant ε∞ and the lowest TO

phonon energy (which is a fit parameter, but below our spectral range). Since the

Lowndes model (11) gives a better description than the Lorentz model (10), we

believe that the LST relation (13) gives a more accurate value of ε0 than Eq. (12),

despite the larger error bar.

Finally, we note that our data show no evidence of a weak Eu phonon peak

expected at 300 cm−1. Our data is very noisy at such long-wavelengths. We do

not find any ”ghost” peaks at other energies.

2.4 Discussion

Our infrared ellipsometry data yield very accurate phonon parameters for the

Lorentz model (see Table 2) and the Lowndes model (see Table 3). We find

that the Lowndes model gives a superior description of the experimental results,

especially at peaks in the loss function related to LO phonons. This result is

not surprising, since the main feature of the Lowndes model is the assignment of

independent broadening parameters to the LO phonons, while the Lorentz model

assumes that both TO and LO phonons have the same broadenings.

For isolated strong phonon modes, both models yield nearly identical TO

phonon energies (compare Tables 2 and 3). However, if two TO phonon peaks

overlap, then the two models find significantly differently TO phonon energies.

This is true especially for the weak Eu oxygen stretch mode at 709 cm−1. In gen-

eral, the TO phonon energy from our model is lower than the LO phonon energy

(as expected), but there is an exception for the very weak phonon located at 497
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cm−1, where the LO-TO separation is small and negative. In our analysis, the

negative Coulomb splitting for the Al mode is only 0.2 cm−1, much smaller than

the resolution of our spectra (2 cm−1). It is possible that a good fit to our raw

data could also be found with a positive Coulomb splitting for the Al mode at 496

cm−1. The weak phonon mode near 705 cm−1 is also inverted, but the splitting

is ten times smaller than its phonon broadening. There has been some discussion

in the literature about the sign of the TO/LO phonon splitting in quartz and

complex metal oxides, which we did not find convincing [36, 35, 37].

Based on an argument presented by Lowndes [5] and a generalized condition

for multi-phonon systes in Ref. [38], we expect that the LO broadening should

be larger than the TO broadening for a material like GaAs with a single TO-

LO phonon pair. This result is confirmed for most phonon modes, except for

the anomalously small LO phonon broadening of the LO phonon with the largest

energy. The broadenings of the two highest-energy phonons can also be found by

visual inspection of ε2 and Im (−1/ε) in Figs. 5 and 6. The ε2 spectrum shows

a sharper TO phonon at a lower energy (near 650 cm−1) and a much broader

TO phonon at a higher energy. Similarly, the loss function Im (−1/ε) shows a

broad TO phonon at about 700 cm−1 accompanied by a sharper LO phonon at a

higher energy. Therefore, the broadenings of the TO and LO phonons at the two

highest energies are a direct experimental observation, not a numerical artifact.

A comparison of our FTIR ellipsometry results with previous FTIR reflectance

measurements and theoretical results is given in Table 4.

2.5 Conclusions

We have characterized the parameters of the five IR-active optical phonons of

LaAlO3. We were able to find the energies, amplitudes and broadenings not only of
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Table 4: Comparison of our experimental FTIR ellipsometry results (last column)
with theory and previous FTIR reflectance measurements. TO and LO phonon
energies are in units of cm−1. 90% confidence limits are given in parentheses.

Mode
Theory Theory Reflectance Ellipsometry

[19] [21] [22] (This Work)
TO/LO TO TO TO/LO

A2u 213/263 168
182 188(1)/276.4(2)

Eu 220/263 179
Eu 270/270 297
A2u 366/496 409

429 427.0(1)/596.1(7)
Eu 371/475 411
Eu 481/505 478 501 495.72(1)/495.5(3)
A2u 706/712 627 657 650.79(5)/744.1(9)
Eu 707/712 637 695 708.2(9)/702.2(9)

the reasonably well-documented TO phonons, but also of the LO phonons which

have not previously been determined experimentally. Combining our Lorentz

amplitudes with the ε∞ previously determined by Nelson et al. [1], we have found

an experimental dielectric constant of about 22-24. This agrees well with published

values for LaAlO3which range from 23 to 25 [34]. By characterizing both the TO

and LO phonons, we have a more complete picture of the lattice dynamics of the

material. This is vital when considering the possible applications of LaAlO3in

microelectronics.
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3 INFRARED TOVACUUM-ULTRAVIOLET STUDIES OF SPINEL
(MgAl2O4)

This article appears in Thin Solid Films as it is shown here. It is available on-

line at http://www.sciencedirect.com/science/article/pii/S0040609013020506

and will be published later this year in the volume covering the precedings of the

6th International Conference on Spectroscopic Ellipsometry held in Kyoto, Japan

from May 26, 2013 through May 31, 2013.

Infrared to Vacuum-Ultraviolet Ellipsometry Studies of Spinel

(MgAl2O4)

Christian J. Zollner1, Travis Willett-Gies2, Stefan Zollner2, Sukgeun Choi3
1 School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA

2 Department of Physics, New Mexico State University, MSC 3D, P.O. Box 30001, Las Cruces,
NM 88003-8001, USA

3 National Renewable Energy Laboratory, Golden, CO 80401, USA

The dielectric function and the loss function for spinel (MgAl2O4) were determined
using Fourier-transform infrared ellipsometry from 250 to 1000 cm−1. We fit our
data using two different dispersion models: (1) The Lorentz oscillator model de-
scribes the lattice optical response using a sum of independent classical harmonic
oscillators with constant damping. (2) We also use a factorized oscillator model
with independent broadening parameters for the transverse and longitudinal op-
tical phonons. By fitting our data to these models, we determine the transverse
and longitudinal optical phonon energies, their broadenings, and their amplitudes.
The factorized model provides a better description of the data at high energies.
The agreement is not so good for the lower-energy phonons, presumably due to
broadenings caused by cation disorder. We also studied the Raman-active phonons
by Raman spectroscopy. Using spectroscopic ellipsometry, we also determine the
dispersion of the refractive index from 0.76 to 9.0 eV. Combining both data sets
we find the high- and low-frequency dielectric constant. In the visible and ultravi-
olet region, the data are dominated by a Lorentz oscillator peak at 8.1 eV masked
by surface roughness (13−16 Å).
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3.1 Introduction

Magnesium aluminum spinel (MgAl2O4) is a member of a family of minerals

with formulation A2+B3+
2 O2−

4 known as spinels. Spinel crystals (formerly known as

Balas ruby) occur naturally in gemstone-bearing gravels in Sri Lanka and other

areas of Asia as well as in Africa. Particularly large specimens are valued as

gemstones in the crown jewels of many royal families. Spinel crystallizes in the

cubic crystal system, with the oxide anions arranged in a cubic close-packed lattice

and the cations Mg2+ and Al3+ occupying the octahedral and tetrahedral lattice

sites, respectively. Disorder at the cation sites (Mg at Al lattice sites or vice versa)

is common, especially in synthetic crystals. At high temperature and pressure,

spinel decomposes into MgO and Al2O3 [35]. As a substrate material, it is a good

alternative to sapphire for semiconductor and oxide epitaxy [39]; for example, it

has an excellent thermal expansion and lattice match with GaN epitaxial films.

Spinel substrates have also been used as alternatives to GaAs in InGaAs-based

solar cells [40].

Spinel (MgAl2O4) belongs to the space group Fd3m (O7
h) and has two formula

units (N=14 atoms) per unit cell leading to 3N − 3 = 39 optical phonon modes

with symmetry

Γ = A1g + Eg + T1g + 3T2g + 2A2u + 2Eu + 4T1u + 2T2u.

Only the four T1u modes are infrared active and appear as absorption peaks in

Fourier-transform infrared (FTIR) ellipsometry. The A1g, Eg, and T2g modes are

Raman active; the remainder are silent [35].

The vibrational spectra of spinel have previously been investigated using Ra-

man and FTIR reflectance measurements and theoretical calculations of various

26



1 2 3 4 5 6
0
1
2
3
4
5
6
7
8
9
10
11

 

 (d
eg

re
es

)

Photon Energy (eV)

 Model
 exp. 55
 exp. 60
 exp. 65

0

20

40

60

80

100

120

140

160

180

 (d
eg

re
es

)

Figure 7: Ellipsometric angles ψ and ∆ for spinel at incidence angles from 55◦ to
65◦ at 300 K. The solid lines show the best fit to the data using a model with two
poles (IR and UV) for the spinel substrate and 13.7 Å of surface roughness.

levels of sophistication. See [35, 41] for a review. In this work, we report FTIR

ellipsometry spectra of spinel, including its dielectric function and loss function.

We fit these spectra using two different lattice absorption models to determine the

transverse (TO) and longitudinal optical (LO) phonon energies, their amplitudes,

and broadenings for all four infrared active phonons. We also report spectroscopic

ellipsometry data from 0.76 to 9.0 eV and determine the dispersion of the complex

refractive index in this spectral range and the high-frequency dielectric constant.

Combining our FTIR and near-IR/visible/UV ellipsometry results, we determine

the static dielectric constant.
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Unlike reflectance and transmission measurements, ellipsometry requires no

Kramers-Kronig transformation or curve fitting to obtain the complex dielectric

function. Also, FTIR ellipsometry is by design a dual-beam measurement tech-

nique, since the Fresnel ratio ρ = rp/rs is robust towards ambient gas absorption

lines. The complex reflectances rp and rs for p- and s-polarized light are affected

equally by intensity changes.

3.2 Experimental Conditions, Samples, and Models

Ellipsometry and transmission measurements from 0.76 to 6.0 eV were taken

on a J.A. Woollam VASE rotating-analyzer ellipsometer with a Berek wave plate

compensator, similar to our earlier work on LaAlO3 [1]; measurements above 6 eV

were taken on a similar nitrogen-purged VUV-VASE system.

For IR ellipsometry, we used a J.A. Woollam FTIR-VASE ellipsometer, which

is based on a fixed analyzer (0◦, 180◦) and polarizer (±45◦) and a rotating com-

pensator. To increase accuracy, two positions for the analyzer and polarizer were

chosen (four-zone measurements), as this cancels experimental errors to first order

in the analyzer and polarizer position. We measured at four incidence angles (60◦,

65◦, 70◦, 75◦) with 4 cm−1 resolution, much less than the observed phonon broad-

enings (15 cm−1 or larger). The instrument reports data from 250 to 8000 cm−1,

but we analyze only the region of lattice vibrations between 250 and 1000 cm−1.

We did not observe features above 1000 cm−1, only normal dispersion consistent

with NIR/VIS/UV-VASE measurements within the errors of both instruments.

Raman spectra were acquired with 785 nm laser excitation at a power of 100 µW

and a spot size of 1 µm using a Renishaw inVia Raman microscope. Results with

532 nm excitation were similar.

Spectroscopic ellipsometry measures the ellipsometric angles ψ and ∆ as a
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function of photon energy. These ellipsometric angles and the Fresnel reflectance

ratio ρ = ei∆ tanψ are related to the pseudo-refractive index n̂ and the pseudo-

dielectric function ε̂ = n̂2 of the sample through [27, 28]

ρ =
(n̂ cosφ0 − cosφ1) (cosφ0 + n̂ cosφ1)

(n̂ cosφ0 + cosφ1) (cosφ0 − n̂ cosφ1)
, (14)

where φ0 is the angle of incidence and φ1 the angle of refraction. For an ideal

sample without surface overlayers, n̂ and ε̂ are equal to the refractive index n and

the dielectric function ε = n2. This is an excellent approxation for our spinel

sample between 250 and 1000 cm−1. ∆ equals 0 or π for an ideal transparent

substrate (for an insulator outside of the region of lattice vibrations), because all

quantities in Eq. (14) are real.

All measurements were performed on synthetic spinel wafers (MTI Corpora-

tion, Richmond, CA). Transmission measurements were performed on double-side

polished and ellipsometry measurements on single-side polished substrates. Mea-

surements were carried out on the as-received wafers. The manufacturer specifies

a root-mean square (RMS) roughness of 8 Å. The expected surface roughness

layer thickness in ellipsometry data should be approximately twice this amount

(16 Å). Our attempts to clean the wafers with solvents usually resulted in an

increase of the deviation of ∆ from 0 or π, i.e., an increase of the surface layer

thickness. Some surfaces could be improved with a UV ozone preclean, which

removes carbon-related contaminants [42]. As expected for a cubic system, we

found the same ellipsometry results for wafers with (100) and (111) orientations.

All data shown here were obtained on a (100) wafer.

Normally, spectroscopic ellipsometry requires extensive data analysis to deter-

mine the optical constants from the ellipsometric angles. This is not the case for

our FTIR ellipsometry analysis. We convert the measured ellipsometric angles
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Table 5: Comparison of UV and IR pole energies ωi and amplitudes Aiω
2
i found

using spectroscopic ellipsometry with values from Ref. [43]. See Eq. (17).
Ref. [43] This Work

i ωi(cm−1) Aiω
2
i (cm−2) ωi(cm−1) Aiω

2
i (cm−2)

1 100,080 18.96×109 98,415 18.31×109

2 527.18 12.234×105 492.00 8.522×105

into ε using Eq. (14), because the effect of surface roughness is negligible. The

transverse optical (TO) phonons appear as peaks in the dielectric function [4].

Longitudinal optical (LO) vibrations are possible at energies where ε (ω)=0. LO

phonons therefore appear as peaks in the loss function Im (−1/ε).

To determine phonon energies, amplitudes, and broadenings, we write ε as a

function of photon energy ω as a sum of uncoupled damped harmonic oscillators

[29, 4, 30]

ε (ω) = ε∞ +
∑
i

Aiω
2
i

ω2
i − ω2 − iγiω

. (15)

The first term ε∞=2.90 (see [41] and below) describes the contributions of elec-

tronic transitions to the infrared dielectric function. In principle, we expect four

terms in this sum, one for each infrared active T1u phonon. We also observe an

overtone (two-phonon absorption process) near 800 cm−1 [35].

The Lorentz model (15) is derived for classical charges oscillating in an electric

field, assuming that the frictional force acting on a charge is proportional to its

velocity [29]. This results in harmonic damping and a constant broadening term.

This model can be improved by assigning different damping parameters to LO

and TO phonons yielding [30, 31, 5, 4]

ε (ω) = ε∞
∏
i

ω2
i,LO − ω2 − iγi,LOω

ω2
i,TO − ω2 − iγi,TOω

(16)

as the functional form for the infrared dielectric function of insulators. If we
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set γi,TO = γi,LO = γi, then both descriptions (10) and (16) become equivalent

(at least for a single oscillator or for clearly separated narrow absorption lines)

[26, 31, 4].

3.3 Experimental Results

The ellipsometric angles from 0.76 to 6.0 eV are shown in Fig. 7 at three

different angles of incidence near the Brewster angle, where the measurement is

most accurate. ∆ switches from 0 to π for an incidence angle of 60◦. The Brewster

angle crosses 60◦ near 2.8 eV, where ∆=90◦. The abruptness of this cross-over is

determined by the thickness of the surface layer—data for samples with a thicker

roughness layer (not shown) exhibited a broader cross-over. ψ is small (below 1◦)

and noisy (due to measurement errors) near the Brewster angle.

The transmission of the substrate (not shown) is above 80% below 6 eV and

then drops to 60% at 6.6 eV. We conclude that the band gap of spinel is larger than

6 eV and that the material is transparent at lower photon energies. Therefore, we

model the ellipsometric angles with a transparent substrate with surface rough-

ness. The dispersion of spinel below 6 eV is described with two poles (Lorentz

oscillators with zero broadenings), one of them in the UV at 12.2 eV, the other

in the IR at 0.06 eV (the location of the strongest TO phonon). These values are

compared with the literature in Table 5. With two poles, the Lorentz oscillator

model becomes the Sellmeier equation [43]

ε− 1 =
2∑

i=1

Aiω
2
i

ω2
i − ω2

=
18.31× 109

(98, 415)2 − ω2
+

8.522× 105

(492.00)2 − ω2
(17)

where ω is in cm−1. Excellent agreement between model and data (see Figure

7) can be achieved up to about 6 eV with a surface roughness of 13.7 Å. As

shown in Fig. 8, there is a difference between our model based on experimental
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data, and that of Ref. [43] of 0.064 or 2.2% at 1 eV. Since the model in the

literature is based on tabulated data from unpublished experiments, we cannot

explain the discrepancy. However, the dielectric function at 2.1 eV determined

from minimum deviation prism measurements by Vedam et. al. [44] is much closer

to our ellipsometric results than to the data from Ref. [43].

The resulting dispersion up to 6 eV is shown in Fig. 8. To determine the high-

frequency dielectric constant ε∞, we set the amplitude for the IR pole (lattice

contribution) to zero and then extrapolate the dispersion to zero photon energy

(from the remaining UV pole). We obtain ε∞=2.90, which agrees well with pre-

vious experimental and density-functional results [41].

Temperature-dependent measurements were taken in a liquid-nitrogen cooled

vacuum cryostat from 77 to 800 K at a fixed photon energy of 2 eV. We find

dε1/dT=3.2×10−5/K, in agreement with Vedam’s value [44]. The temperature-

dependence of ε for a crystal has two contributions: one negative contribution

from the thermal expansion, and one positive contribution from the negative

temperature-dependence of the band gap [45]. Both are similar in magnitude

and cancel partially. Upon comparison with LaAlO3 [1], whose temperature-

dependent ε data show first a negative trend at low temperatures (where the

negative thermal expansion term dominates) and then a positive trend at higher

temperatures (where the band gap contribution dominates), spinel exhibits no

downward-sloping region.

Figure 8 also shows 〈ε〉 up to 9 eV. Above 6 eV, Eqn. (17) is no longer suitable

to describe ε because of the presence of an excitonic interband transition at 8.1 eV.

Instead, a Tauc-Lorentz oscillator and one Gaussian peak were used to model our

data. Since the surface roughness was determined from the data at lower energies,

〈ε〉 (symbols) can be corrected to estimate ε (lines) up to 9 eV. Surface roughness
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Table 6: Transverse optical phonon mode parameters (amplitude A, TO phonon
energy ω, and TO phonon broadening γ) for MgAl2O4 at 300 K using a Lorentz
oscillator fit as in Eq. (10). 90% confidence limits for experimental results are
given in parentheses. The additional parameter ε∞=2.90 was fixed based on mea-
surements in the visible spectrum. Results from Ref. [35] are given for comparison.
The mode in the last row is likely to be an overtone.

mode Ai ωi γi Ai [35] ωi [35] γi [35]
(1) cm−1 cm−1 (1) cm−1 cm−1

T1u 0.4(f) 307.3(5) 15(f) 0.28 307.3 5.0
T1u 4.03(7) 481.7(1) 35(f) 4.2 476.5 13.0
T1u 0.03(f) 570(f) 20(f) 0.065 577.8 12.0
T1u 0.61(4) 665(1) 30(f) 0.8 676.2 30.5
? 0.005(f) 800(f) 50(f) 0.06 808.5 50

decreases the peak of 〈ε1〉 and increases the peak of 〈ε2〉, similar to the E1 peak

of Si. Our ε2 peak at 8.1 eV is much stronger than the peak found in [46]. Aboe

8.5 eV, ε2 rises again consistent with [46].

FTIR ellipsometry data for bulk spinel, represented by ellipsometric angles,

are shown in Fig. 9 at four angles of incidence. ψ shows a peak near 310 cm−1

from a nearly degenerate TO/LO phonon pair and reststrahlen bands from 480

to 610 cm−1 and from 670 to 950 cm−1 due to strong TO/LO phonon pairs with

significant Coulomb splittings. These bands do not have flat tops, but are inter-

rupted by dips near 550 and 800 cm−1 due to weak TO/LO phonon pairs with

smaller splittings.

We fit the ellipsometric angles using an expression for ε as shown in Eq. (15)

with parameters given in Table 6. Our results are comparable to those of Ref.

[35], but differences exist. Most notably, the phonon broadenings are about twice

as large for our synthetic crystal than for the natural crystal measured in Ref.

[35]. The largest differences between data and model are found in the shoulders

of the TO peaks, presumably an indication of cation disorder [35]. Adding the

contributions of electronic transitions and the four IR-active TO modes to the
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Table 7: Transverse (TO) and longitudinal (LO) optical phonon energies and
broadenings for MgAl2O4 at 300 K derived from a Lowndes oscillator fit as in
Eq. (16), in units of cm−1. 90% confidence limits are given in parentheses. The
additional parameter ε∞=2.90 was fixed based on work in the visible spectrum.
The mode in the last row is likely to be an overtone.

mode ωi,TO γi,TO ωi,LO γi,LO

T1u 307.5(9) 18(1) 312.5(9) 22(1)
T1u 484.4(8) 36.3(5) 608.8(9) 43.3(5)
T1u 551.4(4) 21.0(9) 552.5(8) 18.9(8)
T1u 669.6(1) 37.0(6) 864.8(1) 31.7(2)
Other 783.8(6) 95.7(1) 779.8(2) 73.7(0)

Table 8: Comparison of experimental phonon energies found using spectroscopic
ellipsometry with theoretical values found using density functional theory (DFT)
and experimental values from FTIR reflectance measurements.

DFT Reflectance Reflectance Ellipsometry
(Ref. [41]) (Ref. [35]) (This Work)

TO/LO (cm−1)
307/309 303/307 304/312 307.5(9)/312.5(9)
478/612 491/608 485/610 484.4(8)/608.8(9)
565/564 532/532 578/575 551.4(4)/552.5(8)
666/854 675/870 676/868 669.6(1)/864.8(1)

805/796 ∼800 783.8(6)/779.8(2)
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static dielectric constant, we find

εs = ε∞ +
∑
i

Ai = 8.0± 0.2 (18)

using the parameters in Table 2. The dominant contribution arises from the

strong TO phonons at 482 and 665 cm−1. The largest source of error (estimated

to be 0.1) is in the strength of the 307 cm−1 mode, which is influenced by the

low-energy shoulder of the 482 cm−1 phonon. This infrared optical measurement

of εs is in excellent agreement with electrical measurements [47] at 1 MHz and

density-functional calculations [41]. The dielectric and loss function determined

from our experimental data and from the fit are shown in Figs. 10 and 11.

An even better description of our data is achieved with Lowndes’ model in

Eq. (16) and the parameters in Table 7. Our parameters are similar to those of

[41], except that our broadenings might be a little smaller. The magnitude of the

broadenings has been associated with cation disorder and with surface damage due

to polishing of synthetic crystals. This model results in the ellipsometric angles

shown by the solid lines in Fig. 9 and the dielectric and loss functions shown in

Figs. 12 and 14. By setting the frequency in Eq. (16) to zero, we acquire the

Lyddane-Sachs-Teller relation [48] in the form

εs = ε∞
∏
i

ω2
i,LO

ω2
i,TO

= 7.8± 0.2 (19)

using the parameters in Table 7.

3.4 Discussion

When we compare the dielectric and loss functions predicted by the Lorentz

and Lowndes models (see Figs. 10-14), we find that both models struggle with

fitting the data at low energies. Especially, they fail to predict the low-energy
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shoulder of the 484 cm−1 TO peak assigned to cation disorder. This shoulder

broadens the 308 and 484 cm−1 peaks and causes a poor fit. At higher energies,

the Lowndes model fits the data perfectly, especially for the 670/865 cm−1 TO/LO

pair. The fit of this mode is much worse for the Lorentz model. As for a similar

study on LaAlO3 [49], we conclude that the factorized Lowndes model gives a

better description of FTIR ellipsometry data of insulating oxides with multiple

overlapping phonon modes.

All TO-LO Coulomb splittings found using a Lowndes fit to our data are posi-

tive. In general, the weaker phonon modes have smaller TO-LO phonon splittings

[36]. Ref. [41] finds a vanishing splitting of the TO/LO mode at 532 cm−1 (near

552 cm−1 in our work). By contrast, in Ref. [35] it was found that one TO/LO

mode was inverted and had a negative Coulomb shift. Ref. [35] cites a math-

emetical rule of Scott and Porto [36] that an LO peak must occur at a frequency

between every pair of TO’s for a given symmetry. Such reversals have been pre-

dicted for quartz [36] and observed for LaAlO3 [49] and previous studies of spinel

[35], but not in this work. There is no LO peak in our data between the T1u TO

peaks at 484.4 and 551.4 cm−1. Mathematically, it has been stipulated [36] that

one should expect to find an ε1 zero (an LO mode) between two ε2 peaks (TO

modes), at least if the broadening is very small and both TO peaks have similar

amplitudes. On the other hand, if a weak TO mode resides on the shoulder of a

much stronger broad peak (as for spinel or LaAlO3), it is less clear that the LO

mode needs to be inverted. We are unable to answer this question experimentally

with confidence, because the observed TO/LO splitting of the 552 cm−1 mode is

only 1 cm−1, while the resolution of our FTIR spectrometer is only 4 cm−1.

We are not aware of calculations showing the atomic displacements for the

four TO phonon modes. The lowest-energy TO mode at 307.5 cm−1 is usually
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associated with vibrations of the Mg atom. The two strong peaks at 484 and

670 cm−1 have been attributed to internal vibrations of the AlO4 tetrahedra and

labelled ν3 (670 cm−1) and ν4 (484 cm−1). The weak mode at 551 cm−1 should

be a combination of ν3 and ν4 [35].

To complement FTIR ellipsometry, we also performed Raman measurements of

the same crystals, see Fig. 13. Our results are consistent with [35, 50]. We observe

four of five expected Raman-active phonons and one additional peak assigned to

cation disorder, which is typical for synthetic spinel crystals. This additional peak

is due to a silent mode in the perfect crystal, which becomes Raman active in the

disordered structure because of the coupling with the Mg tetrahedral breathing

mode at 770 cm−1 [50].

3.5 Conclusions

The lattice dynamics of MgAl2O4 was investigated using FTIR ellipsometry

and Raman spectroscopy. The phonon parameters (energies, broadenings, ampli-

tudes) for all four IR-active optical phonons and one overtone were determined

with high accuracy, first by identifying peaks in the dielectric function and the

loss function, then by fitting the dielectric function using oscillator dispersion

models. A factorized phonon model due to Lowndes describes the data better

than the classical Lorentz harmonic oscillator model. All our Coulomb TO/LO

phonon spilttings were found to be positive. Asymmetric broadenings of low-

energy phonon peaks are explained by cation disorder. We also determined the

low- and high-frequency dielectric constants by combining our infrared measure-

ments with spectroscopic ellipsometry measurements from 0.76 to 9.0 eV. The

latter measurements also yield the dispersion of the refractive index up to 9.0 eV.
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4 DISCUSSION

In the two studies we have published, we have thoroughly analyzed the di-

electric functions of both LaAlO3 andMgAl2O4. We have accurately modeled the

infrared regime for both materials using the classic sum of Lorentz oscillators

and can report values for the static and high-frequency dielectric constants. We

have also found the energies and lifetime broadenings of all IR active TO and LO

phonons for both materials. We can compare these with previous values found

using IR reflectance as well as theoretical values which continue to be calculated

using increasingly accurate density functional theory (DFT). Dr. Alex Demkov

and Kurt Fredrickson at the Univeristy of Texas at Austin have performed DFT

within the local density approximation (LDA) for LaAlO3 and we are in the

process of compiling the results for comparison with our experimental phonon

parameters. Difficulties arise due to the fact that both the Lorentz and Lown-

des models used to describe the experimental data are derived for cubic systems.

When the symmetry is lowered as is the case with LaAlO3 we find that a triply

degenerate mode splits into a singlet and a doublet as described in appendix B.

The DFT-LDA calculations give these modes with mixed TO/LO behavior. This

has led to much discussion as to the activity and assignment of the modes in our

respective work.

Theoretical confusion notwithstanding, by obtaining an accurate model of the

dielectric function for LaAlO3 and MgAl2O4 we can improve measurements of

thin films and structures grown on these common substrates. This becomes more

important as device scale shrinks and design parameters grow more sensitive to

substrate and interface effects. A common pursuit in materials science is to obtain

a comprehensive library of possible materials to use when analyzing new or com-
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plex samples. By combining the optical parameters for the entire spectral range

as was done for spinel, we have an accurate model for the substrate from 137 nm

to 40,000 nm. The ellipsometry group at NMSU has already received samples

such as strontium titanate/lanthanum aluminate layered structures and Cobalt

thin films on MgAl2O4. Students can use our dielectric function to accurately

describe the substrate materials over the entire spectral range. The knowledge

gained from performing infrared ellipsometry on the substrate ceramics will allow

the group to analyze more complex materials.
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APPENDIX A: DERIVATION OF THE LORENTZ MODEL

Here we show the dielectric function ε(ω) for a bound charge q under the influ-

ence of a time-varying electric field E(t) = E0e−iωt (e.g. an electromagnetic wave.)

We assume the wavelength to be much smaller than the distance between charges

and that the amplitude, E0 is small. We model the effects of the surrounding

charges as a velocity-dependent frictional force with a damping coefficient b = γm

and the restoring force of the ionic bond as a spring with constant k. This ap-

proach is also shown in section 7.5 of Jackson’s Classical Electrodynamics [51].

The equations of motion for a charge under these conditions can be found from

Newton’s second law, F = mẍ

mẍ(t) = qE(t)− bẋ(t)− kx(t) (20)

Since we know the behavior will be that of a forced and damped harmonic os-

cillator, we can write the postion x(t) = x0e−iωt.When inserted in Eq. (20), this

becomes

−mω2x0 = qE0 + ibωx0 − kx0 (21)

where e−iωt appears in every term and is canceled. Solving for x0 gives

x0 =
−qE0

mω2 + ibω − k
(22)

and finally

x(t) =
−qE0

mω2 + ibω − k
e−iωt (23)

ẋ(t) =
−qiωE0

mω2 + ibω − k
e−iωt (24)

ẍ(t) =
−qω2E0

mω2 + ibω − k
e−iωt (25)
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we can write the resonance frequency of the oscillator (without damping) as

ω0 =

√
k

m
(26)

and, recalling that b = γm, we can write x(t) including this resonance

x(t) =
−qE0/m

ω2 − ω2
0 + iγω

e−iωt (27)

This describes the position of the charge as it is driven by the time-varying field.

However, the damping will cause the displacement to lag behind the field. We

can find this phase difference φ by separating the amplitude of the motion x0 into

real and imaginary parts. The inverse tangent of their ratio gives φ [51].

x0 =
−qE0(mω2 − k)

(mω2 − k)2 + b2ω2
+ i

−qE0bω

(mω2 − k)2 + b2ω2
(28)

tanφ = − bω

mω2 − k
=

γω

ω2
0 − ω2

(29)

We see that at the resonance frequency, when ω = ω0, tanφ→∞ and the phase

difference between displacement and field is
π

2
.

We can also use Eq. (??) to determine the complex dielectric function of a

material containing n identical bound charges. We recall that

ε(ω) = 1 + χ(ω) (30)

where χ(ω) is the complex dielectric susceptibility. Remebering that the polar-

ization of a material is given by the dipole moment per unit volume and can also

be expressed as the susceptibility multiplied by the electric field

P (t) = qnx(t) = ε0χ(ω)E(t) (31)
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from this relationship, we obtain

P (t) = − q2n

mω2 + ibω − k
(32)

χ(ω) = − q2n

ε0(mω2 + ibω − k)
(33)

ε(ω) = 1 + χ(ω) = 1− q2n

ε0(mω2 + ibω − k)
(34)

To simplify, we define the plasma frequency

ω2
p =

q2n

mε0
(35)

and write the dielectric function in the form used in the Lorentz oscillator model

in this work

ε(ω) = 1−
mω2

p

mω2 + ibω − k
= 1 +

ω2
p

ω2
0 − ω2 − iγω

(36)

where ω0 is the frequency of the phonon and γ is the broadening due to the sur-

rounding charges.
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APPENDIX B: PHONON SYMMETRY ANALYSIS

Every crystal belongs to one each of 230 space groups and 32 point groups.

These designations define the symmetry of the crystal structure and determine

many of its properties. For example, if we know the point group of our crystal, we

can use the symmetry to determine the number and activity of its phonons. The

phonon calculations for the two materials in this study are given in this appendix.

As an introduction we consider a simple cubic crystal with two atoms such as

NaCl. This material has a three-fold degenerate acoustic phonon where the entire

two-atom unit shifts out of equilibrium. The point group symmetry tells us that

this mode is identical along the x, y, and z axes, hence the degeneracy. In addi-

tion to this mode, there is a single optical phonon with the ionic bond stretching

and contracting. This too is three-fold degenerate due to the crystal symmetry.

Lower symmetry crystals have less degeneracy but may have more overall phonons

depending on the number of atoms per unit cell. For a more rigorous explanation,

see David Snoke’s Solid State Physics [52].

Lanthanum Aluminate

Lanthanum aluminate LaAlO3 has a cubic structure above 800 K. At room

temperature, it is skewed to a rhobohedral structure which belongs to the space

group R3̄c and point group D6
3d. The rhombohedral structure has two formula

units per unit cell. This gives N = 10 atoms and 3N = 30 degrees of freedom.

Three of these are acoustic which leaves 27 possible optical phonon modes.

The D6
3d point group has the character table
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D6
3d E 2C3 3C ′2 i 2S6 3σd

A1g 1 1 1 1 1 1

A2g 1 1 -1 1 1 -1

Eg 2 -1 0 2 -1 0

A1u 1 1 1 -1 -1 -1

A2u 1 1 -1 -1 -1 1

Eu 2 -1 0 -2 1 0

where the column headers define symmetry operations and the rows are the char-

acters of the point group. Some of these characters will not appear as phonons.

E Identity operation/degeneracy

Cn
2π

n
rotation

i Inversion

Sn
2π

n
rotation + inversion

σ Mirror planes

E modes are doubly degenerate while A modes are only singly degenerate. There-

fore, a three-fold degenerate mode (T ) in the cubic structure will split into one E

and one A mode when the symmetry is lowered.

To determine the distribution of these modes, we calculate the character of

each symmetry operation g.

χ(g) = Ng [det(g) + 2 cosφ] (37)

where Ng is the number of atoms which are left invariant under the given operation

and φ is the angle of rotation of the operation. We find Ng using a visualization

tool
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D6
3d E 2C3 3C ′2 i 2S6 3σd

Ng 10 10 4 2 4 0

La 2 2 2 0 2 0

Al 2 2 2 2 2 0

O3 6 6 0 0 0 0

Using these values for Ng, we find χ(g)

D6
3d E 2C3 3C ′2 i 2S6 3σd

Ng 10 10 4 2 4 0

[det(g) + 2 cosφ] 3 0 -1 -3 0 1

χ(g) 30 0 -4 -6 0 0

We then break this character into a unique and irreducible representation using

the modes of the point group

D6
3d E 2C3 3C ′2 i 2S6 3σd

χ(g) 30 0 -4 -6 0 0

A1g 1 1 1 1 1 1

A2g 1 1 -1 1 1 -1

Eg 2 -1 0 2 -1 0

A1u 1 1 1 -1 -1 -1

A2u 1 1 -1 -1 -1 1

Eu 2 -1 0 -2 1 0

χ(g) = 1A1g + 3A2g + 4Eg + 2A1u + 4A2u + 6Eu (38)

We can see that we have 30 total modes as each E mode is doubly degenerate.

Using the selection rules as shown in [52] we can determine the activity of each

mode.
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Acoustic: 1A2u + 1Eu

Silent: 3A2g + 2A1u

Raman: 1A1g + 4Eg

Infrared: 3A2u + 5Eu

The 13 infrared modes are the phonons under investigation in this study.

Spinel

Magnesium aluminate spinel(MgAl2O4) is a cubic crystal and the namesake

of the spinel group: A2+B3+
2 O2−

4 . This material has the space group Fd3m and

point group O7
h and, like LaAlO3, has two formula units per unit cell. This gives

N = 14 atoms per unit cell and therefore 3N = 42 possible phonon modes. With

three of these being acoustic, we arrive at 39 possible optical modes. All 42 modes

and their activities can be derived from the character tables for point group O7
h

O7
h E 8C3 3C2 6C4 6C ′2 i 8S6 3σh 6S4 6σd

A1g 1 1 1 1 1 1 1 1 1 1

A2g 1 1 1 -1 -1 1 1 1 -1 -1

Eg 2 -1 2 0 0 2 -1 2 0 0

T1g 3 0 -1 1 -1 3 0 -1 1 -1

T2g 3 0 -1 -1 1 3 0 -1 -1 1

A1u 1 1 1 1 1 -1 -1 -1 -1 -1

A2u 1 1 1 -1 -1 -1 -1 -1 1 1

Eu 2 -1 2 0 0 -2 1 -2 0 0

T1u 3 0 -1 1 -1 -3 0 1 -1 1

T2u 3 0 -1 -1 1 -3 0 1 1 -1
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We see that the cubic structure of spinel contains many more symmetry operations

as well as the three-fold degenerate T modes which were split in the rhombohedral

symmetry of LaAlO3. We can use the same procedure as described for LaAlO3 to

find the character of MgAl2O4 with Eq. (37)

O7
h E 8C3 3C2 6C4 6C ′2 i 8S6 3σh 6S4 6σd

χ(g) 42 0 -2 0 -2 -12 0 0 -2 8

This character can be described with a unique combination of the O7
h modes

O7
h E 8C3 3C2 6C4 6C ′2 i 8S6 3σh 6S4 6σd

χ(g) 42 0 -2 0 -2 -12 0 0 -2 8

A1g 1 1 1 1 1 1 1 1 1 1

A2g 1 1 1 -1 -1 1 1 1 -1 -1

Eg 2 -1 2 0 0 2 -1 2 0 0

T1g 3 0 -1 1 -1 3 0 -1 1 -1

T2g 3 0 -1 -1 1 3 0 -1 -1 1

A1u 1 1 1 1 1 -1 -1 -1 -1 -1

A2u 1 1 1 -1 -1 -1 -1 -1 1 1

Eu 2 -1 2 0 0 -2 1 -2 0 0

T1u 3 0 -1 1 -1 -3 0 1 -1 1

T2u 3 0 -1 -1 1 -3 0 1 1 -1

the irreducible representation gives us

χ(g) = 1A1g + 1Eg + 1T1g + 3T2g + 2A2u + 2Eu + 5T1u + 2T2u (39)

Checking, we have 42 total modes (T=3-fold, E = 2-fold) of which one T1u is

acoustic, the A1g, Eg and three T2g are Raman active. The remaining four T1u

modes are infrared active and any others are silent. These four modes are visi-
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ble as peaks in the imaginary dielectric function as shown in the body of this work.
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APPENDIX C: BANDS OF TOTAL REFLECTION

From the fundamental equation of ellipsometry,

rp
rs

= ρ = tan Ψ ∗ ei∆

we can see that the complex reflectance ratio, ρ is the ratio of the reflected intensity

of p-polarized light, rp and that of s-polarized light, rs. An increasingly popular

method of infrared ellipsometry data analysis is to look at the frequency regions

where |rp|2 and |rs|2 are equal to one. That is to say, no light propagates at the

given frequency and phonons are therefore forbidden to exist. These bands of

total reflection correspond to the reststrahlen bands discussed in the body of this

work. Here we calculate the bands of total reflection for LaAlO3 and MgAl2O4 as a

function of incident angle to observe the reststrahlen bands as well as the angular

dispersion of the LO phonon modes.

To calculate these bands, we may simply use the experimental data. However,

for clarity and to obtain a full angular band, we use the Lowndes model

ε (ω) = ε∞
∏
i

ω2
i,LO − ω2 − iγi,LOω

ω2
i,TO − ω2 − iγi,TOω

with the broadenings set to zero, calculate the dielectric function and insert it

into Eq. (5)

ε ≈ 〈ε〉 =

(
1− ρ
1 + ρ

2
)

tanφ2 sinφ2 + sinφ2

. We then invert this and calculate |rp|2 and |rs|2 as a function of angle φ. The

results for LaAlO3 are shown in Fig. 15. The regions where |rp|2 and |rs|2 are

then plotted as a function of angle to obtain the bands of total reflection shown

in Fig. 16
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Figure 15: Reflection coefficients for LaAlO3 calculated for four different angles
using Eq. (11) with broadenings set to zero. Solid Lines are |rp|2, dashed indicate
|rs|2.
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Figure 16: Bands of total reflection for LaAlO3. Reststrahlen bands are hatched
with horizontal lines indicating phonon frequencies. Note the increase in angular
dispersion at higher energies.
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