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Using spectroscopic ellipsometry from 0.06 to 6.0 eV at room temperature, the authors determined the
optical constants (complex dielectric function, refractive index, and optical conductivity) of bulk cold-
rolled polycrystalline Ni. To reduce the thickness of surface overlayers, the sample was heated in
ultrahigh vacuum at 750K for 6 h and then kept in vacuum during measurements. The authors
analyze the optical constants using three alternative but mutually exclusive methods: they write the
dielectric function as a multiband sum or product of Drude and Lorentz oscillators or with a Drude
model with a frequency-dependent scattering rate and plasma frequency. Below 1 eV, they find signifi-
cant contributions from both d-intraband transitions and free carriers. © 2019 Author(s). All article
content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY)
license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1116/1.5118841

I. INTRODUCTION

Determining the complex dielectric function (DF) of bulk
metals1–3 is difficult, since one needs to minimize overlayers
and surface roughness. For example, an Ni surface in air can
be covered with a 50Å thick film of water (or an adsorbed
layer with similar optical constants), which is removable by
annealing.4 It is easier to achieve smooth surfaces of semicon-
ductors than of metals. Clean metal surfaces are best prepared
in ultrahigh vacuum (UHV). Ellipsometry measurements
should then be performed in UHV without breaking vacuum
to maintain a clean surface. This requires window corrections,
since vacuum chamber windows disturb the polarization of
the incident and reflected light beams.5,6

As early as 1969, Shiga and Pells7 overcame these difficul-
ties and measured the optical absorption of annealed poly-
crystalline bulk Ni from 0.5 to 6.0 eV at temperatures from
300 to 770 K in UHV using a rotating-analyzer ellipsometer.8

Similar ellipsometry measurements of Ni at room temperature
were performed by Lenham and Treherne9,10 at selected infra-
red wavelengths between 5 and 20 μm. Lynch et al.11 mea-
sured the absorptivity of single-crystalline Ni at 4.2 K from
0.08 to 3.0 eV using a calorimetric technique and determined
the DF by the Kramers–Kronig transform. At higher photon
energies (0.5–6.5 eV), Johnson and Christy12 calculated the
DF of evaporated semitransparent (20–50 nm thick) Ni thin
films in the nitrogen atmosphere from transmission and reflec-
tion data. A review of the early DF results of Ni was given
by Lynch and Hunter in Palik’s handbook1 and also by
Adachi.3 More recently, ellipsometry measurements were also
performed on Ni1�xPtx thin films for applications in semicon-
ductor manufacturing metrology.4,13,14

Considering the advances in spectroscopic ellipsometry and
vacuum techniques over the last 50 years, it seems worthwhile
to revisit the optical constants of Ni and determine the DF

from 0.06 to 6.0 eV with improved accuracy. We tabulate
parameters to calculate the optical constants of Ni using model
DFs. We are particularly interested in the relative contributions
to ϵ from free carriers and interband optical transitions. We
also study the frequency dependence of the scattering rate and
of the plasma frequency.

II. EXPERIMENTAL METHODS

Several 10� 10 mm2 substrates of cold-rolled polycrystal-
line Ni (.99:9% purity) with 1 mm thickness were obtained
commercially.15 No preferred orientation was seen with
powder x-ray diffraction. These pieces had a grain size of
10–50 μm and an rms surface roughness of 1–3 nm (mea-
sured with atomic force microscopy in 20� 20 μm2 scans
and x-ray reflectance). Before our ellipsometry measure-
ments, all samples were heated to 750 K for 6 h in UHV to
remove adsorbed overlayers and then kept in vacuum during
the measurements. No significant change in surface rough-
ness was observed after annealing in UHV.

It was reported previously16 that there is an anomaly in
the optical response of Ni (bulk single- or polycrystalline or
sputtered thin film) as the sample is heated in UHV beyond
the Curie temperature (627 K) (see Fig. 1). Initially, we
attributed this anomaly to three potential causes: (i) changes
in the magnetic structure (transition between ferromagnetic
and paramagnetic phase at the Curie temperature), (ii) bulk
crystal structure of the sample, for example, grain growth
after annealing,17 and (iii) surface overlayers.

Since we find this anomaly in single-crystalline and poly-
crystalline bulk substrates as well as in thin layers [see
Fig. S1 (Ref. 45)], we conclude that the grain size or other
structural changes due to annealing are not a likely cause of
our anomaly. Since it is irreversible (only occurs during the
initial heating of the substrate) and cannot be restored by
placing the sample in a saturating magnetic field, while
the phase transition (ferromagnetic to paramagnetic) at the
Curie temperature is reversible, the anomaly cannot be a
magnetic effect. The most likely explanation for this anomaly
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is, therefore, degassing of the sample surface, for example,
by evaporation of adsorbed overlayers. Additional details
are given in the supplementary material.45 Heating the Ni
sample in UHV was the most effective cleaning method we
were able to find.

The ellipsometric angles from 0.06 to 6.0 eV at 70�

incidence angle were acquired at room temperature on
two different ellipsometers (J. A. Woollam FTIR-VASE
and J. A. Woollam VASE, Lincoln, NE) as described else-
where.18 From 0.5 to 6.0 eV, we used a commercial UHV
chamber (Janis Research ST-400, Woburn, MA) with
strain-free quartz windows.16 From 0.06 to 0.9 eV, we
used a similar chamber but with ZnSe windows. Changes
in the polarization of the beam by the windows were cor-
rected with a proprietary algorithm of the supplier. For
data analysis, we assumed a surface roughness thickness
of 20 Å. The surface roughness was described within the
Bruggeman effective medium approximation as a 50/50
mixture of Ni and voids.19

A similar experimental setup for rotating-analyzer ellips-
ometry measurements using Drude’s method from 0.46 to
5.9 eV at temperatures from 77 to 950 K in an UHV chamber
was already described in 1967 by Pells.8 We extend this
method further into the infrared spectral region with the use
of a Fourier-transform spectrometer. Our setup also has
increased accuracy due its computer-controlled Berek wave
plate compensator and corrections for the effects of windows
on the polarization of the incident and reflected light beam.
Using their apparatus, Shiga and Pells7 showed that Ni could
be cleaned by heating at 770 K for at least 12 h, confirming
earlier photoemission results by Seib and Spicer.20,21

III. EXPERIMENTAL RESULTS AND DATA
ANALYSIS

The ellipsometric angles ψ and Δ for bulk cold-rolled
polycrystalline Ni at room temperature are shown in Fig. 2
(symbols). If we assume a surface roughness of 20 Å, we can

directly calculate the DF ϵ ωð Þ and the optical conductivity

σ ωð Þ ¼ �iϵ0ω ϵ ωð Þ � 1½ � (1)

from the ellipsometric angles19 (see Figs. 3 and 4). This is
known as a point-by-point fit. We also fit these data using multi-
band model DFs assuming 20Å surface roughness (see below).

In our first multiband model, we write the DF as a sum of
two Drude oscillators (to describe the optical response of
free carriers) and several Lorentzians (to describe interband
optical transitions of bound carriers)18,19

ϵ ωð Þ ¼ 1þ χfree ωð Þ þ χbound ωð Þ, (2)

χfree ωð Þ ¼
X

i

ω2
P,i

�ω ωþ iγD,i
� � , (3)

χbound ωð Þ ¼
X

i

Aiω2
0,i

ω2
0,i � ω2 � iγ0,iω

, (4)

FIG. 3. Dielectric function of polycrystalline Ni determined from the ellipso-
metric angles shown in Fig. 2, assuming 2 nm surface roughness. Symbols
show a point-by-point fit (without assuming a model dielectric function),
while the lines show the dielectric function described by Eq. (5) with param-
eters in Table II.

FIG. 1. Optical pseudoconductivity of a 1000 Å thick Ni layer on thick SiO2

on an Si substrate as a function of temperature, measured by ellipsometry in
ultrahigh vacuum at a single photon energy of 1.97 eV at an incidence angle
of 70�. Compare Fig. S1 (Ref. 45) with data for polycrystalline and single-
crystalline Ni.

FIG. 2. Ellipsometric angles ψ and Δ of clean polycrystalline bulk Ni at room
temperature (70 degrees angle of incidence). Symbols show experimental data
and lines the best fit with a product model (5) with parameters in Table II.
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where χ is the susceptibility, ωP,i ¼ nie2=ϵ0mi is the unscreened
(unrenormalized, frequency-independent) plasma frequency,
γD is the (unrenormalized, frequency-independent) Drude
scattering rate, A is the dimensionless Lorentz amplitude, ω0

is the resonance frequency, and γ0 is the Lorentzian broaden-
ing. ni is the density of the carrier species i, and mi is its
effective mass (also called the bare optical band mass).22–24

The parameters yielding the best fit to our data with this sum
model are listed in Table I.

In our second multiband model, we write the dielectric
function as a Kukharskii product18,25 of one Drude oscillator
and several Lorentzians resulting in

ϵ ωð Þ ¼ ω2
LP � ω2 � iγLPω

�ω ωþ iγDð Þ
Y

i

ω2
L,i � ω2 � iγL,iω

ω2
0,i � ω2 � iγ0,iω

, (5)

where ωLP and γLP are the lower plasmon frequency and its
broadening, while ω0 is the Lorentz resonance frequency,
and ωL is the corresponding longitudinal frequency,18 where
ϵ ωð Þ crosses zero, with its broadening γL. (A second Drude
factor was not needed to achieve a good fit.) The parameters

resulting in the best fit to our data with this product model
are given in Table II.

These two multiband models are identical only if the
broadening parameters in the numerator and denominator are
equal and much smaller than the differences between the res-
onance frequencies.18 The additional broadening parameters
in the numerators of the second (Kukharskii product) model
offer flexibility by adding different widths to the zeros and
poles of the dielectric function. The lower plasmon fre-
quency ωLP is usually smaller than the plasma frequency ωP

due to the repulsion by the longitudinal frequencies ωL of
bound carriers, similar to plasmon-phonon coupling in the
Raman or infrared spectra of doped semiconductors.18,25 See
Ref. 18 for the motivation of both models, additional details,
and historical references.

The best fit to the ellipsometric angles using the product
model is shown by the lines in Fig. 2. The best fit with a
sum model yields similar results. The difference between the
model and the data is no more than 0:3� for ψ and no more
than 0:7� for Δ. Typical experimental errors from the mea-
surement are 0:01� for ψ and 0:1� for Δ. The average mean
square deviation between data and model is lower than the
experimental errors, but there is a statistically significant dif-
ference between the data and both multiband models from
0.5 to 1.0 eV, which we could not reduce with the addition
of another oscillator.

The dielectric functions from the point-by-point fit and from
the product model (5) are shown in Fig. 3. The corresponding
optical conductivities are shown in Fig. 4. The loss function
�1=ϵ is given in Fig. 5. We also show the complex refractive
index in Fig. S3 (Ref. 45), and the absorption coefficient and
the penetration depth in Fig. S4.45 The complex impedance in
the infrared spectral region is shown in Fig. S10.45

The third model to describe the optical constants of a
metal assumes that the optical conductivity is due to a single
species of free carriers (single-band model), leading to an
optical conductivity of the form

σ ωð Þ ¼ ϵ0ω2
P

γ � iω
¼ ϵ0ω2

Pτ

1� iωτ
¼ ne2τ

m 1� iωτð Þ : (6)

FIG. 4. Same data as in Fig. 3, but displayed as an optical conductivity.

TABLE I. Parameters used to describe the optical constants of polycrystalline
Ni with a sum model: amplitude A, plasma frequency ωP, energy ω0,
and broadening γ. All parameters are given with three significant digits.
Due to parameter correlations, the uncertainty is probably much larger. The
DC conductivity σ0 was calculated from the Drude parameters using
Eq. (S16) (Ref. 45).

A �hωP �hω0 �hγ σ0
(1) (eV) (eV) (eV) (1/Ω cm)

Drude 1 11.9 2.87 6 640
Drude 2 4.86 0.0421 75 500
Lorentz 1 7.07 0.636 0.503
Lorentz 2 3.52 1.56 1.06
Lorentz 3 0.437 2.59 1.27
Lorentz 4 2.90 4.80 2.17
Lorentz 5 1.62 9.17 1.16

TABLE II. Parameters (in units of electron volts) used to describe the optical
constants of polycrystalline Ni with a product model: longitudinal and
transverse frequencies ω0 and ωL (or ωLP) and the related broadenings γ0 (or
γD) and γL (or γLP for the Drude factor). All parameters are given with three
significant digits. Due to parameter correlations, the uncertainty is probably
much larger. (f) indicates that the parameter was fixed.

�hω0 �hγ0 �hωL �hγL

Drude 0 0.0426 0.693 0.519
Lorentz 1 0.696 0.468 1.21 3.15
Lorentz 2 1.88 0.916 1.92 0.956
Lorentz 3 2.82 3.67 3.80 2.08
Lorentz 4 4.85 2.23 7.38 2.21
Lorentz 5 9.73 1.0(f) 19.5 1.0(f)

062920-3 F. Abadizaman and S. Zollner: Optical constants of polycrystalline Ni 062920-3

JVST B - Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena



If the Drude model with a single free-carrier species truly
describes the optical constants, then γ, τ, and m are
frequency-independent constants. If, however, there is more
than one carrier species or if the carriers interact with other
elementary excitations or if there is a contribution to the
conductivity from infrared-active optical phonons or inter-
band transitions, then the scattering rate and mass need to
be renormalized and depend on the angular frequency ω.
The supplementary material (Ref. 45) lists the equations and
how these frequency-dependent quantities can be calcu-
lated.24 This method has been used to describe the optical
constants of alkali metals,23 heavy Fermion compounds,24,26

or correlated conducting metal oxides.27–30 While this
method has often been applied to investigate and interpret
the optical conductivity determined from reflectance mea-
surements, it is not widely known in the ellipsometry com-
munity. We are not aware of an application of this technique
to transition metals with two species of free carriers.

IV. DISCUSSION

A. Optical constants

There are significant differences between our optical con-
stants and those in the literature1,4,12 (see Fig. 6). Our in situ
data of a polycrystalline Ni sample cleaned by heating and cor-
rected for 2 nm surface roughness show the highest (lowest)
values of ϵ2 (ϵ1) and, therefore, likely represent the most pris-
tine surface compared to other experiments (see Fig. S2).45 It
is not likely that we overcorrected our ellipsometric angles to
obtain the dielectric function, since our surface roughness was
determined by atomic force microscopy and x-ray reflectance.

Johnson and Christy12 as well as Vehse and Arakawa31

briefly exposed their layers to air and measured in N2 gas,
likely leading to an adsorbed water layer, similar to
Abdallah et al.4 In the near-infrared region, our ϵ1 data agree
well with those of Johnson and Christy,12 but there is a large
discrepancy for ϵ2. This might also be related to cleaning
(see Fig. S2).45 Data from Ref. 1 below 3.0 eV were acquired
at 4 K on single crystals. Therefore, the structure at 1.5 eV is

much more pronounced than in our data taken at 300 K. Also,
the Drude scattering rate is expected to be much smaller at
low temperatures, and, therefore, the Drude divergence should
be sharper at 4 K. This might explain the difference between
our data and those listed by Lynch and Hunter1 in the near-
infrared. Above 3.1 eV, Ref. 1 reports data from Vehse and
Arakawa31 on a sample exposed to air that might not have been
as clean as ours. In the infrared, differences between our imped-
ance (Fig. S10)45 and that of Lenham and Treherne10 are likely
related to the lower scattering rate of single crystals compared
to polycrystalline Ni. Losurdo et al.17 report hϵ1i ¼ �1:0 and
hκi ¼ 2:1 at 4.2 eV. This compares well with our roughness-
corrected results of ϵ ¼ �1:4þ 9:6i (or κ ¼ 2:4).

B. Interband transitions

The spin-polarized band structure of Ni, including Fermi sur-
faces, effective masses, and optical conductivity, has been dis-
cussed by Ehrenreich et al.32 and by Wang and Callaway,33–35

as well as others.4,36,37 Electronic states near the Fermi level
are comprised of sp- and d-orbitals. Because of ferromagnetic
ordering, there is a considerable exchange splitting38 (about
0.5 eV) between the majority (spin-up) and minority spin (spin-
down) d-orbitals. The spin-up band is completely full, while the
spin-down d-orbital crosses the Fermi surface. Therefore, we
expect d-intraband transitions at arbitrarily low energies, as well
as interband transitions between sp- and d-orbitals.

References 33 and 35 predict interband transitions at 0.3 eV
(buried in the Drude background in our room-temperature data,
but perhaps observable in low-temperature ellipsometry mea-
surements), 0.8 eV (between parallel d-bands related to the
exchange splitting), 2 or 2.5 eV, and between 5.1 and 5.5 eV
(from the lower d-bands to the sp-bands above the Fermi
energy). The latter peak can be lowered to 4.8 eV by self-
energy corrections. Several regions in the Brillouin zone con-
tribute to these transitions. Due to spin–orbit splitting, spin-flip
interband transitions are weakly allowed.35

An inspection of the ellipsometric angle ψ at low photon
energies shows immediately that Ni is not a good Drude
metal. ψ is related to the reflectivity R and ψ ¼ 45� is

FIG. 5. Same data as in Fig. 3, but as a loss function �1=ϵ.

FIG. 6. Comparison of the dielectric function of Ni from this work on bulk
polycrystalline Ni (solid), a 10 nm thick Ni layer (Ref. 4) on SiO2 (dotted),
from transmission and reflectance measurements of thin layers by Johnson
and Christy (Ref. 12) at 300 K and as tabulated by Lynch and Hunter
(Ref. 1) (at 300 K above 3.1 eV and at 4 K below 3.0 eV).
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equivalent to R ¼ 1. In a Drude metal [compare gold in
Fig. S11 (Ref. 45)], ψ remains near 45� until the onset of inter-
band transitions (near 2.5 eV for Au). In Ni, ψ drops nearly
linearly from 44:3� at 0.06 eV to 35:1� at 1.3 eV (for an inci-
dence angle of 70� ). Therefore, intraband transitions occur at
very low energies, as expected from the partially filled d-band.

It is difficult to quantify the interband transitions in our
dielectric function (Fig. 3) because the Drude contribution is
dominant at low energies. Therefore, we subtract the Drude
contribution (3) from our multiband sum model (2) and plot
the remaining interband contribution (4) in Fig. S5.45 The
parameter correlations for our Drude–Lorentz model are
below 0.9 (not as bad as it could be). Nevertheless, this sub-
traction method is somewhat arbitrary because it depends on
the number of oscillators and whether they are characterized
as Drude or Lorentz oscillators. This was already pointed out
by Ehrenreich et al.32 Our best model in Table I has strong
Lorentz peaks in ϵ2 at 0.6, 1.5, and 4.7 eV and a shoulder at
2.5 eV. This is, of course, related to the Lorentzian resonance
energies listed in Table I. The sum of the Lorentzian ampli-
tudes yields ϵ1 ¼ P

Ai ¼ 15:5. A significant contribution to
ϵ1 is from the lowest peak at 0.64 eV. The broadenings of the
interband transitions are quite large, between 0.5 and 2.2 eV.
The temperature dependence of interband transition energies
and broadenings will be published elsewhere. In general, the
agreement between our Drude–Lorentz model (2) and
theory33,35 is excellent.

Our product model (5) also shows five interband transi-
tions with energies and broadenings similar to the Drude–
Lorentz model (2), but separating the Drude and interband
contributions in the product model is not straightforward.

Lynch et al.11 report several infrared peaks below 1 eV in
their absorption (calorimetry) measurements at 4 K. These
peaks are absent in our analysis, see Table I, possibly because
the free-carrier absorption in our results at 300 K overwhelms
these interband transitions. Our results agree on interband tran-
sition peaks near 1.5 eV. Our peak at 2.6 eV was also found in
ellipsometry measurements at 77 K by Stoll,39,40 but we do not
observe any fine structure due to spin–orbit splitting.

Johnson and Christy,12 Shiga and Pells,7 as well as
Abdallah et al.4 report a strong conductivity or ϵ2 peak at
4.8 eV, which is also present in our data. As mentioned, it
arises from transitions from the lower d-orbital to the sp-like
bands. Shiga and Pells7 report that the peak at 4.8 eV is a
superposition of two peaks separated by an energy difference,
which is proportional to spontaneous magnetization. This
energy difference may be related to the exchange splitting.
They show that the broadening of this peak has an anomalous
temperature dependence, which decreases with increasing
temperature. The width of our 4.8 eV peak is indeed quite
large (2.1 eV), but we could not improve our fit with two sep-
arate contributions. We will revisit this topic when we report
temperature-dependent ellipsometry results for Ni.

C. Free-carrier properties

The only Drude parameters reported previously for Ni that
we are aware of are those of Lenham and Treherne41 cited by

Wang and Callaway:33 n ¼ 6:5� 1021 cm�3, EP ¼ 2:99 eV
(assuming an optical mass m0, the electron mass in vacuum),
σ0 ¼ 186 000/Ω cm (18:6� 1015/s in Gaussian units), and
τ ¼ 11:3 fs (Γ ¼ 58 meV). Lynch et al.11 report a Drude scat-
tering rate of Γ ¼ 20 eV at 4 K, which is unphysically large
because of the anomalous skin effect.1 However, their value
of σ0 ¼ 658 000/Ω cm is quite reasonable at 4 K.

In the limit of high frequencies (but below the onset of inter-
band transitions) and low scattering (ωτ � 1), the dielectric
function of a Drude metal is approximated by

ϵ1 ωð Þ � ϵ1 � ω2
P

ω2
¼ ϵ1 � E2

P

E2
, (7)

where ϵ1 is the high-frequency dielectric constant, i.e., the con-
tribution to ϵ by bound charges. It is, therefore, customary41–43

to plot ϵ1 vs 1=E2, which yields ϵ1 as the intercept and E2
P

as the slope. This technique was used by Lenham and
Treherne41 to find EP ¼ 2:99 eV, from which they calcu-
lated the carrier density n ¼ 6:5� 1021 cm�3 (assuming an
optical mass of m0 ). Our data and a linear interpolation are
shown in Fig. 7(a). Our linear regression to the data for
1=E2 , 30 (0.18–6.0 eV) finds a plasma frequency of
4.7 eV, which is consistent with one of the plasma frequen-
cies found in our sum model (see Table I). We also find an
unphysical (negative) value of ϵ1 ¼ �5:4. We expect
ϵ1 � 15 (see Fig. S5).45 A linear fit over the entire spectral
range from 0.06 to 6.0 eV finds a plasma frequency of
3.7 eV, which is similar to the energy of the main loss
function peak (see Fig. 5). If we fit from 71 to 100 meV
(our lowest-frequency data), we find EP ¼ 3:4 eV. We see
that this interpolation scheme only yields a rough estimate
of the plasma frequency for one of the two carrier species.

To calculate the carrier density, we need to know the
optical (effective) masses. Ehrenreich et al.32 find an optical
mass of 1.4 for s-electrons and 3.5 for d-electrons. If we asso-
ciate the Drude term with small Γ ¼ 42 meV (Drude 2) with s-
electrons, then EP ¼ 4:86 eV results in an electron density of
24� 1021 cm�3 (0.26 e/atom). Similarly, if the Drude 1 term
with Γ ¼ 2:87 eV and EP ¼ 11:9 eV arises from d-electrons,
then the carrier density is 359� 1021 cm�3 (3.9 e/atom). We
thus find a total density of about 4.2 e/atom from our optical
measurements (assuming masses from Ref. 32), less than half
of the expected density of 10 electrons per atom. Similarly, if
we use effective masses calculated by Wang and Callaway,33

we overestimate e/atom.
In the same high-frequency limit (ωτ � 1), we also find

ϵ2 ωð Þ � ω2
P

ω2
� 1
ωτ

¼ E2
P

E2

Γ

E
: (8)

One, therefore, plots43 ϵ2E vs 1=E2, which should yield (for
a Drude metal) a straight line through the origin with a slope
of E2

PΓ. If EP is found from the plot of ϵ1 vs 1=E2 (as dis-
cussed above), then one can calculate the scattering rate Γ.
We apply this analysis method to our data in Fig. 7(b) and
find a slope of E2

PΓ ¼ 0:82 eV3, which agrees well with the
results listed in Table I, where we find E2

PΓ ¼ 0:77 eV3 for
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one species of carriers. The positive (nonzero) intercept of
the ϵ2E vs 1=E2 graph can be explained with the contribu-
tions of bound carriers to ϵ2 (interband transitions).

Without having to rely on the ωτ � 1 limit, the Drude
model implies23

ϵ1 ωð Þ ¼ 1� ωτϵ2 ωð Þ ¼ 1� 1
Γ
ϵ2 Eð ÞE: (9)

One, therefore, plots ϵ1 vs ϵ2E, which should yield �1=Γ as
the slope. Using this method, Lenham and Treherne41 found
Γ ¼ 58 meV, which compares well with our Drude 2 broad-
ening in Table I. As shown in Fig. 8, this graphical approach
results in Γ ¼ 53 meV for our data. This value is larger than
Γ ¼ 42 meV in Table I because of the discrepancy between
the ellipsometry data and our Drude–Lorentz model in this
energy range (compare the line and symbols in Fig. 8).

It has been argued that free-electron contributions to the
optical constants of Ni are negligible12,43,44 because intra-
band transitions between different partially filled d-orbitals
are possible at arbitrarily low energies.1 Nevertheless, our
Drude–Lorentz model with two carrier species gives a
remarkably good agreement with our near-infrared and
visible optical constants of Ni. Since we use two free carrier
species with different plasma frequencies and broadenings,
there is a significant Drude contribution even at 6 eV (see
Fig. S5).45 The usual graphical techniques,43 when applied

to our infrared data, yield reasonable values for the plasma
frequency and broadening without any modeling but only for
species of carriers with the smaller broadening. The other
Drude contribution (with large broadening) has a strong
overlap with visible and UV interband transitions and, there-
fore, can only be extracted by fitting the ellipsometric angles
with a Drude–Lorentz lineshape.

D. Frequency-dependent scattering rate

Instead of modeling our experimental data with multiband
sum or product lineshapes, we can also attribute the entire
optical response to a single Drude term with frequency-
dependent scattering rate, effective mass, and plasma fre-
quency,24 as described in the supplementary material.45

Between 0 and 2 eV, we see a nearly threefold increase of
the plasma frequency in Fig. S7.45 This can be explained as
follows: at low energies, the Drude 2 term (EP ¼ 4:86 eV and
Γ ¼ 42 meV) dominates. At higher frequencies, the Drude 1
term with its larger broadening (EP ¼ 11:9 eV, Γ ¼ 2:87 eV)
becomes more important, roughly explaining the threefold
increase in EP. Above 2 eV, the frequency-dependent plasma
frequency is dominated by interband transitions, leading to a
large peak at 4.3 eV.

Similarly, the frequency-dependent renormalized scatter-
ing rate shown in Fig. S845 is small (about 50 meV) at low
energies, dominated by the Drude 2 term. It increases nearly
linearly (with a quadratic onset at very low energies) and flat-
tens out above 1 eV at a value of 2.4 eV, similar to the scat-
tering rate of the Drude 1 term.

V. SUMMARY

We used thermal cleaning in UHV to prepare a nearly pris-
tine polycrystalline Ni surface. With in situ spectroscopic
ellipsometry from 0.06 to 6.0 eV on two different instruments,
we determined the ellipsometric angles and the optical con-
stants of Ni, superseding the 50 year-old literature data from
various sources. Our data can be described well with a multi-
band Drude–Lorentz model. Parameters are listed and can be
used to calculate reference dielectric functions for Ni. Our

FIG. 7. Drude parameters of polycrystalline Ni at 300 K extracted from the
dielectric function in the high-frequency, low-scattering limit (ωτ � 1)
using (a) Eq. (7) and (b) Eq. (8).

FIG. 8. Drude parameters of polycrystalline Ni at 300 K extracted from the
dielectric function using Eq. (9).
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model separates contributions to the optical constants from
free carriers and interband transitions. We require two
species of carriers (perhaps sp- and d-electrons) to describe
our data, with very different plasma frequencies and scatter-
ing rates. Despite earlier claims to the contrary, graphical
methods to extract free-carrier properties from the optical
constants work quite well. We also find broad d-intraband
transitions even at our lowest energies. At higher photon
energies, several interband transitions take place, which
agrees well with previous studies.
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S1. OPTICAL CONSTANTS ANOMALY OF NI NEAR
THE CURIE TEMPERATURE

The optical pseudo-conductivity <σ1> at 1.97 eV for
three different Ni samples as a function of temperature
is shown in Fig. S1, determined using spectroscopic ellip-
sometry at a 70◦ incidence angle. All data were acquired
in UHV with a pressure below 10−8 Torr, to avoid sur-
face contamination. During the first run (blue), the tem-
perature of the sample was increased slowly from room
temperature to 750 K. The heater was then turned down
slowly and we measured <σ1> as the sample cooled down
to 400 K (run 2, green). We then turned the heater
on again and heated the sample again to 750 K (run 3,
black). Finally (run 4, red), we turned the heater down
again and measured <σ1> as the sample cooled down.
Similar data for the pseudo-dielectric function of poly-
crystalline Ni were reported previously.16

All Ni samples show an anomaly in the optical pseudo-
conductivity at elevated temperatures, where there is a
rapid rise of <σ1>. Since the temperature was measured
with a thermocouple attached to the sample, it is difficult
to obtain accurate temperature readings. Errors of up to
50 K are possible. Therefore, the temperature where the
rise of <σ1> occurs may or may not be the same for all
samples, due to these errors.

The anomaly occurs only during the first heating of
the sample past the Curie temperature. Since magnetic
phase transitions (ferromagnetic to paramagnetic) should
be reversible, it is not likely that the anomaly is due to
magnetic effects. The anomaly could not be restored
by removing the sample from the cryostat and placing
into a saturating magnetic field of about 1 T. A partial
restoration of the anomaly was possible by leaving the
sample in humid air for several weeks. We therefore con-
clude that the anomaly is not due to magnetic effects as
argued previously,16 but due to changes in surface condi-
tions. We attribute the initial low-temperature pseudo-
conductivity for each sample to different adsorbed sur-
face layers (which were removed by the initial heating
of the Ni sample). It was reported previously4 that
about 50 Å of water can be removed from the surface
of thin Ni layers by heating in UHV. After heating, when
adsorbed overlayers have evaporated, the final optical
pseudo-conductivity is due to different surface roughness

conditions (or other overlayers that cannot be removed
by heating) or due to different bulk conduction mecha-
nisms. For example, single-crystalline Ni is expected to
be more conducting than cold-rolled poly-crystalline Ni.

We conclude that heating our Ni samples above the
Curie temperature for about six hours is an effective way
of preparing Ni surfaces for optical constants measure-
ments. This cleaning procedure was therefore used for all
ellipsometry measurements on Ni described in this work.
To demonstrate the impact of cleaning, we show the
room-temperature ellipsometric angles and the pseudo-
dielectric function of cold-rolled pseudo-crystalline Ni in
Fig. S2. The ellipsometric angle ψ decreases and ∆ in-
creases, as adsorbed layers are removed by heating, es-
pecially near the critical point at 4.8 eV. Changes in the
ellipsometric angles are smaller in the near-infrared be-
low 1 eV than in the UV. Similarly, <ε1> decreases and
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FIG. S1. Optical pseudo-conductivity <σ1> as a function of
temperature, measured by ellipsometry in ultra-high vacuum
at a single photon energy of 1.97 eV at an incidence angle of
70◦ for (a) a 1000 Å thick sputtered Ni layer on thick SiO2 on
Si, (b) a bulk poly-crystalline cold-rolled Ni substrate, (c) a
single-crystalline Ni (001) substrate. The dashed vertical line
shows the Curie temperature.
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<ε2> increases after heating of the sample. The largest
changes of <ε> are observed in the near-infrared spectral
region.

In vacuum technology processing (for example in the
semiconductor industry), heating of a wafer in vacuum is
known as degassing. The experiments described in this
section essentially monitor the degassing of Ni by in situ
spectroscopic ellipsometry.

Similar changes in the ellipsometric angles and the
pseudo-DF after heating in H2 or exposure to O2 have
been reported by others17 (Hanekamp 1983). Slow an-
nealing of an amorphous as-sputtered Ni layer in H2 pro-
motes crystallization and desorption of surface layers.17

This leads to a decrease of 〈ε1〉 by 1.4 and an increase in
〈κ〉 by 1.0 at 4.2 eV. (If the sample remains in H2 too long
at high temperatures, nickel hydrides may form, which
deteriorates the pseudo-DF again.) In our annealing ex-
periments, we find an increase of our polycrystalline bulk
Ni samples of 〈ε1〉 by 0.2 and an increase in 〈κ〉 by 0.2
at 4.2 eV. This discrepancy of sign and magnitude can
perhaps be explained by the fact that crystallization of
an amorphous sputtered layer (associated with changes
in position and broadening of the peak at 4.8 eV) and
surface cleaning both contribute to the pseudo-DF. An
energy of 4.2 eV may not be the best position for mon-

FIG. S2. Ellipsometric angles ψ and ∆ at 70◦ incidence angle
(top) and pseudodielectric function (bottom) as a function of
photon energy for a cold-rolled polycrystalline Ni substrate at
room temperature, acquired in a UHV cryostat before (solid)
and after (dashed) heating to 750 K for 6 hours. ψ and <ε1>
are shown in green, ∆ and in <ε1> blue.
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FIG. S3. Complex refractive index of polycrystalline Ni at
300 K calculated from the data shown in Fig. 3. Symbols
show results from a point-by-point fit, lines the results from
the product model using Eq. (5).
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FIG. S4. Absorption coefficient and penetration depth of
polycrystalline Ni at 300 K calculated from the data shown in
Fig. 3. Symbols show results from a point-by-point fit, lines
the results from the product model using Eq. (5).

itoring the cleanliness of a Ni surface. Hanekamp and
van Silfhout (1983) show a decrease of ∆ by about 1◦ at
1.97 eV after exposure to O2, significantly smaller than
our observed change of 5◦ due to annealing.

S2. ADDITIONAL EXPERIMENTAL DATA

The complex refractive index calculated from the di-
electric function of polycrystalline Ni is shown in Fig.
S3. The absorption coefficient and penetration depth are
shown in Fig. S4, the infrared complex impedance in Fig.
S10. Separate Drude and Lorentz contributions to the
total dielectric function in the sum model (2) are shown
in Fig. S5. A spreadsheet with experimental and sum
model data (ψ, ∆, ε1, ε2, n, k) versus photon energy is
also available as supplementary material.
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S3. DRUDE MODEL WITH FREQUENCY-DEPENDENT
SCATTERING RATE

A. Drude dielectric function

Within the Drude model (for a single species of free
carriers), the dielectric function ε versus angular fre-
quency ω is written as19

ε (ω) = 1− ω2
P

ω2 + iγω
= 1 + i

ω2
P

ω (γ − iω)
, (S1)

where

ω2
P =

ne2

ε0m
(S2)

is the unscreened plasma frequency and γ the scatter-
ing rate, with the carrier density n, the effective mass m
(sometimes called bare optical band mass),23 electronic
charge e, and the permittivity of vacuum ε0. These equa-
tions assume that time-dependent fields vary like e−iωt.
Otherwise, all expressions in this section need to be re-
placed with their complex conjugates.

Some authors23 add a high-frequency dielectric con-
stant ε∞ to the Drude expression (S1) and introduce an
associated screened plasma frequency.18 We do not need
this approach, because our models include explicit oscil-
lators outside of our spectral range to consider the optical
contribution from high-energy oscillators.

Written in real and imaginary components, Eq. (S1)
becomes

ε (ω) = ε1 (ω) + iε2 (ω) = 1− ω2
P

ω2+γ2 + i
ω2

P

ω2+γ2 × γ
ω . (S3)

ε1 (ω) = 1− ω2
P

ω2 + γ2
= 1− ω2

P τ
2

1 + ω2τ2
(S4)

and

ε2 (ω) =
ω2
P

ω2 + γ2
× γ
ω

= [1− ε1 (ω)]× γ
ω

=
ω2
P τ

2

1 + ω2τ2
× 1

ωτ
,

(S5)
where τ = 1/γ is the unrenormalized scattering time.

In the limit of high frequencies (but below the onset of
optical interband transitions) and low scattering, ωτ �
1, we find

ε1 (ω) ≈ 1− ω2
P

ω2
and ε2 ≈

ω2
P

ω2
× 1

ωτ
≈ 0. (S6)

One can therefore plot ε1 (ω) versus ω−2, which yields
−ω2

P as the slope. Similarly, plotting ε (ω)ω versus ω−2

yields ω2
P γ as the slope.

Sievers23 writes the result (S5) as

1

ωτ
=

ε2 (ω)

1− ε1 (ω)
or ε1 (ω) = 1− τωε2 (ω) . (S7)

Plotting ε1 (ω) versus ωε2 (ω) therefore yields the scat-
tering time −τ as the slope.

B. Drude optical conductivity

The complex optical conductivity is defined as

σ (ω) = −iε0ω [ε (ω)− 1] (S8)

or written in components as

σ (ω) = σ1 (ω) + iσ2 (ω) (S9)

with

σ1 (ω) = ε0ωε2 (ω) and σ2 (ω) = ε0ω [1− ε1 (ω)] .
(S10)

Sievers’ result (S7) for the Drude scattering rate can also
be written in terms of the optical conductivity as

1

ωτ
=
σ1 (ω)

σ2 (ω)
. (S11)

One can therefore determine the scattering rate directly
at each frequency, if both real and imaginary parts of
the optical conductivity are known, for example from an
ellipsometry measurement.

Within the Drude model (S1), the optical conductivity
(S8) becomes

σ (ω) =
ε0ω

2
P

γ − iω
=

ε0ω
2
P τ

1− iωτ
=

ne2τ

m (1− iωτ)
. (S12)

This can be written in components as

σ1 =
ε0ω

2
P γ

ω2 + γ2
=

ε0E
2
PΓ

~ (E2 + Γ2)
, (S13)

σ2 =
ε0ω

2
Pω

ω2 + γ2
=

ε0E
2
PE

~ (E2 + Γ2)
, (S14)

|σ|2 =
ε20ω

4
P

ω2 + γ2
=

ε20E
4
P

~2 (E2 + Γ2)
. (S15)
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FIG. S6. Real (solid) and imaginary (dashed) parts of the
optical conductivity calculated from the Drude model, see
Eqs. (S13) and (S14). Drude1 (red): EP =12.3 eV, Γ=2.76 eV;
Drude2 (blue): EP =4.73 eV, Γ=34.6 meV. The black line
shows the sum of both contributions.

We note that

σ1 (ω = 0) =
ε0
~
E2
P

Γ
= σ0 and σ2 (ω = 0) = 0. (S16)

The real and imaginary parts σ become equal at ω=γ.
Figure S6 shows the real and imaginary parts of the

optical conductivity calculated from two sets of param-
eters similar to those labeled Drude1 and Drude2 in
Table I. We calculate σ0=6640/Ωcm for Drude1 and
σ0=75,500/Ωcm for Drude2. We therefore associate the
Drude1 term with d-electrons (because of their large scat-
tering rate) and the Drude2 term with sp-electrons (be-
cause of their dominant contribution to the DC conduc-
tivity, see Mott 1936). The total conductivity calculated
from our optical data is 82,100/Ωcm, which is lower than,
but of the same order of magnitude as the commonly
cited electric conductivity of Ni of 146,000/Ωcm. σ2 in-
deed becomes 0 at low frequencies for the Drude1 term,
but we cannot observe this for the Drude2 term because
we did not measure at sufficiently low energies (below
Γ=42.1 meV).

There is a crossing of σ1 and σ2 at Γ=2.76 eV for
the Drude1 term. This crossing is below our spectral
range for the Drude2 term. At the lowest frequencies, the
Drude2 term is the dominant contribution to σ1, while
the Drude1 term dominates above 1 eV.

Equation (S12) implies

τ−1 = γ =
ε0ω

2
P

σ
+ iω =

ε0E
2
Pσ1

~2 |σ|2
+ i

(
ω − ε0E

2
Pσ2

~2 |σ|2

)
(S17)

τ−1 = γ =
ε0ω

2
Pσ1

|σ|2
+ iω

(
1− ε0ω

2
Pσ2

ω |σ|2

)
, (S18)

where we have introduced EP = ~ωP . We
also note that ε0/~=134.52 1/ΩcmeV and
~2e2/ε0m0=1.379×10−21 cm3eV2. In Gaussian units,
1/Ωcm is equivalent to 10−11/s. Equation (S18) allows
us to calculate the unrenormalized scattering rate from
the measured optical conductivity, if we “guess” the
plasma frequency or determine it from other sources.

C. Renormalized frequency-dependent scattering rate,
plasma frequency, and effective mass

Following Sulewski et al.,24 we define in MKSA units

Γ1 (ω) =
ε0E

2
Pσ1

~ |σ|2
, (S19)

1 + λ (ω) =
ε0E

2
Pσ2

~E |σ|2
, (S20)

~γ∗ (ω) =
~

τ∗ (ω)
=

Γ1 (ω)

1 + λ (ω)
, (S21)

ω∗2P (ω) =
ω2
P

1 + λ (ω)
, and (S22)

m∗ (ω) = m [1 + λ (ω)] , (S23)

which makes Eq. (S18) equivalent to

~τ−1 = ~γ = Γ1 (ω)− iEλ (ω) . (S24)

Sievers23 writes Eq. (S22) in terms of the dielectric func-
tion ε (ω) as

E∗2P (ω)

E2
=
ε22 (ω) + [1− ε1 (ω)]

2

1− ε1 (ω)
(S25)

which is, of course, equivalent.
The unstarred quantities τ , γ, ωP , and m are the

unrenormalized scattering time, scattering rate, plasma
frequency and the bare optical band mass. The equiva-
lent quantities with the asterisk are called the frequency-
dependent renormalized quantities. m∗ is also called the
infrared (experimental) mass,23 if it is calculated using
Eq. (S23) from the measured optical conductivity. The
quantity 1 + λ (ω) is the frequency-dependent mass en-
hancement factor. We have defined Γ1 in units of energy
with an ~ prefactor. All equations are in MKSA units.

If the optical conductivity σ (ω) follows the Drude
model, then it is easy to see from Eq. (S11) that

γ∗ (ω) =
1

τ∗ (ω)
=
σ1
σ2
ω =

1

τ
(S26)

and 1 + λ (ω) = 1. Therefore, the renormalized plasma
frequency is equal to the unrenormalized plasma fre-
quency and the renormalized mass is equal to the bare
optical band mass.

It gets more interesting, if the optical conductivity
does not show pure Drude behavior, for example because
the (classical) frictional force is not proportional to the
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velocity (which was one of the assumptions in deriving
the Drude and Lorentz models). In a quasi-particle pic-
ture, free electrons might interact with other excitations
(phonons or interband transitions or surface plasmons23),
which causes deviations of the optical conductivity from
the pure Drude response. This is sometimes called the
Holstein (1954, 1964) effect. In such cases, we can still
calculate the renormalized frequency-dependent scatter-
ing rate, because the plasma frequency cancels in Eq.
(S21). We can only calculate the renormalized frequency-
dependent mass, if the plasma frequency is known (at
least approximately). Sometimes, we will guess a value
of the plasma frequency in this calculation. An error
introduced by an incorrect plasma frequency will only
cause a constant factor in the renormalized mass m∗.

D. Application to Drude model with two carrier species

While the frequency-dependent scattering formalism
has been applied to a variety of materials,23,24,26–30 es-
pecially alkali metals, heavy Fermion compounds, and
conducting metal oxides, we are not aware of an applica-
tion of this concept to a dielectric function determined by
two species of free carriers. Drude (1900) already spec-
ulated that metals required two different species of free
charge carriers to explain their optical constants. This
topic was revisited by Roberts (1955, 1959) and applied
to Ni.

For a single Drude carrier species, the mass enhance-
ment factor equals unity, as already mentioned. The dot-
ted line in Fig. S7 (a) shows the mass enhancement fac-
tor calculated with Eq. (S20) from an optical conductivy
written as a sum of two free carrier terms18 given in Eq.
(S12). This calculation requires choosing a fixed value of
the plasma frequency, so we picked EP=4.73 eV similar
to Table I. At first, it seems strange that the renormal-
ized mass parameter would drop from 80% of the bare
mass to 13% as the photon energy increases. Since the
free carrier absorption is dominated by s-electrons (with
a small mass) at low energies and by d-electrons (with a
large mass) at high energies, the opposite should be the
case. The key to understand this graph is to consider
that we used a fixed plasma energy of EP=4.73 eV in
this calculation.

It is more helpful to plot the energy dependence of
the inverse mass enhancement factor, see the dotted line
in Fig. S7 (b). This equals the square of the ratio of
the energy-dependent plasma frequency to our assumed
value of EP=4.73 eV. For low photon energies, free car-
rier absorption is dominated by the sp-electrons (term
Drude2) with a plasma frequency of EP=4.73 eV, equal
to our assumed value. Therefore, the inverse mass en-
hacement factor is about 1. As the photon energy in-
creases, the contribution to the free carrier absorption
by the sp-electrons decreases and the contribution of the
d-electrons (Drude1 term) with a plasma frequency of
12.3 eV increases. We therefore expect the inverse mass
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FIG. S7. Mass enhancement factor 1+λ (E) (a) and its inverse
(b) as a function of photon energy, calculated from Eq. (S20).
The dotted line shows results calculated from a Drude model
with two carrier species as shown in Fig. S6. The symbols and
solid lines show results calculated from our experimental data
and our product model, respectively. We assumed a value of
EP =4.73 eV for the plasma frequency in this figure.

enhancement factor to reach 6.8 at very high energies,
which is close to the value of 7.6 at 6 eV, see Fig. S7 (b).
The plasma frequency (S2) ω2

P=ne2/ε0m is determined
by the ratio of two parameters, the carrier density and the
effective mass. While we expect the effective mass to be
larger for d-electrons than for sp-electrons (which tends
to decrease the plasma frequency), the carrier density in-
creases even more than the effective mass and therefore
the plasma frequency for d-electrons is larger than for
sp-electrons,

We now understand why m∗ (E) decreases with pho-
ton energy. m∗ is close to unity at low frequencies, be-
cause we have chosen the correct plasma frequency of
sp-electrons (4.73 eV) in this frequency range. At higher
energies (above 1 eV), the contribution from d-electrons
with a plasma frequency of 12.3 eV dominates. The ef-
fective mass parameter therefore decreases, because we
have chosen a plasma frequency which is much too low
for the spectral range above 1 eV. (The same decrease of
m∗ with increasing energy would occur, if we had cho-
sen EP=12.3 eV in our calculation, but it would reach a
high-energy limit of unity.)
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FIG. S8. Frequency-dependent scattering rate as a function
of photon energy, calculated from Eq. (S21). The dotted line
shows results calculated from a Drude model with two carrier
species as shown in Fig. S6. The symbols and solid lines show
results calculated from our experimental data and our product
model, respectively.

In summary, it is our impression that a frequency-
dependent mass parameter is not a useful concept in the
description of the optical constants of a free electron gas
with two types of carrier with different densities and opti-
cal band masses. Instead, it is more intuitive to consider
the frequency dependence of the renormalized plasma fre-
quency, see Fig. S7 (b).

The frequency-dependent renormalized scattering rate
~/τ∗ calculated from a sum of two Drude terms with
parameters in Table I is shown in Fig. S8 (dotted). At
low energies, ~/τ∗ equals 0.05 eV, because most of the
scattering is due to sp-electrons with a scattering rate of
0.0421 eV. Only a small contribution to the scattering
rate is due to d-electrons (and therefore the total value
of ~/τ∗ slightly larger than 0.0421 eV). As the photon
energy increases and scattering of d-electrons becomes
dominant, ~/τ∗ increases also, first quadratically and
then linearly. The increase flattens out above 1 eV and
~/τ∗ approaches 2.4 eV at an energy of 2 eV, close to the
Drude1 scattering rate of d-electrons shown in Table I.

S4. IMPEDANCE AND REFRACTIVE INDEX

Faraday’s Law (the third Maxwell equation) for elec-
tromagnetic waves in vacuum reads in MKSA units

~∇× ~E = −µ0
∂ ~H

∂t
, (S27)

where ~E and ~H are the electric and magnetic field
strengths and µ0 the permeability of free space. For a

plane wave with wave vector ~k and angular frequency ω,
this becomes

~k × ~E0 = ωµ0
~H0, (S28)

where the subscript 0 stands for the complex amplitude

of the plane wave. We can eliminate ~k with the wave

equation

~∇2 ~E − 1

c2
∂2 ~E

∂t2
= 0 (S29)

and the resulting dispersion equation

k2 =
ω2

c2
. (S30)

From Eqs. (S28) and (S30), we find the relationship

E0 = µ0cH0 =

√
µ0

ε0
H0 = Z0H0 (S31)

between the magnitudes of the electric and magnetic field
strength amplitudes, where we have introduced the speed
of light in vacuum

c =
1

√
ε0µ0

(S32)

and the impedance of vacuum

Z0 =

√
µ0

ε0
= 377 Ω. (S33)

The corresponding Maxwell equation (Faraday’s Law)
in a dispersive medium (e.g., a metal) is

~∇× ~E = −∂
~B

∂t
, (S34)

where ~B = µµ0
~H is the magnetic flux density, or

~k × ~E0 = ω ~B0 = ωµµ0
~H0 (S35)

for plane waves. At optical frequencies, µ=1. In an
anisotropic medium, we no longer have a wave equation

similar to Eq. (S29) (because ~E is not in general per-
pendicular to the wave vector). We therefore restrict the
following discussions to isotropic media.

The wave equation

~∇2 ~E − 1

c2
∂2ε ~E

∂t2
= 0 (S36)

for an isotropic medium with µ=1 results in the disper-
sion relation

|k|2 = ε
ω2

c2
(S37)

for a generalized (or inhomogeneous) plane wave with

a complex wave vector ~k and real angular frequency ω
(Mansuripour 1995, Stratton 2007). From Eqs. (S35)
and (S37), we find the relationship

√
εE0 = µ0cH0 =

√
µ0

ε0
H0 = Z0H0 (S38)
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FIG. S10. Argand diagram of the complex optical impedance
(in units of Z0) defined in Eqs. (S41) and (S42) calculated
from the complex dielectric function shown in Fig. 3 for poly-
crystalline Ni at 300 K. Note the linear axes. Small symbols
show results from a point-by-point fit. The line was calcu-
lated from the product model (5) with parameters in Table
II. Large symbols show the results of Lenham and Treherne
on Ni single crystals from 8 to 17 µm wavelength,10 indicated
by numbers.

between the magnitudes of the amplitudes of the elec-
tric and magnetic field strengths. This is similar to Eq.
(S31) except for a factor

√
ε, where ε is the frequency-

dependent dielectric constant. This results in

E0 =
Z0√
ε
H0 = ZH0, (S39)

where Z = Z0/
√
ε = R+ iX is the complex impedance of

the wave in an isotropic medium with µ=1. R and X are
the real part (resistance) and imaginary part (reactance)
of the complex impedance.10 It is convenient to introduce

the dimensionless complex impedance10

Z ′ = R′ + iX ′ =
Z

Z0
=

1√
ε

=
1

n+ iκ
(S40)

with real part

R′ =
n

n2 + κ2
(S41)

and imaginary part

X ′ =
−κ

n2 + κ2
. (S42)

The older literature10 sometimes includes a factor of
4π/c, which arises from the definition of the surface
impedance of a conductor (Dingle 1953, Jackson 1975)
in Gaussian units. This does not affect the definition of
the dimensionless impedance Z ′ in Eq. (S40). Our results
are therefore directly comparable to those of Lenham and
Treherne.10

It was customary in the older literature10 to plot X ′

(reactance) versus R′ (resistance), in units of Z0, some-
times with reciprocal axes.9 It is not possible to write the
complex refractive index with real part (Fox 2010)

n =
1√
2

√
ε1 +

√
ε21 + ε22 (S43)

and imaginary part

κ =
1√
2

√
−ε1 +

√
ε21 + ε22 (S44)

for free-carrier absorption with simple equations, with-
out approximations that are too restrictive (ωτ � 1) for
our purposes. We therefore show −X ′ versus R′ with
reciprocal axes for a Drude metal with plasma frequency
4.7 eV (carrier density n=1.6×1022 cm−3) and a Drude
broadening of 35 meV, which corresponds to a scattering
time τ=19 fs (similar to Ni, see Table I) in Fig. S9. The
negative sign in −X ′ is due to our convention exp (−ωt)
for the time-varying fields. This figure is similar to Fig.
1 in Ref. 9.

From our dielectric function for polycrystalline Ni
at 300 K (determined from a point-by-point fit and
from our product model), we can calculate the com-
plex impedance. The results are shown in Fig. S10. As
mentioned by Lenham and Treherne,9 an Argand dia-
gram for the complex impedance is much more sensi-
tive to show small differences between data and a model
than the dielectric function (Fig. 3) or the complex op-
tical conductivity (Fig. 4). We compare our results
with those measured by Lenham and Treherne10 in Fig.
S10. The agreement between our data and theirs is
about the same as the agreement between our data and
our product model. A horizontal shift of the Argand
impedance curve towards smaller R′ values indicates a
larger scattering time.9 In other words, the resistance
in the Lenham-Treherne single crystals10 should be ex-
pected to be smaller than in our polycrystalline Ni sam-
ples.
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S5. ANOMALOUS SKIN EFFECT

The anomalous skin effect1 (Dingle 1953, Wooten 1972,
Jones 1972) affects the optical response of metal surfaces
when the electron mean free path l=vF τ (where vF is
the Fermi velocity) becomes of the order of the pen-
etration depth or larger. We calculate l=16 nm from
vF=108 cm/s, see Ref. 32, and τ=~/Γ=16 fs (Table I).
Our penetration depths are at least 75 nm, i.e., much
larger than the electron mean free path, see Fig. S4. We
therefore do not take the anomalous skin effect into ac-
count in the analysis of our room temperature data. (We
were unable to confirm the value of vF given by Kamineni
et al.13 in the sources they cited.)

According to Lynch and Hunter,1 the anomalous skin
effect correction to the normal-incidence reflectance is
3
4
vF
c for diffuse surface scattering, which equals 0.0025

for Ni.
The question about the anomalous skin effect contribu-

tions to ellipsometry data should be revisited with low-
temperature measurements of a high-conductivity metal
like Au or Al.

Brückner et al. (1989) write that the complex re-
fractive index must sometimes be modified due to the
anomalous skin effect. An ellipsometry or reflectance ex-
periment measures an effective complex refractive index
n∗+ iκ∗, which is related to the Drude-Lorentz refractive
index n+ iκ by

n∗ + iκ∗

n+ iκ
= 1− 3vF

16c

κ− in
−i+ (1/ωτ)

. (S45)

Shelton et al. (2008) take the viewpoint that the free car-
rier concentration n in the Drude model must be replaced
with a frequency-dependent carrier concentration

n∗ (ω) =
n

τ

β2/3

v
2/3
F

3

√
2m

ωne2µ0
. (S46)

The dimensionless parameter β is related to the surface
roughness and describes if scattering of electrons by the
surface is specular or diffuse.

S6. ZEROS AND POLES ON THE IMAGINARY AXIS

It is well known18,25 (Berreman 1968) that the dielec-
tric function of a solid can be written as a product (5)
with zeros and poles in the complex plane. In the case of
infrared lattice absorption, the poles represent the trans-
verse optical phonons and the zeros the longitudinal op-
tical phonons. For electronic transitions, the poles repre-
sent the energy gap (resonance frequency) and the zeros
the strengths of the transitions.18 For a metal, the free
carrier absorption is described by a pole on the imagi-
nary axis, where the associated zero (which represents
the plasma frequency) is not on the imaginary axis.

We struggled for some time with how to model the
dielectric function of a metal using Eq. (5) if the free

TABLE SI. The optical constants of a metal calculated from a
sum of two Drude terms in Eq. (2) (top part) were fitted with
a product of two Drude terms as in Eq. (5) (bottom part).

~ωP ~γ
(eV) (eV)

Drude 1 11.9 2.87
Drude 2 4.86 0.0421

~ω0 ~γ0 ~ωL ~γL
(eV) (eV) (eV) (eV)

Drude 1 0 2.87 12.8 2.46
Drude 2 0 0.0422 0 0.450

carrier absorption is described by two species of carri-
ers. We solved this problem numerically and found an
equivalent description of the dielectric function as a sum
or a product of Drude oscillators with parameters listed
in Table SI. The results are somewhat surprising and
warrant some discussion. We find that the Drude pa-
rameters of the term with the larger plasma frequency
(Drude 1) are comparable in both models. The broad-
enings are identical and the plasma frequency differs by
only 10%. The broadenings of the second Drude term
are also identical. It is surprising, however, that the zero
of the second Drude term is on the imaginary axis. This
is the first time we have encountered the need for a zero
of the dielectric function on the imaginary axis.

S7. OPTICAL CONSTANTS OF GOLD

A. Ellipsometric angles and model parameters

For comparison with Ni, we also measured the ellipso-
metric angles for gold using the same instruments, but in
air with angles of incidence from 65◦ to 80◦ with 5◦ steps.
The gold layer used for these measurements was a cali-
bration standard (gold mirror) shipped with the FTIR
ellipsometer by the J. A. Woollam Company. This gold
layer was not cleaned (by heating in UHV) and measured
in air. Therefore, this sample was probably not clean, but
covered with surface layers. Therefore, we consider the
optical constants reported here a qualitative estimate.
They do not carry the same accuracy as our Ni data.
The main reason for reporting optical constants of gold
in this context is to have a qualitative comparison of the
physics governing the optical constants of these two ma-
terials. Using x-ray reflectance, we estimate the surface
roughness of the gold mirror to be about 3 nm.

The ellipsometric angles of gold acquired at four angles
of incidence (65◦ to 80◦ with 5◦ steps) are shown in Fig.
S11. We see that the restrahlen band in gold is much
more pronounced than in Ni. For gold, ψ stays just below
45◦ to about 2 eV. For Ni, ψ drops below 45◦ at very low
energies, because of d-intraband transitions. (Within a
reststrahlen band, where ψ is nearly 45◦, ellipsometry is
very sensitive to weak absorption processes, see Willett-
Gies, 2015.) Since Au is a noble metal, the d-bands are
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FIG. S11. Ellipsometric angles ψ and ∆ for a gold mirror
measured in air as a function of photon energy from 65◦ to
80◦ angle of incidence.

completely full and such d-intraband transitions are not
possible.

The deviation of ψ from 45◦ is measurable and in-
creases with angle of incidence (0.3◦ for 65◦ incidence
angle, 0.6◦ at 80◦). It is related to the Drude scattering
rate. We observe a small discontinuity in our ψ data at
1.2 eV, where the VASE ellipsometer switches detectors.
The ellipsometric angle ∆ decreases almost linearly from
180◦ with increasing photon energy. At our low-energy
end of the spectral range (0.03 eV), ∆ is still a few degrees
lower than 180◦, especially for shallow incidence angles.
The deviation of ∆ from 180◦ is not related to the Drude
scattering rate. Instead, the slope of ∆ is related to the
plasma frequency. At zero energy, all ∆ curves converge
to 180◦ like a fan.

The ellipsometric angle ψ drops sharply at 2.5 eV due
to the onset of interband transitions. We model this tran-
sition with a Tauc-Lorentz oscillator centered at 2.54 eV.
The asymmetry of this oscillator, with a sharp cutoff at
the Tauc gap of 2.34 eV and a broadening of 0.47 eV
shapes the knee of ψ between 1.8 and 2.3 eV. Depend-
ing on the angle of incidence, ∆ has a more or less pro-
nounced minimum at this transition. We added six Gaus-
sians and a pole to model the dispersion and achieved an
excellent fit to the data in Fig. S11, with the parame-
ters listed in Table SII. (We chose Gaussians rather than
Lorentzians to avoid the slow drop of the Lorentzians,
which might influence the absorption at low energies.)
The strongest Gaussians at 3.1 and 4.2 eV lead to val-
leys in ψ and ∆.

B. Optical constants

The pseudo-dielectric function of gold, determined
from the ellipsometric angles with a point by point fit
(ignoring surface overlayers) and from the model with
parameters listed in Table SII, is shown in Fig. S12. The
Drude divergence is much stronger in gold than in nickel,

TABLE SII. Parameters used to describe the optical constants
of polycrystalline gold with a sum of oscillators: Energy E,
Tauc gap Eg, plasma frequency EP = ~ωP , broadening Γ,
and the pole amplitude A are in units of eV, the Gaussian
amplitudes are dimensionless. All parameters are given with
three significant digits. Due to parameter correlations, the
uncertainty is probably much larger.

A E Γ Eg EP

Drude 0.0438 8.53
Tauc-Lorentz 61.5 2.54 0.466 2.34
Gauss 1 3.63 3.08 1.20
Gauss 2 0.697 3.75 0.479
Gauss 3 2.82 4.16 1.02
Gauss 4 0.670 5.013 1.10
Gauss 5 1.01 5.33 2.33
Gauss 6 2.68 8.28 7.07
Pole 21.3 423
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FIG. S12. Pseudodielectric function of a gold mirror (without
surface corrections). Symbols show the results of a point-by-
point fit, ignoring overlayers, lines show the best fit to the
ellipsometric angles using a sum of oscillators with parameters
shown in Table SII.

because gold has a very low scattering parameter. In
gold, conduction is entirely due to s-electrons (which have
a low value of Γ). The d-band conduction (with its large
scattering rate) is missing in gold, because all d-bands
are filled. Therefore, <ε2> dips below 1 at 1.8 eV. At
higher energies, <ε2> rises again due to interband tran-
sitions. The onset of interband transitions is very sharp
and stands well above the low Drude contribution, thus
the need for a Tauc-Lorentz oscillator.

The Drude divergence can be removed partially by
plotting the optical conductivity, which is shown in Fig.
S13. However, for Au the electrical conductivity at low
energies is much larger than the interband conductivity
above 2 eV. This makes it hard to show the electrical
and interband conductivity on the same graph. From
our Drude parameters in Table SII, we calculate a DC
conductivity of 5×106 1/Ωcm from Eq. (S16), which is
an order of magnitude lower than σ0 derived from electri-
cal measurements. The anomalous skin effect may play
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loss function.

a role here, since high frequencies reduce the number of
carriers contributing to the electronic transport (Shelton
2008).

The loss function for gold (shown in Fig. S14) is dom-
inated by peaks related to interband absorption in the 2
to 4 eV range. At higher photon energies, Im(−1/<ε> )
still rises, because the plasma frequency at 8.5 eV is out-
side of our spectral range. The complex refractive index
is shown in Fig. S15. We note that <n>�<κ> (Fox
2010). Interband transitions are more obvious in <n>
than in <κ>. The pseudo-absorption coefficient <α>
and the pseudo-penetration depth <λP> are shown in
Fig. S16. We note that a discontinuity in the data near
0.7 eV, where we have merged data from both ellipsome-
ters. Also, the absorption coefficient is more sensitive to
small differences between data and model. The absorp-
tion coefficient is small at the longest wavelengths and
then rises sharply and reaches a global maximum near 0.3
eV. It then falls gradually and reaches a global minimum
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FIG. S15. Same data as in Fig. S12, but shown as a complex
pseudo-refractive index <n>+i<k>.
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FIG. S17. Argand diagram of the complex optical pseudo-
impedance of gold at 300 K (in units of Z0) defined in Eqs.
(S41) and (S42) in the mid-infrared (from 0.07 to 0.16 eV),
calculated from the complex pseudo-dielectric function shown
in Fig. S12. Small symbols show results from a point-by-point
fit. The line was calculated from the Drude-Lorentz model
with parameters in Table SII.
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near 2.5 eV, just below the onset of interband transitions.
As we compare the penetration depth in the mid-infared
between Au and Ni, we notice that the penetration depth
is only 125 nm below 1 eV, signifcantly lower than for Ni
due to the absence of d-intraband transitions in Au. This
will have consequences for the anomalous skin effect in
both materials. The complex optical pseudo-impedance
of gold at 300 K (in units of Z0), defined in Eqs. (S41) and
(S42), is shown in Fig. S17 in the mid-infrared spectral re-
gion (from 0.07 to 0.16 eV). We note that the resistance
of gold is lower than the resistance of Ni, as expected.
The reactance also is much smaller for gold. This graph
clearly shows the discrepancy between our model and the
point-by-point fit results.

C. Drude parameters

To determine the plasma frequency graphically using
Eq. (S6), we plot ε1 versus 1/E2 in Fig. S18. We find
EP=8.13 eV, which is in good agreement with our pa-
rameter EP=8.53 in Table SII determined from a Drude-
Lorentz fit to the ellipsometric angles. We also plot ε2E
versus 1/E2, which yields E2

PΓ=2.7 eV as the slope, in
good agreement with the value of 3.2 eV calculated from
the data in Table SII. Overall, this graph seems quali-
tatively similar for Ni and Au and therefore free carrier
absorption should play an important role in both mate-
rials.

The frequency-dependent mass parameter m∗ (E) =
m [1 + λ (E)] calculated from Eq. (S20) and its inverse,
the frequency-dependent plasma frequency EP (E) are
shown in Fig. S19. In our Drude-Lorentz model (solid
line), the mass is constant in the infrared, as expected
for transport with a single species of Drude carriers (dot-
ted line). This trend is supported by the data obtained
from the point-by-point fit between 0.2 and 0.8 eV (sym-
bols). In the visible, the mass peaks sharply, as interband
transitions contribute as well. The initial rise of the mass
below 0.2 eV is puzzling. In a complementary view, the
plasma frequency drops here. This is not supported by
our Drude-Lorentz model. Indeed, as we explore the el-
lipsometric angles in this spectral region, we find that
ψ approaches the ideal metallic value of 45◦ faster than
predicted by our Drude-Lorentz model, see Fig. S20. It
is not clear if this is an issue with our model parameters,
an experimental error in the ellipsometry measurement,
or a physics effect, such as the anomalous skin effect or
diffraction effects described by Humĺıček and Bernhard
(2004). This discrepancy requires additional work, for
example measurements at low temperatures on a clean
Au sample.

The frequency-dependent scattering rate for gold at
300 K, calculated from Eq. (S21), is shown in Fig. S21.
It is quite apparent that the scattering rate is nearly in-
dependent of energy in the infrared, as expected from the
Drude response for an electron gas with a single species
of carriers (shown by the dotted line). It increases only
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FIG. S18. Same as Fig. 7, but for gold (without surface cor-
rections).

slightly from 0.042 at 0.03 eV to 0.049 eV at 1eV, similar
to the Drude scattering rate of 0.044 eV in our Drude-
Lorentz model, see Table SII. This slight increase is prob-
ably from the tail in our Tauc-Lorentz oscillator due to
interband transitions. These interband transitions show
a strong rise in the scattering rate in the visible and UV
spectral regions. This nearly constant scattering rate for
gold is in stark contrast to Ni, see Fig. S8. Conduction
from d-electrons in Ni (with a much larger scattering
rate) causes a nearly linear rise of ~/τ∗. Since the d-
bands are full in gold and do not contribute to electronic
conduction, there is only one species of Drude carriers
and thus a nearly frequency-independent ~/τ∗.
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