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ABSTRACT

Tin-rich Sn1�xGex alloys with Ge contents up to 6% were grown pseudomorphically on InSb (001) substrates by molecular beam
epitaxy at room temperature. The alloys show a germanium-like lattice and electronic structure and respond to the biaxial stress
within continuum elasticity theory, which influences bands and interband optical transitions. The dielectric function of these
alloys was determined from 0.16 to 4.7 eV using Fourier-transform infrared and spectroscopic ellipsometry. The E1 and E1 þD1 crit-
ical points decrease with the increasing Ge content with a bowing parameter similar to the one established for Ge-rich Sn1�xGex
alloys. On the other hand, the inverted direct bandgap �E0 is nearly independent of the Ge content, which requires a bowing
parameter of about 0.8 eV, much lower than what has been established using photoluminescence experiments of Ge-rich relaxed
Sn1�xGex alloys.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5086742

Dilute Sn1�xGex alloys (x� 1) are randomly disordered
germanium-like semiconductors with an inverted band struc-
ture1 and a negative energy gap of �E0 ¼ �0:41 eV because the
s-antibonding orbital with C�7 symmetry has a lower energy than
the p-bondingCþ8 orbital, see Fig. 1(a). Because of the degeneracy
of the Cþ8 band, the bandgap of unstrained Sn1�xGex alloys (with
small x) is exactly zero, protected by the cubic symmetry of the
crystal. If grown pseudomorphically strained on a suitable sub-
strate (like InSb), the alloys undergo a topological phase transi-
tion from a Dirac semimetal (x< 1.2%) to a topological insulator
(x> 1.2%) as the in-plane strain changes from compressive to
tensile2–4 (near x¼ 1.2% for growth on InSb), see Fig. 1. At some
value of x (probably between 25% and 75%), the direct gap �E0

becomes zero and changes its sign,5–8 but such alloys have not
yet been studied experimentally since Sn and Ge are barely mis-
cible. Thin films of stable Sn1�xGex alloys can be grown epitaxi-
ally through non-equilibrium growth methods (e.g., molecular
beam epitaxy and chemical vapor deposition), allowing their
properties to be explored.

Many quantities of Sn1�xGex alloys, such as lattice con-
stants and bandgaps, vary smoothly with the composition and

follow Vegard’s Law (linear interpolation) with quadratic
corrections9

E xð Þ ¼ EGexþ ESn 1� xð Þ � bx 1� xð Þ; (1)

where the subscripts indicate the element and b is the bowing
parameter. A positive bowing parameter indicates that the quan-
tityE for the alloy is smaller than that given by a linear interpola-
tion. Examples of such quantities and their bowing parameters
determined from Ge-rich Sn1�xGex alloys (x>0.85) are shown in
Table S1. Some quantities, especially the inverse effective mass
(Luttinger) parameters, diverge as �E0 crosses zero and require a
different interpolation scheme as explained in the supplemen-
tary material.

The purpose of this manuscript is to describe the dielectric
function (determined from spectroscopic ellipsometry) and the
band structure of Sn1�xGex alloys (x<0.06). Our work follows
similar studies for Ge-rich alloys10,11 and a-tin,12 but the dielec-
tric function and critical-point (CP) parameters for Sn-rich
Sn1�xGex alloys have not yet been reported. It is of particular
interest if bowing parameters determined on the Ge-rich side
can also be applied to Sn-rich alloys.
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Our Sn1�xGex alloys were grown on InSb (001) substrates by
molecular beam epitaxy at room temperature as described previ-
ously.5,13–15 The composition was varied by changing the Ge effu-
sion cell temperature while keeping the tin flux constant. The
growth rate was 8–10nm/min. Post-growth examination by
high-resolution x-ray diffraction (XRD) establishes the diamond
crystal structure and high crystalline quality. The Ge content and
the layer thickness were determined from the (004) Bragg reflec-
tions, assuming that the lattice constant of Sn1�xGex varies line-
arly with the composition16 (bowing parameter b¼0) and that
the alloys are fully strained, which was verified with asymmetric
XRD reciprocal space maps for selected samples. Pure a-tin on
InSb is under compressive in-plane strain, while Sn1�xGex alloys
on InSb with a Ge content above 1.2% display tensile in-plane
strain, see Fig. 2. All the layers reported here were fully strained
with strong Pendell€osung fringes, but thicker alloys at high strain
showed some relaxation. Table I describes the layers investigated
in this study, especially their composition and thickness.

Ellipsometric angles at room temperature were acquired
from0.16 eV (the bandgap of the InSb substrate) to 4.7 eV at three
angles of incidence (65�–75�) on two different instruments and
analyzed as described elsewhere.9,15 All pseudo-dielectric func-
tion spectra showed �E0, E1, E1 þ D1, and E2 CPs

17 and one inter-
ference fringe between �E0 and E1 at an energy that depended on
the thickness.15 The data were fitted using a three-layer model
(oxide, epilayer, and substrate), and the optical constants of the
epilayer were determined using a two-step process. We first
described the optical constants of the epilayer using a Kramers-
Kronig-consistent semiconductor parametric oscillator model
to determine the thicknesses. We then fixed the thicknesses to
the values found in the first step, discarded the parametric

oscillator model to avoid bias, and fitted the optical constants of
the epilayer independently at each wavelength. Both steps in
this fitting process yielded approximately the same optical con-
stants. The overall fit throughout the spectral range was usually
better in the parametric oscillator model, while the point-by-
point fit gavemore accurate results near the CPs and for the cal-
culation of derivative spectra. The point-by-point fit sometimes
diverged or produced noise or steps in the data, especially near
interference fringes. Such artifacts can be reduced by perform-
ing a multi-sample fit for epilayers with different thicknesses
(but the same composition) using the same optical constants for
all Sn1�xGex epilayers (for constant x). Since the optical constants

FIG. 1. (a) Schematic of the band struc-
ture of unstrained a-tin with interband
transitions and band symmetries. (b)
Splitting 2d0 of Cþ8 energy levels versus
Ge content; separation of the two Dirac
points in the Dirac semimetal (DSM)
phase. (c) Conduction and valence band
energies for wave vectors parallel and
perpendicular to the [001] shear strain.
Compressive in-plane stress makes a-tin
(x¼ 0) a DSM. The Dirac point (D) is indi-
cated. (d) Tensile in-plane stress makes
Sn1–xGex (x¼ 6%) on InSb a topological
insulator with a small gap.

FIG. 2. (004) Bragg reflections of Sn1�xGex alloy layers (x¼ 0–5.9%) grown on
InSb (001) were used to determine the composition and thickness. Alloys below
(above) 1.2% Ge are under compressive (tensile) in-plane stress.
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for the native oxide on Sn1�xGex alloys are not known, we used
the optical constants for the native oxide on InSb instead, similar
to our earlier analysis of ellipsometry measurements on a-Sn
layers.15

Figure 3 shows the dielectric function of a-Sn and Sn1�xGex
alloys from 0.2 to 4.7 eV grown pseudomorphically on InSb (001),
as determined from a point-by-point fit. Trends shown by
dashed arrows include reduced amplitudes, increased broaden-
ings, a redshift of the E1 and E2 CPs, and an increased back-
ground at the lowest energies with the increasing Ge content.
The �E0 peak shows a slight blueshift with increasing x, as shown
in the inset.

Two optical interband transitions are easily accessible to
spectroscopic ellipsometry to study the band structure of
Sn1�xGex alloys, see Figs. 1(a) and 3. The �E0 gap separates the C�7

VB from the Cþ8 valence/conduction band. Also, the E1 and E1

þD1 transitions occur from the L�4;5 and L�6 VBs to the Lþ6 CB at
the L-point and along the [111] directions.

We first discuss the E1 and E1 þ D1 CPs since this is more
straightforward based on previous research on other materials
like Ge.17 Ellipsometry measurements on Ge, a-Sn, and Ge-rich
Sn1�xGex alloys established the E1 and E1 þ D1 energies for the
elements and the bowing parameters in the Ge-rich regime, see
Table S1. Predictions from previous data, including strain cor-
rections, are shown in Fig. 4 in comparison with our experimen-
tal data, which were determined by calculating the second
derivatives of the data shown in Fig. 3 and fitting themwith two-
dimensional CP line shapes of the form9,15,17

� �hxð Þ ¼ C� A ln �hx� Eg � iC
� �

ei/; (2)

where Eg, A, C, and / are the energy, amplitude, broadening, and
excitonic phase angle of the CP.

Since the E1 energies for bulk diamond and zinc blende
semiconductors are usually determined with an accuracy of
about 1meV, our experimental data in Fig. 4 show an unexpected
amount of scatter, considering that the clearly pronounced XRD
peaks in Fig. 2 suggest a high accuracy of the Ge content.
Perhaps the presence of an interference fringe just below the E1

CP affects the accuracy of our second-derivative analysis.
Despite these errors, the agreement of our data with the calcu-
lated E1 and E1 þ D1 energies from the established bowing
parameters10 is good. Even better agreement can be achieved, if
a single bowing parameter of b¼ 1.3eV is used to describe the
dependence of these CPs on the Ge content, rather than differ-
ent bowing parameters for E1 and E1þ D1.

We now proceed to discuss the dependence of the �E0 gap
in Sn1–xGex alloys on the Ge content. An �E0 peak was recently
discovered in the dielectric function of a-Sn.15 Comparing the
predictions from the established bowing parameters with
experiments is not straightforward because the mechanism giv-
ing rise to the �E0 peak in ellipsometry data is not fully under-
stood yet. Therefore, no analytical lineshape has been derived

TABLE I. Ge content x and thickness t determined from x-ray diffraction (XRD) and
spectroscopic ellipsometry (SE). Energies E, broadenings C, and phase angle / of
the �E 0, E1, and E1 þ D1 gaps from SE.

x t(XRD) t(SE) �E 0 E1 E1 þ D1 CE1 CE1þD1 /E1
% (nm) (nm) (eV) (eV) (eV) (meV) (meV) (�)

0 67.2 68.6 0.418 1.281 1.739 60 91 74
1.5 97.8 100.4 0.425 1.269 1.719 64 97 70
2.0 100.5 103.4 0.427 1.250 1.707 77 110 73
2.4a 73.9 0.428 1.275 1.738 59 87 98
2.5 119.0 119.7 0.428 1.255 1.709 70 101 64
3.6a 81.4 81.2 0.429 1.245 1.681 54 102 41
4.0 103.4 103.1 0.432 1.263 1.711 67 99 65
4.1a 81.5 81.4 0.428 1.247 1.692 63 101 58
5.0b 188 0.423
5.6 50.1 50.3 0.433 1.232 1.669 85 129 55
5.9a 75.0 75.1 0.429 1.239 1.665 ? 102 40

aDifficult to fit because of the overlap with an interference fringe.
bPartially relaxed.

FIG. 3. Dielectric function of a-Sn (black) and Sn1�xGex alloys (x< 0.06) on InSb
(001) from a point-by-point fit to spectroscopic ellipsometry data. Colors from red to
blue indicate the increasing Ge content. The magnified inset of �2 versus photon
energy shows a slight blueshift of �E 0 with the increasing Ge content. The question
mark points out a numerical instability of the point-by-point fit near an interference
fringe. Dashed arrows show the trends with the increasing Ge content. The tabu-
lated data for this figure are included in the supplementary material.

FIG. 4. E1 and E1 þ D1 energies from ellipsometry (symbols) along with predic-
tions calculated from the established bowing parameters for relaxed (dotted) and
strained (dash-dotted) alloys. Our data fit best with a single bowing parameter for
both CPs (solid). Closed (open) symbols show the results where both the phase
angles were required to be the same (allowed to differ).
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yet which could be compared with dielectric function spectra.15

Our best current theory15 attributes �E0 to intravalence band
transitions from C�7 to the highest hole band (Cþ7 or Cþ6 , whatever
is lower) and places the maximum of �2 approximately 30meV
(about kT) above �E0. We therefore subtract this value from our
peak energies of �2 to determine the �E0 energies of Sn1�xGex,
see Table I.

We thus find �E0 ¼ 0:418 eV for strained a-Sn on InSb (001),
which corresponds to the energy difference between Cþ7 and C�7
(Fig. 1). To obtain the �E0 energy for unstrained a-Sn,we must add
jd0j (6meV, half the Cþ8 splitting under [001] shear strain) and the
hydrostatic shift (12meV) to obtain the energy difference
between Cþ8 and C�7 in unstrained a-Sn, which yields 0.436eV. (A
detailed discussion of the influence of biaxial stress on the band
structure can be found in the supplementary material.) We con-
sider this value the �E0 energy for unstrained a-Sn and enter it in
Table S1. Also see Fig. 5. Our �E0 of 0.436eV for unstrained a-Sn is
in reasonable agreement with the established value of 0.413eV,
which was determined using magnetoreflectance.18 A better
agreement should not be expected due to the significant non-
parabolicity of the Cþ8 bands (Fig. 1) and the M-shape of the C�7
VB.19 Our room-temperature ellipsometry measurement probes
an energy range of about 30meV around the C�7 and Cþ8 extrema,
while magnetoreflectance18 at 1.5K probes at much higher ener-
gies (up to 150meV) and extrapolates downward to determine
�E0. The �E0 gap is independent of temperature between 1.5 and
85K, determined from magneto-reflectance measurements,18

and not expected to change up to room temperature.15

Using photoluminescence measurements on unstrained Ge-
rich Ge1�xSnx alloys,20 a large bowing parameter of b¼ 2.46eV
was found for the E0 gap, seeTable S1. A recent density-functional
calculation8 finds an even larger value of b¼ 3.02eV.This suggests
a decrease in the C�7 VB energy for relaxed tin-rich Sn1–xGex alloys
with the increasing Ge content relative to the Cþ8 VB maximum,
which would lead to an increase in the observed �E0 energy, as
shown in Fig. 5. The hydrostatic portion of the in-plane biaxial

stress in pseudomorphic Sn1�xGex on InSb (001) will modify the
�E0 gap and will cause an decrease by 12meV for pure a-Sn on
InSb (001) and an increase for Sn1�xGex alloys with x> 1.2% (by
51meV for x¼0.06). Finally, the [001] shear strain splits the doubly
degenerate Cþ8 band into non-degenerate Cþ6 and Cþ7 states. If we
attribute �E0 to intravalence band transitions from C�7 to the
highest hole band, then the experimentally observed �E0 peak
should follow the lower of the Cþ7 and Cþ6 energies. (Also see Fig. 1
and supplementarymaterial.)

We observe, however, that these predictions do not agree
at all with our experimental data. As the Ge content is increased
up to 6%, our �E0 energy increases by not more than 10meV.
This behavior can be described with a bowing parameter of
about 0.8eV, as shown by the thick line in Fig. 5.

In summary, we have determined the dielectric function of
pseudomorphic tin-rich Sn1�xGex alloys on InSb (001) for Ge
contents up to 6% using infrared and spectroscopic ellipsome-
try. These measurements suggest a germanium-like band struc-
ture for such alloys, similar to the elemental endpoints. The E1

and E1 þ D1 critical points (which originate from interband opti-
cal transitions along [111] and at the L-point) show a decrease
with the increasing Ge content at a rate not entirely incompati-
ble with the bowing parameters determined for Ge-rich alloys.
The inverted direct bandgap �E0 is nearly independent of the Ge
content up to 6%, which suggests a bowing parameter on the
order of 0.8 eV, much lower than the value of 2.46eV determined
using photoluminescence of Ge-rich alloys.

See supplementary material for the tabulated optical con-
stants of Sn1–xGex alloys, an interpolation scheme of inverse
effective mass parameters, a discussion of the influence of biax-
ial stress on the valence band structure and critical points of
Sn1�xGex alloys, critical-point parameters, and characterization
results for our epitaxial layers using atomic force microscopy
and high-resolution x-ray diffraction.
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S1. VALENCE BAND WARPING IN SN1−xGEx ALLOYS

Warping of the Γ+
8 p-bonding orbitals is of critical im-

portance in Sn1−xGex alloys, especially under a biaxial

in-plane stress. In a very simple ~k·~p model, this warping
is described by three inverse effective mass parameters17

(Dresselhaus 1955)

A = 1− 2

3

(
P 2

m0E0
+

2Q2

m0E′0

)
, (S1)

B =
2

3

(
−P 2

m0E0
+

Q2

m0E′0

)
, (S2)

C2 =
16P 2Q2

3m2
0E0E′0

, (S3)

expressed in units of ~2/2m0, where m0 is the free elec-
tron mass, P and Q are the momentum matrix elements
connecting the Γ′25 band with the Γ′2 and Γ15 bands, re-
spectively, and E0 and E′0 the corresponding direct band
gaps at the Γ-point.

In Ge, A=−13.38 is negative, because the term in
parentheses in Eq. (S1) is much larger than one. B=−8.5
is also negative, because E0<E

′
0 in Eq. (S2); and finally

C2=173 is positive, because all parameters in Eq. (S3)
are positive. In α-tin, A=19.2 is positive, because E0 is
negative and its magnitude is less than E′0. B=26.3 is
positive, because E0 is negative and all other factors are
positive. For the same reason C2 is negative. (For Ge,
the values of the inverse effective mass parameters are not
controversial and were taken from Yu and Cardona,17

Table 2.24. We adopted values for α-tin measured us-
ing angle-dependent Shubnikov-de Haas experiments by
Booth and Ewald 1968, which are different from calcu-
lated inverse effective mass parameters, for example Car-
dona 1963, Cardona 1967, Lawaetz 1971, or Leung and
Liu 1973. Different conventions for signs and units of
these parameters are common.)

If we introduce EP=2P 2/m0 and EQ=2Q2/m0 and
stress that the inverse effective mass parameters depend

on composition, we can rewrite Eqs. (S1-S3) as

A (x) = 1− EP (x)

3E0 (x)
− 2EQ (x)

3E′0 (x)
, (S4)

B (x) = = − EP (x)

3E0 (x)
+
EQ (x)

3E′0 (x)
, (S5)

C2 (x) =
4EP (x)EQ (x)

3E0 (x)E′0 (x)
. (S6)

In Sn1−xGex alloys, all three parameters A, B, and C2

will diverge as E0 crosses from negative to positive values
with increasing x. The associated effective masses17

~k ‖ [100] 1
mhh

= −A+B (S7)

1
mlh

= −A−B (S8)

~k ‖ [111] 1
mhh

= −A+B

√
1 +

C2

3B2
(S9)

1
mlh

= −A−B
√

1 +
C2

3B2
(S10)

will become very small at this cross-over and the Γ+
8

bands will take a very large curvature for small wave

vectors ~k. The divergence is caused by the increased in-
teractions (repulsion) of the Γ−7 and Γ+

8 bands with small

energy denominators in ~k·~p theory.
Because of this divergence, it is completely inappropri-

ate to attempt a linear interpolation of the inverse effec-
tive mass parameters with tin content. Instead, we note
that the matrix elements EP and EQ are similar for Ge
and tin and therefore should tolerate a linear interpola-
tion (Lawaetz 1971). We also know the dependence of the
direct band gaps E0 and E′0 on composition (including
quadratic bowing for some gaps,9,12 Viña 1984) and we
might want to calculate composition-dependent inverse
effective mass parameters using Eqs. (S4-S6). The prob-
lem is, of course, that we are attempting to predict three
parameters A, B, and C2 with only two variables EP
and EQ, since the energies E0 and E′0 are known from
spectroscopic measurements. We address this dilemma
by introducing an artificial third parameter EPQ, which
should be similar to the product of EP and EQ:

A (x) = 1− EP (x)

3E0 (x)
− 2EQ (x)

3E′0 (x)
, (S11)

B (x) = = − EP (x)

3E0 (x)
+
EQ (x)

3E′0 (x)
, (S12)

C2 (x) =
4EPQ (x)

3E0 (x)E′0 (x)
. (S13)

We now have three equations and three unknowns, which
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FIG. S1. Warped (unstrained) Γ+
8 bands of Sn0.94Ge0.06 cal-

culated from the inverse effective mass parameters in Table SI
along high-symmetry directions. The light and heavy “hole”
bands are shown by dashed and solid lines, respectively.

are easy to solve:

EP = E0 (1−A− 2B) , (S14)

EQ = E′0 (1−A+B) , (S15)

EPQ = 3
4E0E

′
0C

2. (S16)

In conclusion, to determine the inverse effective mass
parameters A, B, and C2 as a function of Ge content x,
we start with their values for the elements listed in Table
SI. We then calculate EP , EQ, and EPQ for the elements
using Eqs. (S14-S16) and interpolate them linearly with
composition (Lawaetz 1971). Finally, we use Eqs. (S11-
S13) to find the inverse effective mass parameters for the
alloys. From A, B, and C2, we can also calculate the
Luttinger (1956) parameters and the average isotropic
effective masses from17 (Persson 2001)

m−1
hh,lh = A± |B|

√
1 + C2/5B2. (S17)

(We believe that this corrected equation was the intent
of Yu and Cardona.17 The factor 3/15 can be obtained
by writing the Dresselhaus-Kip-Kittel expression in po-
lar coordinates and integrating over the unit sphere with
certain approximations.) This expression works very well
for Si and Ge, but only for the light “hole” mass of α-
tin. The average heavy hole mass of α-tin and tin-rich
Sn1−xGex alloys comes out much too large.

This interpolation is shown in Table SI. Results for
EP and EQ of Ge and Sn are quite reasonable (Lawaetz
1971) and EPQ is within a factor of two of the prod-
uct EPEQ. Figure S1 shows the warped Γ+

8 bands of
unstrained Sn1−xGex (x=0.06) for small wave vectors in
high-symmetry directions. The results are similar to α-
Sn,15 including the positive (electron-like) curvature of
the heavy hole for wave vectors along the [111] directions.

TABLE SI. Important material parameters for Sn, Ge, and
Sn1−xGex alloys (at room temperature) and their interpola-
tion. An example is given for an alloy with x=0.06. Units
in parenthesis. b(GeSn) is the bowing parameter. We do
not interpolate the elastic constants C11 and C12, only their
ratio. Interpolation of inverse effective mass parameters A,
B, and C2 is described in the supplemental materials. Most
parameters from Ref. 9 (except where noted).

Ge Sn b(GeSn) alloy (6%)

a (Å) 5.658 6.489 0 6.439
C11 (GPa) 128.5 69.0 NA NA
C12 (GPa) 48.3 29.3 NA NA
C12/C11 0.376 0.425 0 0.422
E1 (eV) 2.120 1.275a 1.65 1.233
E1 (eV)b 2.120 1.275 1.35 1.250
E1+∆1 (eV) 2.310 1.734a 1.05 1.709
E1+∆1 (eV)b 2.310 1.734 1.35 1.692
∆1 (eV) 0.190 0.459a −0.60 0.477
∆1 (eV)b 0.190 0.459 0 0.443
E0 (eV) 0.796 −0.436a 2.46 -0.501
E0 (eV)b 0.796 −0.436 0.8 -0.407
E0+∆0 (eV) 1.096 0.364 3.04 0.236
∆0 (eV) 0.30 0.8 0.58 0.737
E′0 (eV) 3.1c 2.4d 0 2.44
A (~2/2m0) −13.38 19.2 NA 15.9e

B (~2/2m0) −8.5 26.3 NA 22.8e

C2 (~4/4m2
0) 173 −1100 NA -898e

EP (eV) 25.0 29.2 0 29.0
EQ (eV) 18.2 19.4 0 19.4
EPQ (eV2) 320 818 0 788
a(E0) (eV) −9.5f −7.0g 0 -7.2
b(Γ+

8 ) (eV) −1.9h −2.3i 0 -2.3
a Ref. 15.
b This work.
c Viña 1984.
d Ref. 12.
e Calculated using Eqs. (S11-S13).
f C.G. Van de Walle, Phys. Rev. B 39, 1871 (1989).
g T. Brudevoll, D.S. Citrin, M. Cardona, and N.E. Christensen,

Phys. Rev. B 48, 8629 (1993).
h J. Liu, D.D. Cannon, K. Wada, Y. Ishikawa, D.T. Danielson, S.

Jongthammanurak, J. Michel, and L. Kimerling, Phys. Rev. B
70, 155309 (2004).

i Ref. 14.

S2. STRESS AND STRAIN IN GE1−xSNx ALLOYS

For pseudomorphic growth of α-Sn or Sn1−xGex alloys
on InSb (001), the in-plane lattice constant a‖ is equal
to that of the substrate aS (pseudomorphic condition).
This creates a biaxial stress along the surface of the wafer
described by a stress tensor

X =

X 0 0
0 X 0
0 0 0

 . (S18)

(There is no stress along the growth direction, defined
as the z-axis.) This biaxial stress is related to a strain
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FIG. S2. In-plane, out-of-plane, hydrostratic, and [001] pure
shear strain as a function of Ge content x for Sn1−xGex alloys
grown pseudomorphically on InSb (001).

tensor (Cardona & Christensen 1987)ε‖ 0 0
0 ε‖ 0
0 0 ε⊥

 = εH

1 0 0
0 1 0
0 0 1

+ εS

−1 0 0
0 −1 0
0 0 2

 (S19)

with perpendicular (out-of-plane) and parallel (in-plane)
components ε⊥ and ε‖. εH and εS are the hydrostatic

and [001] pure shear strain components17 (Cardona &
Christensen 1987)

εH = 1
3

(
ε⊥ + 2ε‖

)
and εS = 1

3

(
ε⊥ − ε‖

)
. (S20)

The in-plane strain is defined as

ε‖ =
∆a

a (x)
=
aS − a (x)

a (x)
, (S21)

where a (x) is the (cubic) lattice constant of the un-
strained Sn1−xGex alloy. Negative strain indicates a
reduction of the lattice parameter (compressive strain),
while a positive strain indicates an increase of the lat-
tice parameter (tensile strain). Strain is usually a small
dimensionless number stated as a percentage. Growth
of α-Sn on InSb (x=0) results in compressive (negative)
in-plane strain. The magnitude of this in-plane strain de-
creases with increasing x in Sn1−xGex alloys and vanishes
for x ≈ 1.2%. For larger x, the in-plane strain becomes
tensile, see Fig. S2.

The cubic (bulk) unit cell deforms tetragonally and
the perpendicular (out-of-plane) lattice constant of the
epitaxial layer measured with symmetric (004) high-
resolution x-ray diffraction becomes

a⊥ = (1 + ε⊥) a (x) , (S22)

where the out-of-plane strain (Cardona & Christensen
1987)

ε⊥ = −2
C12

C11
ε‖ = − 2ν

1− ν
ε‖ (S23)

is calculated using the elastic constants Cij (see Table
SI) or the Poisson ratio ν=C12/(C11 + C12)=0.30.

Figure S2 shows the in-plane, out-of-plane, hydro-
static, and [001] shear strain components for Sn1−xGex
alloys on InSb (001). We see clearly how the in-plane
strain changes sign as a function of x. While the in-plane
strain is compressive for pure α-Sn (x=0), it becomes
tensile for x>1.2%. The in-plane and out-of-plane strain
have opposite signs. The hydrostatic strain has the same
sign as the in-plane strain, but is much smaller. The [001]
shear strain has the same sign as the out-of-plane strain.

S3. RESPONSE OF VALENCE BANDS TO STRAIN

The strain described above for Sn1−xGex alloys on
InSb (001) splits the Γ+

8 bands and either creates a Dirac-
crossing of the heavy and light “hole” bands (for x<1.2%)
or opens a gap 2δ0 (for x>1.2%), as shown in Fig. 1. The
dispersion of the strained bands can be described within
Pikus-Bir (1959) theory (Hoffmann 1989) by

E± = Ak2 ±
[
B2k4 + C2

(
k2
xk

2
y + k2

xk
2
z + k2

yk
2
z

)
+

+ Bδ0
(
2k2
z − k2

x − k2
y

)
+ δ2

0

] 1
2 , (S24)

where δ0 = 3bεS is half the strain splitting of the Γ+
8

bands, b the deformation potential listed in Table SI, and
εS the pure (traceless) shear component of the strain.

As an example, we show the Γ+
8 bands for small wave

vectors in Fig. 1. In the compressive in-plane case shown
in Fig. 1(c) for x<1.2%, the heavy and light “hole” bands
have the expected curvature (downward and upward, re-
spectively) for wave vectors perpendicular to the [001]
shear strain, but they curve in the opposite direction for
wave vectors parallel to the [001] shear strain and cross
at the so-called Dirac point. At 0 K, electronic states
below the Dirac point are filled, while those above it
are empty. In the tensile in-plane case shown in Fig.
1(d) for x>1.2%, the heavy and light “hole” bands are
nearly parabolic and show the expected curvature (up-
ward or downward) for wave vectors oriented parallel to
the [001] shear strain axis. In the other directions, how-
ever, there is a significant non-parabolicity. The heavy
hole band first curves upward and only turns to negative
energies for larger wave vectors. This was first treated
by Cardona (1967) and is described in more detail in
Ref. 15. Sn1−xGex alloys on InSb (x>1.2%) are indirect
semiconductors with a small band gap, because the VB
maximum does not occur exactly at the Γ-point. Cur-
rent MBE growth techniques can achieve Ge contents up
to about 6% in pseudomorphic Sn1−xGex alloys on InSb
(001), which leads to a Γ+

8 splitting of about 50 meV. See
Ref. 15 (supplemental materials) for additional detail.
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S4. RESPONSE OF Ē0 GAP TO STRAIN

The Ē0 gap separates the Γ−7 valence band from the
Γ+

8 state. The [001] shear portion of the strain splits
this gap due to the splitting of the Γ+

8 states given by
Eq. (S24). In addition, the hydrostatic portion of the
strain changes the Γ−7 energy by 3aεH , where a is the
hydrostatic deformation potential for the Ē0 gap given
in Table SI. a has a negative value of about −7 eV. For
the compressive in-plane strain of α-Sn on InSb (001), εH
is negative and therefore Γ−7 moves up by about 12 meV,
which decreases the Ē0 gap compared to unstrained α-Sn
by the same amount. On the other hand, in Sn1−xGex
alloys with x>1.2%, the tensile in-plane strain causes a
hydrostatic expansion (εH<0), which increases Ē0 (by
51 meV for x=6%) relative to a relaxed alloy with the
same composition, see Fig. 5.

S5. RESPONSE OF E1 AND E1 + ∆1 CRITICAL POINT
ENERGIES TO STRAIN

The dependence of the E1 and E1 + ∆1 critical points
(see Fig. 1) on composition for unstrained (relaxed)
Sn1−xGex alloys was calculated using Eq. (1) with the
parameters given in Table SI. The spin-orbit splitting
∆1 of the VB at the L point is taken as the difference
between the E1 and E1 + ∆1 energies with parameters
in Table SI. Note the bowing for ∆1, which is common
for semiconductor alloys10 (Logothetidis 1991). Under a
biaxial in-plane stress, the energies are9

Es1 = E0
1 + 1

2∆1 + ∆EH −
√

1
4 (∆1)

2
+ (∆ES)

2
, (S25)

(E1 + ∆1)
s

= (E1 + ∆1)
0 − 1

2∆1 + ∆EH +

+

√
1
4 (∆1)

2
+ (∆ES)

2
, (S26)

where the superscripts s and 0 denote the band gaps of
the strained and relaxed alloys, respectively. ∆EH and
∆ES are the energy shifts due to hydrostatic and [001]
shear strain, respectively, calculated using

∆EH =
√

3D1
1εH and ∆ES =

√
6D3

3εS , (S27)

where D1
1=−5.4 eV and D3

3=−3.8 eV are the hydrostatic
and shear deformation potentials for Ge1−ySny alloys
taken from D’Costa (2014), which is significantly lower
than for bulk Ge. The sign of D3

3 affects the intensities
of the two critical points and therefore we follow the sign
convention of Pantelides & Zollner (2002).

We previously15 determined the strained val-
ues Es1=1.280 eV and (E1 + ∆1)

s
=1.739 eV with

εH=−0.06% and εS=0.10% from ellipsometry of pseudo-
morphic α-Sn on InSb (001). This yields the unstrained

values E0
1=1.275 eV and (E1 + ∆1)

0
=1.734 eV, as

shown in Table SI. For such a small shear strain (for
x=0) and the large spin-orbit splitting ∆1, the shear
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FIG. S3. Amplitudes, broadenings, and phase angles for the
E1 and E1 + ∆1 critical points versus Ge content determined
from spectroscopic ellipsometry (symbols). The straight lines
show the best linear fit.

splitting under the square root of Eqs. (S25-S26) can be
ignored and only the hydrostatic shift ∆EH contributes.
The shear contribution ∆ES becomes measurable for
larger x near 5%.

S6. AMPLITUDES, BROADENINGS, AND PHASE
ANGLES FOR E1 AND E1 + ∆1 CRITICAL POINTS

The parameters used to described the E1 and E1 + ∆1

critical points, see Eq. (2), are the amplitude A, energy
E, broadening Γ, and phase angle φ. It is customary to
use the same phase angle for E1 and E1 + ∆1. The en-
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ergies, broadenings, and phase angles are listed in Table
I. The energies are plotted in Fig. 4 and discussed in the
main text. Figure S3 shows the amplitudes, broadenings,
and phase angles as a function of Ge content. Compare
Ref. 9 for a similar discussion of pseudomorphic Ge-rich
Ge1−xSnx alloys on Ge.

Our broadenings are comparable to, or perhaps a bit
smaller than those reported in Ref. 12, indicating the
high quality of our epilayers. They increase with Ge con-
tent at a rate of 0.34 eV, as shown by the straight lines,
due to alloy scattering. The phase angle decreases from
70◦ for pure α-Sn to 32◦ for Ge0.94Sn0.06 at a rate of
6.3◦ per atomic percent Ge. Increased alloy scattering in
disordered alloys reduces the excitonic enhancement of
the E1 critical point and therefore φ decreases with in-
creasing Ge content9 (Logothetidis 1991) to values below
90◦.

The amplitudes of E1 and E1 + ∆1 show interesting
trends. While the E1 amplitude is nearly constant at
5.2±0.2, the E1 + ∆1 amplitude increases linearly at a

rate of 0.11 per atomic percent Ge. According to ~k·~p
theory, the [001] pure shear strain changes the amplitudes
of these critical points as a function of shear strain εS by
(Pantelides and Zollner 2002)

∆A (εS) /A0 = ±
√

6D3
3εS/∆1, (S28)

where the + sign is for the E1 +∆1 amplitude and the −
sign for the E1 amplitude. A0 is the amplitude of the CPs
in relaxed alloys. For x>1.2%, both the shear strain and
the deformation potential D3

3=−3.8 eV are negative and
therefore the amplitude of E1 should decrease and that of
E1 + ∆1 should increase with increasing Ge content (and
thus increasing magnitude of the compressive [001] shear
strain). The relative rate of change calculated from Eq.
(S28) is 0.02 per atomic percent Ge, which corresponds
to a decrease of the E1 amplitude at a rate of 0.1 and
an increase of the E1 + ∆1 amplitude at a rate of 0.06
(per atomic percent Ge). As shown in Fig. S3, we do not
observe the expected decrease of the E1 amplitude, but
the observed increase of the E1 + ∆1 amplitude is twice
as large as predicted.

The absolute values of the amplitudes for relaxed alloys
are given by12,15

AE1
= 44

E1 + 1
3∆1

aE2
1

, (S29)

AE1+∆1
= 44

E1 + 2
3∆1

a (E1 + ∆1)
2 , (S30)

where a is the lattice constant of the alloy in Å and en-
ergies are in eV. For pure α-tin we calculated amplitudes
of 5.9 and 3.6 for E1 and E1 + ∆1, respectively, see Ref.
15, in excellent agreement with our experiments, see Fig.
S3. The agreement of our experiment with this theory
for uncorrelated electron-hole pairs indicates that the ex-
citonic contribution to the E1 and E1 +∆1 critical points
is weak in α-Sn and smaller than in other materials like
Si, GaAs, or GaSb.15

FIG. S4. Atomic force micrograph (5×5 µm2 scan range) of
a Sn1−xGex alloy on InSb (001) with x=0.059 and 75 nm
thickness. The rms roughness is 0.5 nm.

S7. EPILAYER CHARACTERIZATION

Atomic force micrographs with 5×5 µm2 scan range
were taken for selected Sn1−xGex epilayers on InSb (001).
The rms roughness was usually on the order of 0.5 nm.
No misfit dislocation networks due to stress relaxation
were seen. Some layers showed β-tin defects. A typical
AFM image for a layer with x=0.059 and 75 nm thick-
ness is shown in Fig. S4. Since the roughness is very
small (0.5 nm rms), it can be neglected in the analysis
of ellipsometry data, where only the native oxide was
considered.

S8. LAYER ANALYSIS USING X-RAY DIFFRACTION

To assess the strain within the films, we measured each
Sn1−xGex epilayer using a PANalytical Empyrean x-ray
diffractometer configured with a monochromatic Cu Kα1

line source (1.540598 Å) and triple-axis analyzer crystal.
For the purpose of demonstration, a highly strained film
with 5.5% Ge is analyzed below because it represents an
extreme case. Lower compositions display nearly ideal
characteristics.

A symmetric 2θ-ω scan was performed near the InSb
(004) peak for each epilayer. The data were then mod-
eled using full dynamical diffraction theory (PANalytical
Epitaxy and Smoothfit software) to provide film compo-
sition and film thickness (for example, see Fig. S5). The
software uses Vegard’s Law (1) without bowing (b=0) to
determine film composition, with parameters given in Ta-
ble SI. See also Kiefer (2017). Though the model shown
in Fig. S5 follows the measured peak positions well, the
intensity profile fits relatively poorly compared to the
other samples in the set with lower Ge compositions. The
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FIG. S5. (Color online) A 2θ-ω scan of a Sn0.945Ge0.055 film
(50 nm thickness) on an InSb (001) substrate (blue) at the
(004) Bragg reflection with an overlay of a single-layer model
simulation (red). The Pendellösung “fringe”peaks correspond
to the film thickness.

intensity mismatch may indicate potential relaxation or
inhomogeneous composition as discussed below.

Additionally, rocking curves (ω-scans with fixed 2θ)
centered on the (004) substrate and film peaks were mea-
sured to qualitatively determine film relaxation. (Films
with epilayer peaks overlapping the substrate peak could
not be measured separately.) Film-peak broadening
greater than the substrate-peak breadth often indicates a
dislocation density beyond that inherited from the sub-
strate. A typical FWHM for an InSb (004) substrate
peak is less than 0.004◦ (∼14”), near the limit of instru-
ment resolution (12”). Each film has a peak FWHM the
same or nearly the same as the substrate peak, imply-
ing a high degree of crystallinity; however, diffuse broad-
ening appears around peaks of Sn1−xGex epilayers with
Ge compositions x>5% (Fig. S6), from which we infer
the onset of film relaxation by dislocation formation and
glide.

Under the assumption of fully-coherent pseudomorphic
growth, the film’s strain state can be adequately assessed
using only the symmetric (004) 2θ-ω scan and knowledge
of the film’s and substrate’s “bulk” lattice constants and
elastic properties. Any strain relaxation, however, shifts
the film peak with respect to the substrate peak, caus-
ing misinterpretation of the alloy composition. To avoid
this ambiguity, we measure the in-plane and out-of-plane
lattice constants using asymmetric Bragg reflections, i.e.
the atomic planes are tilted away from the substrate nor-
mal. A conventional approach is to record the diffracted
intensity around these asymmetric points in a reciprocal
space map (RSM).

An RSM is a section of the diffraction plane corre-
sponding physically to the plane containing the source
beam and detector acceptance angle in real space. The

FIG. S6. (Color online) Rocking curve (ω-scan) of the epi-
layer peak from a Sn0.945Ge0.055 film (50 nm) on a InSb (001)
substrate plotted on a logarithmic scale. Though the FWHM
of the film peak is very narrow, broad diffuse-scattering is
evident near the peak’s base.

diffractometer is aligned so the diffraction plane passes
through the reflections of interest. Several linear scans,
either 2θ vs. ω or 2θ-ω vs. ω, comprise an intensity
map I(ω,2θ) that is represented as a reciprocal space
map I(q‖,q⊥) using the following transformation (Few-
ster, 2003):

q‖ = [cos(ω)− cos(2θ − ω)] /λ, (S31)

q⊥ = [sin(ω) + sin(2θ − ω)] /λ. (S32)

The measured angular relations I(ω,2θ) are thus trans-
formed into a Euclidean vector space I(q‖,q⊥), allow-
ing for convenient data analysis. The reciprocal lattice
of a crystal structure with orthorhombic symmetry or
higher is particularly easy to analyze. The normal vec-
tors of the atomic planes in real space correspond to
the reciprocal space vectors such that the angular mea-
surements between planes are preserved under transfor-
mation. For a crystal oriented with the (001) surface
normal to the diffraction plane and the [110] in-plane
direction within the diffraction plane, ~q⊥ = ~q001 and
~q‖ = ~q110. Using Bragg’s law, the length of a reciprocal
space vector is related to the distance d between planes:
|~q| = 1/d = 2 sin θ/λ. Linear distances in real space can
then be read directly from the RSM. The reciprocal lat-
tice vectors may be cast in absolute units (1/Å) or in
dimensionless units of λ/2d. We choose the latter in the
following analysis.

The (004) RSMs were compiled using 2θ-ω scans with
step sizes of 0.01◦ for 2θ and incrementing ω by 0.01◦

after each scan; the (335) RSMs by using 2θ scans with
step sizes of 0.02◦ and increments of ω by 0.02◦ after each
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FIG. S7. (Color online) A (335) reciprocal space map of a
Sn0.945Ge0.055 film (50nm) on a InSb (001) substrate. The
qx and qz axes are parallel to the [110] and [001] directions,
respectively, plotted in dimensionless reciprocal lattice units
of λ/2d and log10 intensity. The dot represents the theoretical
location of a fully-relaxed film and the arrow the direction of
relaxation.

scan. For purposes of display, a single (335) RSM with
higher resolution (0.01◦ step sizes) and longer counting
time per step was taken and is shown in Fig. S7. Peak
positions were determined using the software’s built-in
peak-finding algorithm. The measured peak positions
of reciprocal lattice points (RLPs) of the substrate and
α-Sn0.945Ge0.055 film (50 nm) in the orthogonal [110]
(φ=0◦) and [110] (φ=90◦) zones are shown in Table SII.
Measurement in two orthogonal zones allows substrate
miscut and film lattice-tilt to be assessed. As the InSb
(001) substrates are nominally cut on-axis, the analysis
below confirms that the lattice tilt with respect to the
goniometer axis is <0.2◦ and is negligible; therefore, we
can disregard possible asymmetric strain effects.

As Fig. S7 demonstrates, the in-plane lattice constants
of the substrate and film are nominally the same. The
film’s peak width (∆qx) is 2 to 3 times greater than the
substrate peak, and the presence of diffuse scattering in
the vicinity of the film peak indicates the onset of plas-
tic relaxation and/or compositional variation. From this
cursory analysis, we conclude the film is coherent to the
substrate and elastically strained.

More rigorously, we derive the lattice constants from
the RLPs. The analysis can be done by various meth-
ods. We choose the straightforward method of deriving
the lattice constants of the unit cell from the measured
RLPs. Each RLP, ~G(hkl), represents a linear combination
of basis vectors {~qx, ~qy, ~qz} in the laboratory reference
frame. Measuring at least two non-coplanar RLPs along
two different azimuths (φ) provides enough information
to determine a complete set of basis vectors; additional
points allow a least-squares determination of the basis
vectors, as in our case.

Let ~Gm=hm~qx + km~qy + lm~qz and ~qn=qn1ê1 + qn2ê2 +
qn3ê3, where n∈{x, y, z} and the orthonormal vectors
{ê1, ê2, ê3} correspond to the laboratory reference frame.
In matrix notation,
G11 G12 G13

G21 G22 G23

G31 G32 G33

...
Gm1 Gm2 Gm3

 =


h1 k1 l1
h2 k2 l2
h3 k3 l3

...
hm km lm


qx1 qx2 qx3

qy1 qy2 qy3

qz1 qz2 qz3

 ,

(S33)
where m≥3. If the equation is over-determined, it can
be solved in the usual least-squares manner,e.g.,

[Q] = {[H]T [H]}−1[H]T [G]. (S34)

The resulting qpn are the coordinates of the basis vec-
tors within the laboratory reference frame. Since the
{335} RLPs lie within the {110} zones, we only directly
derive the base diagonals of the unit cell. The [100]
and [010] basis vectors are a linear combination of these:
|~q100|=|~q010|= |~q110 + ~q11̄0| /2. The analytical results are
provided in Table SIII.

Recall that the RLPs are three-dimensional and the
diffraction plane defined by the diffractometer’s source
and detector may intersect the RLPs obliquely. Any mis-
alignment of the two low-precision axes, azimuth φ and
tilt χ, results in missing the true center of the RLP. Ad-
ditionally, the x-ray line source has significant axial di-
vergence which extends the RLPs further outward from
the diffraction plane. Since we do not calibrate the φ and
χ axes, we block the data into two sets corresponding to
φ ≈ 0◦ and φ ≈ 90◦ and analyze them separately. Hence-
forth we assume the two basis vectors ~q110 and ~q110 are
orthogonal.

From this analysis we find that the measured InSb lat-
tice constant is 6.480 Å, which compares well with the
expected value of 6.4793 Å (Straumanis 1965). The α-
SnGe film’s in-plane lattice constant of 6.480 Å matches
the substrate’s lattice constant, confirming coherency to
the substrate lattice and unrelaxed, elastic strain. The
lattice tilt ψ of the substrate and film with respect to the
laboratory reference frame are the same and negligible.
Tilt can be determined directly from the ~q001 vectors,
with ψ=0.08◦ and 0.18◦ for azimuths φ=0◦ and φ=90◦,
respectively. The {~q001} and {~q110} are orthogonal with
a deviation of < 0.004◦ for the substrate and < 0.03◦ for
the film, consistent with the assumed tetragonal geome-
try.

The relaxed cubic lattice constant a (x) of the tetrag-
onally distorted Sn1−xGex alloy is then calculated from
the measured out-of-plane and in-plane lattice constants
a⊥ and a‖, respectively, using elasticity theory (Freund
& Suresh 2004). The in-plane strain ε‖ and out-of-plane
strain ε⊥ are related by Eq. (S23). Substituting the defi-
nitions of strain (S21,S22) into Eq. (S23) and solving for
a (x) yields

a (x) =
a⊥ + (2C12/C11)a‖

1 + 2C12/C11
. (S35)
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TABLE SII. Measured peak positions of reciproal lattice points (hkl) taken by x-ray diffraction of a Sn0.945Ge0.055 film (50 nm)
on a InSb (001) substrate. φ = azimuthal angle; ω = incident angle; 2θ = detector angle; qx = abscissa; qz = ordinate; |qhkl|
= modulus of reciprocal lattice vector; dhkl = interplanar distance; and, ahkl = lattice constant derived from dhkl. rlu =
reciprocal lattice units.

φ(◦) h k l Geometrya ω(◦) 2θ(◦) qx(rlu) qz(rlu) |qhkl|(rlu) dhkl(Å) ahkl(Å)
InSb 0.00 0 0 4 sym 28.4735 56.790 -0.00065 0.47555 0.47555 1.6198 6.4793

0.00 3 3 5 GI 10.9655 102.411 0.50348 0.59495 0.77940 0.9883 6.4809
0.27 3 3 5 GE 91.6100 102.420 -0.50507 0.59367 0.77945 0.9883 6.4805

90.00 0 0 4 sym 28.5687 56.790 -0.00144 0.47555 0.47555 1.6198 6.4793
90.13 3 3 5 GI 91.7100 102.440 -0.50608 0.59296 0.77956 0.9881 6.4796
90.13 3 3 5 GE 11.0800 102.431 0.50247 0.59595 0.77951 0.9882 6.4800
-0.43 3 3 5 GI 10.9355 102.431 0.50397 0.59468 0.77951 0.9882 6.4800

α-SnGe 0.00 0 0 4 sym 28.8085 57.460 -0.00066 0.48068 0.48068 1.6025 6.4100
0.00 3 3 5 GI 11.7766 103.391 0.50368 0.60175 0.78473 0.9816 6.4369
0.27 3 3 5 GE 91.7700 103.340 -0.50528 0.60004 0.78445 0.9820 6.4391

90.00 0 0 4 sym 28.8987 57.450 -0.00146 0.48060 0.48061 1.6028 6.4111
90.13 3 3 5 GI 91.8700 103.420 -0.50619 0.59985 0.78488 0.9814 6.4356
90.13 3 3 5 GE 11.8300 103.351 0.50265 0.60233 0.78451 0.9819 6.4386
-0.43 3 3 5 GI 11.4055 103.351 0.50396 0.60123 0.78451 0.9819 6.4386

a Incident beam and diffracted beam configuration: sym = symmetrical; GI = grazing incidence; and, GE = grazing exit

TABLE SIII. Basis vectors derived from reciprocal lattice
points (hkl) represented in the laboratory reference frame.
q‖ corresponds to the appropriate in-plane direction; q⊥ cor-
responds to the out-of-plane direction; dhkl is the interplanar
distance in the [hkl] direction.

hkl q‖ (rlu) q⊥ (rlu) dhkl (Å)
InSb 110 0.16809 0.00021 4.5826

001 -0.00016 0.11887 6.4803
110 0.16811 0.00051 4.5822
001 -0.00037 0.11888 6.4794

100,010 0.11886 0.00036 6.4804

α-SnGe 110 0.16813 0.00028 4.5817
001 -0.00016 0.12019 6.4090
110 0.16811 0.00041 4.5822
001 -0.00036 0.12021 6.4077

100,010 0.11888 0.00035 6.4798

We assume that ratios of the elastic constants of the α-
Sn1−xGex film follows Vegard’s Law, see Table SI. The
ratios of 2C12/C11 are 0.85 and 0.75 for α-Sn and Ge,
respectively, giving a ratio of 0.84 for the assumed com-
position, x=0.055. Using this value along with a⊥ and a‖
derived from XRD measurements gives a lattice constant
of 6.442 Å for the α-Sn0.945Ge0.055 pseudomorphic film,
consistent with the lattice constant of 6.443Å determined
directly from Vegards rule applied to lattice constants for
x=0.055.

In summary, the analysis of the XRD data shows that
the α-Sn0.945Ge0.055 film grown on the InSb (001) sub-
strate is highly crystalline and coherent to the substrate
lattice. This epilayer (x=0.055) shows signs of the onset
of plastic relaxation but is otherwise elastically strained.
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