
OPTICAL CHARACTERIZATION OF NI USING SPECTROSCOPIC ELLIPSOMETRY

AT TEMPERATURES FROM 80 K TO 780 K

BY

FARZIN ABADIZAMAN, B.S., M.S.

A dissertation submitted to the Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

Major Subject: Physics

New Mexico State University

Las Cruces, New Mexico

December 2020



Farzin Abadizaman

Candidate

Physics

Major

This dissertation is approved on behalf of the faculty of New Mexico State University, and
it is acceptable in quality and form for publication:

Approved by the Dissertation Committee

Dr. Stefan Zollner

Chairperson

Dr. Michael Engelhardt

Committee Member

Dr. Heinz Nakotte

Committee Member

Dr. Jason Jackiewicz

Committee Member

ii



DEDICATION

I dedicate this work to my beloved mother.

iii



ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my adviser Prof. Stefan Zollner for his con-

tinuous support throughout my work and studies at NMSU. I find myself indebted to the

faculty members of the Department of Physics and would like thank all of them, in particular

Prof. Michael Engelhardt, Prof. Igor Vasiliev, Prof. Heinrich Nakotte, and my committee

member Prof. Jason Jackiewicz.

My graduate studies would not be possible without the endless support of my family. There-

fore, I wish to express my appreciation and thank my brother and my wife for their ceaseless

encouragement and support.

My sincere thanks to the Woollam company and its members, especially Gerry Cooney, Tom

Tiwald, and James Hilfiker for their technical support and offline discussions. I am grateful

to Prof. Schubert and his group for their collaboration. I would like to thank the Society of

Vacuum Coaters (SVC) for awarding me a scholarship, which encouraged me to do my best

in my studies. Many thanks to my colleagues Nuwanjula Samarasingha, Carola Emminger,

Rigo Carrasco, and Galen Helms, as well as to the staff of the Physics Department, Rosa

Urioste, Francisco Carreto-Parra, and Marisela Chavez.

iv



VITA

2005-2009 B.S. in Physics, Shahrood University of Technology, Semnan, Iran

2009-2012 M.S. in Physics, Tehran University, Tehran, Iran

2015-2018 M.S. in Physics, New Mexico State University, NM, USA

2020 Ph.D. in Physics, New Mexico State University, NM, USA

Publications

• F. Abadizaman and S. Zollner, Optical constants of single-crystalline Ni from 77 K
to 770 K from ellipsometry measurements, (In preparation for publication).

• F. Abadizaman and S. Zollner, Optical constants of polycrystalline Ni from 0.06 to
6.0 eV at 300 K, J. Vac. Sci. Technol. B 37, 062920 (2019).

• C. Emminger, F. Abadizaman, N. S. Samarasingha, T. E. Tiwald, and S. Zollner
Temperature dependent dielectric function and direct bandgap of Ge, J. Vac. Sci.
Technol. B 38, 012202 (2020)

• S. Zollner, P. Paradis, F. Abadizaman, and N. S. Samarasingha, Drude and
Kukharskii mobility of doped semiconductors extracted from Fourier-transform
infrared ellipsometry spectra, J. Vac. Sci. Technol. B 37, 012904 (2019).

Presentations and posters

• F. Abadizaman and S. Zollner, Temperature dependent optical properties of
single-crystalline Ni (100), ELI Beamlines User Conference, Prague, Czech Republic,
October 2020. (Talk)

• F. Abadizaman, C. Emminger, S. Knight, M. Schubert, and S. Zollner, Optical Hall
Effect in the Multi-valley Semiconductor Te-doped GaSb, AVS 66th International
Symposium & Exhibition, Columbus, Ohio, USA, October 2019. (Talk)

• F. Abadizaman and S. Zollner, Optical constants of polycrystalline Ni from 0.06 to
6.0 eV at 300 K, AVS 66th International Symposium & Exhibition, Columbus, Ohio,
USA, October 2019. (Talk)

• F. Abadizaman and S. Zollner, Temperature Dependence of Critical points of Ni
77-800 K, AVS 65th International Symposium & Exhibition, Long Beach, California,
USA, October 2018. (Talk)

v



• F. Abadizaman and S. Zollner, Anomaly in optical constants of Ni near the Curie
temperature, NMAVS Symposium, Albuquerque, New Mexico, USA, May 2018.
(Talk)

• F. Abadizaman and S. Zollner, Temperature dependent Mueller matrix
measurements of magnetized Ni near the Curie temperature, APS March Meeting,
Los Angeles, California, USA, March 2018. (Talk)

• F. Abadizaman, P. Paradis, and S. Zollner, Temperature Dependent Mueller Matrix
Measurements of Magnetized Ni near the Curie Temperature, AVS 64th International
Symposium & Exhibition, Tampa, Florida, USA, October 2017. (Talk)

• F. Abadizaman and S. Zollner, Temperature Dependent Mueller Matrix
Measurements of Magnetized Ni near the Curie Temperature, NMAVS Symposium,
Albuquerque, New Mexico, USA, May 2017. (Talk)

• R. A. Carrasco, C. Emminger, N. Samarasingha, F. Abadizaman, and S. Zollner,
Dielectric function and critical points of α-Sn and Ge, AVS 65th International
Symposium & Exhibition, Long Beach, California, USA, October 2018. (Talk)

• C. Emminger, R. Carrasco, N. Samarasingha, F. Abadizaman, and S. Zollner,
Temperature Dependent Dielectric Function and Critical Points of Bulk Ge compared
to α-Sn on InSb, 2018 IEEE Photonics Society Summer Topicals Meeting Series,
Waikoloa, Hawaii, USA, July 2018. (Talk)

• F. Abadizaman, C. Emminger, S. Knight, M. Schubert, and S. Zollner, Optical Hall
Effect in Te-doped GaSb and undoped InAs, 8th International Conference on
Spectroscopy Ellipsometry, Barcelona, Spain, May 2019. (Poster)

• F. Abadizaman and S. Zollner, Temperature Dependent Optical and
Magneto-Optical Properties and Critical Points of Nickel, 8th International
Conference on Spectroscopy Ellipsometry, Barcelona, Spain, May 2019. (Poster)

• S. Zollner, P. Paradis, F. Abadizaman, and N. Samarasingha, Factorized
Broad-Band Description of the Dielectric Function Using a Modified Kukharskii
Model, 8th International Conference on Spectroscopy Ellipsometry, Barcelona, Spain,
May 2019. (Poster)

• C. M. Zamarripa, N. Samarasingha, R. A. Carrasco, F. Abadizaman, and S.
Zollner, Temperature-dependent Ellipsometry and Thermal Stability of Ge2Sb2Te5:C
Phase Change Memory Alloys, AVS 65th International Symposium & Exhibition,
Long Beach, California, USA, October 2018. (Poster)

• F. Abadizaman and S. Zollner, Mueller Matrix anomaly near the Curie temperature
of Ni, 10th Workshop Ellipsometry, Chemnitz, Germany, March 2018. (Poster)

• F. Abadizaman, J. M. Moya, and S. Zollner, Experimental Errors in Mueller
Matrix Elements of Isotropic Samples, APS Four Corners Section Meeting, Las
Cruces, New Mexico, USA, October 2016. (Poster)

vi



ABSTRACT

OPTICAL CHARACTERIZATION OF NI USING SPECTROSCOPIC ELLIPSOMETRY

AT TEMPERATURES FROM 80 K TO 780 K

BY

FARZIN ABADIZAMAN, B.S., M.S.

Doctor of Philosophy

New Mexico State University

Las Cruces, New Mexico, 2020

Dr. Stefan Zollner, Chair

In this work we present the optical properties of poly-crystalline and single-crystalline Ni

at various temperatures from 80 K to 780 K. The measurements were taken using an FTIR-

VASE ellipsometer from 1.5 µm to 40 µm and a VASE ellipsometer from 190 nm to 2.5 µm at

angles of incidence of 65◦ to 75◦ in air and 70◦ in a UHV cryostat. For measurements in the

cryostat, all samples were heat treated in UHV at 770 K for at least six hours. The optical

constants of Ni are modeled using four Lorentzian oscillators representing the interband

transitions and two Drude oscillators representing s- and d-electron conduction bands. The

DC conductivity of Ni is extracted from the Drude parameters and compared with electrical

measurements and a good agreement is observed. Two main absorption peaks near 1.5 eV

and 4.8 eV in the optical conductivity of Ni are seen. The temperature dependence of the

vii



main absorption peak at 4.8 eV shows that this interband transition is affected by scattering

with phonons or magnons with an effective energy of 77 meV. We interpret the reduction of

the broadening of this peak as the ferromagnetic exchange energy, which is in good agreement

with literature. The energy and the broadening of the absorption peak near 1.5 eV are found

to be constant over the temperature range. Its amplitude decreases with temperature up

to the Curie temperature (Tc = 627 K) and stays constant above this temperature. This

behavior is explained by assigning the peak to L3↓ → L3↓ transitions.
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1 INTRODUCTION

Nickel is a transition metal with the atomic number 28 belonging to the group XI of

the periodic table. It is one of the only four transition metals that is ferromagnetic at

around room temperature along with Fe, Co and Gd. The transition from the ferromagnetic

to the paramagnetic phase of Ni, Fe, Co, and Gd occurs at the Curie temperatures (Tc)

of 627 K, 1043 K, 1400 K, and 292 K, respectively [1]. The Debye temperature of Ni

θD = 345 K at T = 293 K and θD = 477 K at T = 0 K [2, 3]. Nickel has an FCC

crystal structure with a lattice constant of 3.499 Å and the symmetry group of Fm3̄m in

the ferromagnetic phase and R3̄m’ in the paramagnetic phase with the preferred moment

direction of ferromagnetic single crystalline Ni along the [111] direction [4]. The electronic

configuration of Ni has been a subject of debate as two electronic configurations have been

suggested. The configuration [Ag]3d94s1 has been theoretically reported to have a lower

ground state energy than [Ag]3d84s2 [5]. In reality, experiments show that the electronic

configuration of Ni is [Ag]3d9.44s0.6 which means that the 3d up state is full with five electrons.

There are 4.4 electrons (0.6 hole) in the 3d down state and 0.6 electrons in the 4s state [6].

This makes optical transitions from 4s to 3d possible due to the cubic crystal field. Electrons

can also scatter between s and d bands under assistance of phonons and magnons.

Owing to its ferromagnetic properties, Ni has been the subject of numerous electrical and

optical studies [5, 7]. In complementary metal-oxide semiconductor (CMOS) transistors,

metal silicides like Ni, Co, Ti, etc. are used to form low resistance contacts to source, drain

and gate regions [8,9]. NiSi is in particular important due to its narrow line sheet resistance

and ease of fabrication. Ni is also coated as a thin film on patterned CMOS devices to form
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monosilicide in the source, drain and gate areas [9]. Therefore, studying optical properties

of Ni is crucial as the optical properties are used to find the thickness of the coated thin

films, especially in the optical metrology of transistors. Due to the importance of the optical

properties of Ni in the semiconductor industry, in this work we performed ellipsometry

measurements to find and model the dielectric constants of Ni at various temperatures and

in a wide energy range that allows us to characterize the free carriers, optical conductivity,

and interband transitions of Ni.
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2 THEORY

This chapter is dedicated to the theoretical background of ellsipometry, polarization of light,

and optical properties of materials. The following topics are visited subsequently. We will

start with the mathematical description of propagation and polarization of light. We then ex-

plain the optical elements and their representative Jones matrices and finally the interaction

of light and matter is studied in the framework of the optical properties of crystals.

2.1 Propagation and Polarization of Light

The magnitude of the electric field of an electromagnetic beam traveling in the z-direction

with an angular frequency of ω = 2πf and a wave vector of ~K = Kẑ can be written as a

one dimensional generalized plane wave [10]

E = E0 exp[i( ~K · ~r − ωt+ δ)]

= E0 exp[i(Kz − ωt+ δ)],

(1)

with

K =
ωn

c
=

2πn

λ
, (2)

where E0 is the maximum amplitude of the electric field, n is the refractive index of the

medium, λ is the wavelength of the light and c is the speed of light in vacuum. If the

medium is absorptive, i.e. the medium absorbs the energy of light, then the refractive index

may be written as a complex number n + ik, where k is the extinction coefficient (not to

be confused with the wave vector ~K and its magnitude K). Then the electric field of an

electromagnetic wave is written as

E = E0 exp

(
−2πk

λ
z

)
exp[i(Kz − ωt+ δ)], (3)
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which shows that in an absorptive medium, the magnitude of the electric field decreases

exponentially with distance.

The intensity of light is defined as

I = |E|2 = EE∗. (4)

Using this definition, Eq. (3) becomes

I = |E0|2 exp

(
−4πk

λ
z

)
. (5)

Rewriting this equation yields Beer’s law

I = I0 exp(−αz), (6)

where α = 4πk/λ is called absorption coefficient and defines the penetration depth δp =

1/α = λ/4πk, over which the intensity of the incident beam decreases by a factor of 1/e (i.e.

I = 37%I0).

Polarization of light refers to the time dependence of the direction of the electric field of

light. The electric field of linearly polarized light does not change its direction over time and

it only oscillates in magnitude. Other types of polarizations depend on the phase difference

between the perpendicular components of the electric field. In optics, the electric field of

light is decomposed into a component parallel to the plane of incidence (p-component) and

a component perpendicular to the plane of incidence (s-component). Therefore, a beam of

light propagating in the z-direction may be written as

E(z,t) = Ep(z, t)p̂+ Es(z, t)ŝ

= Ep0 exp[i(Kz − ωt+ δp)]p̂+ Es0 exp[i(Kz − ωt+ δs)]ŝ

(7)
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Figure 2.1: Different polarization states of light. (Retrieved from http://hyperphysics.phy-
astr.gsu.edu/hbase/phyopt/polclas.html on October 9, 2020. Copyright Rod Nave, Georgia
State University, reprinted with permission.)

Here, we assume that the media is isotropic, otherwise the wave vector depends on the

directions of propagation. Using Eq. (7) one can define a linearly polarized light as the case

where δs−δp = 0 and circularly polarized light as δs−δp = π/2. Other values of δs−δp define

elliptically polarized light. Different polarization states of light are illustrated in Fig. 2.1.

2.1.1 Jones Formalism

An elegant and convenient way of mathematical representation of light was proposed by R.

C. Jones [11]. In this method, the electric field of light is described by a 2× 1 matrix (Jones

vector) and optical elements are described by 2× 2 matrices (Jones matrices)

E(z, t) =

[
Ep
Es

]
, (8)

where
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Ep = Ep0e
iδp

Es = Es0e
iδs .

(9)

In this form, the time dependence of the components of the electric field is omitted. There-

fore, one can write the linear and circularly polarized light as follows

Elinear,p =

[
1
0

]
,Elinear,s =

[
0
1

]
, (10)

and

Elinear,45 =
1√
2

[
1
1

]
,ER =

1√
2

[
1
i

]
,EL =

1√
2

[
1
−i

]
. (11)

The intensity of light in each direction will be equal to the square of the magnitude of the

element. One can write a general Jones vector for elliptically polarized light as follows [12,13]

Eelliptical =

[
sinψ exp(i∆)

cos ∆

]
, (12)

where ψ is defined in Fig. 2.2 and ∆ = δp − δs. These angles are called ellipsometric angles.

2.1.2 Depolarization

Depolarization is a phenomenon in which polarized light becomes unpolarized or partially

polarized upon reflection by or transmission through a sample or/and optical element. A

depolarizer is used in ellipsometry to remove the source polarization and it is made of a bire-

fringent crystal [14]. An important point is that non-polarized light cannot be described by

Jones vectors. Non-polarized light is studied utilizing Mueller Matrix (MM) formalism [12],

which is not discussed in this dissertation. As long as the sample is concerned, depolarization
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Figure 2.2: Definition of the ellipsometric angle ψ.

effects of the sample causes errors in ellipsometry measurements. There are different sources

of depolarization in ellipsometry such as non-uniform thickness, large surface roughness, fi-

nite band width of the monochromator, angular spread, backside reflections, and patterning.

Backside reflection occurs for transparent substrates (k ∼ 0) where light can reach the back

side of the sample and get reflected by the back side. This kind of depolarization can be

greatly reduced by roughening the back side of the sample. This can be done by sand blast-

ing or putting a scotch tape on the back side of the sample. Moderate depolarization effects

can be taken into account to some extent when modeling the optical constants of the sample.

2.2 Optical Elements

Any element that is in the path of the light beam is called an optical element and is required

to be represented by a Jones’ matrix. Optical elements can either change the state of the

polarization of light or the direction of propagation. In this section different optical elements
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that are used in ellipsometry are studied.

2.2.1 Polarizer

A polarizer is an optical element that is utilized to change an arbitrary polarization state of

light to linear polarization. It is made out of birefringent materials like calcite or MgF2 [14].

A polarizer with a polarization axis positioned at an angle of θ counterclockwise with respect

to the plane of incidence is represented as [12,15]:

P (θ) =

[
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

]
. (13)

Equation (13) can be derived by rotating a linear polarizer along the p-axis with a counter-

clockwise rotation of an angle θ as follows:[
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

]
=

[
cos θ − sin θ
sin θ cos θ

] [
1 0
0 0

] [
cos θ sin θ
− sin θ cos θ

]
. (14)

A clockwise rotation would give the same result with a minus sign in the off-diagonal

elements.

2.2.2 Retarder

A retarder is an optical element made of a birefringent material that is used to change

the polarization state of light from linearly polarized to elliptically polarized or vice versa.

Common examples of retarders are a half-wave plate and a quarter-wave plate. A half-

wave plate polarization rotator changes horizontal linearly polarized light to vertical linearly

polarized light, or linearly polarized light at 45◦ to linearly polarized light at 135◦. A

quarter-wave plate is used to change linearly polarized light to circularly polarized light or

vice versa. A retarder works based on the fact that the refractive indexes along the ordinary
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and extraordinary axis of the material are different. Therefore, the components of light that

travel along the ordinary and extraordinary directions will have different speed inside the

material. Hence, there will be a phase difference δ between the two components of light.

This phase difference depends on the difference of the refractive indexes, wavelength of light,

and the thickness of the retarder

δ =
2π|no − ne|L

λ0

. (15)

By changing the thickness of the retarder, one can make the desired wave-plate. For

example δ = π for a half-wave plate and δ = π/2 for a quarter wave plate. The Jones matrix

of a retarder with the retardance of δ and the fast axis along the p-axis is given as [14]

R =

[
1 0
0 e−iδ

]
. (16)

Counterclockwise rotation of R through an angle θ yields the general Jones matrix of a

retarder with the retardance of δ and a fast axis that makes an angle of θ counterclockwise

with the p-axis

R(δ, θ) =

[
cos θ − sin θ
sin θ cos θ

] [
1 0
0 e−iδ

] [
cos θ sin θ
− sin θ cos θ

]
, (17)

which becomes

R(δ, θ) =

[
cos2 θ + e−iδ sin2 θ sin θ cos θ − e−iδ sin θ cos θ

sin θ cos θ − e−iδ sin θ cos θ e−iδ cos2 θ + sin2 θ

]
. (18)

A clockwise rotation of Eq. (16) can be found by substituting (θ) with (−θ).

Using Eq. (18), the Jones matrix of a quarter-wave plate with a horizontal fast axis is

Rqwp = R(π/2, 0) =

[
1 0
0 −i

]
, (19)
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and a half-wave plate with a fast axis along the horizontal is represented by

Rhwp = R(π, 0) =

[
1 0
0 −1

]
. (20)

Contemporary materials that are used to make retarders are quartz, MgF2, mica, and poly-

mer. However, MgF2 is more common because of its transparency over a wide wavelength

range [14].

2.2.3 Windows

Viewports in ellipsometry are the entrance and exit windows of the cryostat. The viewports

of the VASE (near-infrared to near-UV spectral range) are made out of fused silica and the

viewports of the FTIR-VASE (mid-infrared spectral range) are made out of Zinc Selenide

(ZnSe). Neither of the materials is birefringent but they show a small birefringence under

the strain caused by the flanges used to secure the windows on the cryostat. This birefrin-

gence alters the polarization state of the incident and exit light. Therefore, the viewports are

treated as retarders with a small retardance and the ellipsometry data has to be corrected for

the window effects. Due to their importance in fabrication of thin films, the window effects

have been extensively studie [12,16–38]. Generally, there are two methods for window effects

corrections. First, finding the optical parameters of each window and applying them to the

measured data. Second, introducing a term that contains a combined effect of both windows

and applying that term to the measured data. The first method would be the ideal method

but it usually requires the removal of the viewports, unless the sample is isotropic and the

ellipsometer can measure all 16 Mueller Matrix (MM) elements [35,37]. The second method

is used as a built-in program in WVASE and can effectively correct the windows effects [13].
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However, it works only for regular ellipsometry measurements (ψ and ∆ measurements), not

for MM measurements, and it also does not provide information about the birefringence of

each window.

The retardance of the windows is usually assumed to be very small (δ < 1) and contrary to the

ideal retarders, it demonstrates a dispersion relation. The built-in program in WVASE can

correct for the window effects by assuming that the windows affect the s- and p-components

(referred to as out-of-plane and in-plane, respectively) of the incident and exit beam dif-

ferently. This approach does not define a specific azimuth angle for the fast axis of the

retardation of the windows. It assumes that the azimuth angle of both windows’ retardation

is 45◦ for the s-component of the light and 0◦ for the p-component. It also assumes that

both in-plane and out-of-plane retardances has the same dispersion formula

δ(λ) =
a1

λ

(
1 +

a2

λ2
+
a3

λ4

)
. (21)

As the polarizer in the FTIR-VASE is fixed at 45◦, the out-of-plane component of the inci-

dent beam does not experience any retardation, but the exit beam does. Therefore, only the

out-of-plane retardation of the exit window needs to be determined and the entrance win-

dow is left at 0◦. Furthermore, both entrance and exit windows have a common dispersion

equation as in Eq. (21) with common a2 and a3 parameters. The in-plane retardation is

simply added to the ellipsometric angle ∆ of the sample as a Delta offset with the dispersion

relation of Eq. (21). As the viewports of the VASE and FTIR-VASE are made of different

materials, there is always a mismatch when merging the data taken from both instruments

inside the cryostats. This mismatch affects the modeled optical constant. Therefore, to

obtain the best model for the optical constants of the sample, one needs to eliminate the
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mismatch. The merging procedure and more about the windows is discussed in appendix A.

2.3 Interaction of Light with Matter

When light travels from one medium to another, some part of it gets reflected at the interface

and the rest goes through the other medium. Reflection at the interface and the propagation

of light through the medium are governed by the complex refractive index of the medium

ñ = n + ik, where n is the refractive index and k is the extinction coefficient. When the

incident angle with respect to the normal of the interface plane is zero, the reflection at the

interface and the transmission are given by [12]

R =
(n1 − n0)2 + (k1 − k0)2

(n1 + n0)2 + (k1 + k0)2
, (22)

T = (1−R)2e−αd, (23)

where d is the thickness of the sample. If the first medium is air (ñ0 = 1), R becomes the

familiar formula [39]

R =

∣∣∣∣ ñ− 1

ñ+ 1

∣∣∣∣2 =
(n− 1)2 + k2

(n+ 1)2 + k2
. (24)

The part of light that goes through the medium loses its intensity according to the Beer’s

law expressed in Eq.(6). As light travels through the medium, its velocity is reduced as

v =
c

n
, (25)

where c is the speed of light in vacuum and v is the speed of light in the new medium.

The refractive index also defines the change in the direction of propagation upon entering

the new medium through Snell’s law. In almost all media, the refractive index depends on

12



the wavelength of light. This phenomenon is called dispersion and the medium is called

dispersive. Examples of such media are glass and water.

When light travels from a medium of refractive index ñ0 to a medium of a refractvie index

ñ1, the reflectivity and transmission depend on the angle of incidence and the refractive

indexes which are given by Fresnel coefficients [10]

rpp =
ñ0 cos θ1 − ñ1 cos θ0

ñ0 cos θ1 + ñ1 cos θ0

, rss =
ñ0 cos θ0 − ñ1 cos θ1

ñ0 cos θ0 + ñ1 cos θ1

, (26)

tpp =
2ñ0 cos θ0

ñ1 cos θ0 + ñ0 cos θ1

, tss =
2ñ0 cos θ0

ñ0 cos θ0 + ñ01cosθ1

, (27)

where θ0 and θ1 are the angles of incidence and the angle of refraction, which are related to

each other through Snell’s law

ñ0 sin θ0 = ñ1 sin θ1. (28)

The reflectivity R and reflection coefficient r are related to each other through the following

equation

R = |r|2, (29)

and the same relation holds for transmission. One should note that the reflectivity R is a

real number between 0 and 1, but the reflection coefficient is a complex number. The Jones

matrix for the reflection of the sample is defined as [12]

J =

[
rpp rps
rsp rss

]
=

[
~Eo
p/ ~E

i
p

~Eo
s/ ~E

i
p

~Eo
p/
~Ei
s

~Eo
s/
~Ei
s

]
, (30)

where i stands for ”incident” and o stands for ”outgoing”. Rps = |rps|2 is the probability

of cross polarization of s-polarized light coming in and p-polarized light going out. The off-

diagonal elements are zero for isotropic surfaces and non-zero for anisotropic ones. In the case

of anisotropic samples, the Fresnel coefficients cannot be written for the cross-polarization
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effects (rsp and rps) because s- and p-components are not eigen-states of reflection [12] and

one has to use the 4 × 4 formalism to treat the anisotropic Jones or Mueller matrices.

Chapter 9 of Ref. 12 explains this formalism in great detail.

Ellipsometry measures the ratio of the p- and s-reflection coefficients. Therefore, the Jones

matrix of the sample that is measured in ellipsometry is given as [14]

J = rss

[
rpp/rss rps/rss
rsp/rss 1

]
= rss

[
ρ ρps
ρss 1

]
=

[
tanψei∆ tanψpse

i∆ps

tanψspe
i∆sp 1

]
. (31)

The relation between measured ellipsometric angles ψ and ∆, and the refractive index of

the sample is not generally a simple equation. However, if the medium 1 is air with the

refractive index of n = 1 and the medium 2 is an infinite isotropic medium with a refractive

index of n =
√
ε, where ε is the dielectric constant of the medium, then one can write [12]

ε = ε1 + iε2 = sin2 θ

(
1 +

[
1− ρ
1 + ρ

]2

tan2 θ

)
, (32)

where θ is the incident angle. One can also use this equation to extract the dielectric constant

of a sample consisting of different layers. In that case, ε is called the pseudo-dielectric function

shown as < ε >, which assumes the entire sample as one sample with an infinite length. The

pseudo-dielectric function does not consider an overlayer (surface roughness or oxide layer).

2.3.1 Absorption Edge

As was mentioned earlier, the amount of light that gets reflected and/or goes through the

medium (sample) is governed by the refractive index of the medium. This section explores the

physical meaning of the refractive index and its relation to the atomic and crystal structure

of the sample.
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In general, the refractive index is related to the dielectric function of an isotropic material

as follows

ε = n2, (33)

where

ε = ε1 + iε2 and n = n+ ik. (34)

Therefore

ε1 = n2 − k2 and ε2 = 2nk. (35)

The inverse relations are also useful to find n and k from ε

n =

√
|ε|+ ε1

2
, k =

√
|ε| − ε1

2
, (36)

where |ε| =
√
ε21 + ε22.

If the material is anisotropic, then the refractive index and dielectric function depend on the

direction of propagation of lightεxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 =

n2
xx n2

xy n2
xz

n2
yx n2

yy n2
yz

n2
zx n2

zy n2
zz

 . (37)

In this case, the material is called birefringent and can be uniaxial or biaxial, meaning it has

one or two optical axes, respectively. Isotropic materials can also become birefringent upon

applying an external magnetic field [40].

When light is irradiated on a material and the frequency of light is increased from zero

to higher values, lights gets absorbed at specific frequencies. Optical characterization of

materials is the study of these characteristic frequencies. As the frequency of light increases,

absorption is caused by free carriers, lattice absorption, and interband electronic absorption.

The onset of interband electronic absorption is called the absorption edge and defines the

15



band gap of the crystal. The free carrier and interband absorption can occur in IR or UV

region, while lattice absorption happens in the IR region. All absorption frequencies can

be recognized in the reflectivity or transmission spectra of the material through Eq. (24).

Since ellipsometry measures the reflection coefficient, which is a function of the refraction

index, one needs to model the experimental data in terms of the refraction index. This in

turn becomes a task of studying and modeling the dielectric constant of the material because

the refractive index and the dielectric constant are related to each other through Eq. (33).

Therefore, in the following sections we will study the dielectric function due to different

absorption mechanisms.

2.3.2 Free Carrier Absorption

The free carrier absorption is the response of the free electrons or holes to the incident elec-

tromagnetic beam. This type of absorption occurs for materials that contain free electrons

or holes, such as metals or doped semiconductors. The equation of motion of a free electron

with an effective mass m∗, a damping coefficient γ, and an electric charge e is

m∗
d2x

dt2
+m∗γ

dx

dt
= −eE(t), (38)

where E is the electric field of the incident beam.

Assuming the electric field of E(t) = E<e−iωt, Eq. (38) has the solution

x(t) = x0<(e−iωt), (39)

where

x0 =
eE/m∗

ω2 + iω
(40)
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and < means the real part. The factor γ is called the scattering rate and τ = 1/γ is the

scattering time. As the displacement of the electron results in a dipole moment ~p with the

magnitude of −e~x0, one can define the polarization ~P as the sum of the polarization of all

electrons per unit volume

~P = n~p = −ne ~x0

= −ne
2

m∗
1

ω2 + iγω
~E,

(41)

where n is the number of electrons per unit volume. Equation (41) shows that the resultant

dipole moment is in the opposite direction of the electric field, regardless of the sign of the

charge. One can define the polarization of the holes by simply changing the sign of the

electric charge and using the effective mass of the hole. The susceptibility of the free carriers

is then defined as χ = P/ε0E and the dielectric constant is [10]

ε(ω) = 1 + χ = 1−
ω2
p

ω2 + iγω
, (42)

where

ω2
p =

ne2

ε0m∗
(43)

is called the plasma frequency. In ellipsometry Eq. (42) is called the Drude term and is used

to model the behavior of the free electrons in metals or doped semiconductors. Equation

(42) is usually written in the following form in ellipsometry modelings in terms of energy

ε(E) = 1− A

E2 + iΓE
, (44)

where

E = ~ω, Γ = ~γ, A = ~2ω2
p =

~2ne2

ε0m∗
. (45)

17



0.0 0.5 1.0 1.5 2.0
-10

-8

-6

-4

-2

0

2

4

6

8

10

 e1

Energy (eV)

e 1

0

4

8

12

16

20

 e2

 e
2

E = wp

Figure 2.3: Real and imaginary part of the dielectric constant for a Drude term simulated for
~ωp = 1 eV and ~γ = 0.1 eV. The real part of the dielectric function changes from negative
to positive at ω =

√
ω2
p − γ2, which is ≈ ωp for very small scattering rates.

Equation (42) can be written in terms of its real and imaginary part as ε = ε1 + iε2, where

ε1 = 1−
ω2
p

ω2 + γ2

ε2 =
ω2
pγ

ω(ω2 + γ2)
.

(46)

The dielectric function of a Drude term in Eq. (46) is demonstrated in Fig. 2.3 for ~ωp = 1 eV

and ~γ = 0.1 eV. The refractive index and the extinction coefficient of the Drude term can

be found using Eq. (46) and Eq. (36)

n =

(
1√
2

)√√√√1−
ω2
p

γ2 + ω2
+

√
γ2 + ω2 + (ω2 − ω2

p)
2

ω2(γ2 + ω2)
(47)

k =

(
1√
2

)√√√√−1 +
ω2
p

γ2 + ω2
+

√
γ2 + ω2 + (ω2 − ω2

p)
2

ω2(γ2 + ω2)
. (48)

One can easily write these equations in terms of energy by substituting ω → E and γ → Γ.

Assuming that γ � ωp both n and k reach their minimum ( 1/
√

2
√
ωp) at ωp and they both
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Figure 2.4: Refraction index n and extinction coefficient k for a Drude term defined in
Fig. 2.3.

diverge as ω → 0 as illustrated in Fig. 2.4.

The optical conductivity is defined as

σ(ω) = −iωε0[ε(ω)− 1],

σ(E) = −iε0E
~

[ε(E)− 1].
(49)

The quantity ε0/~ = 134.52 (ΩcmeV)−1 is very useful when extracting the optical conduc-

tivity from ellipsometry data. The optical conductivity can be simplified into its real and

imaginary part as σ = σ1 + iσ2, where

σ1(E) =
ε0
~
Eε2(E),

σ2(E) =
ε0
~
E (1− ε1(E)) .

(50)

We can now find the optical conductivity for the Drude term defined in Eq. (42)

σDrude =
ε0
~

[
AΓ

E2 + Γ2
+ i

AE

E2 + Γ2

]
= σ1 + iσ2. (51)
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Figure 2.5: Real and imaginary part of the optical conductivity for a Drude term defined
in Fig. 2.3. When there is only one carrier species, the real part of the optical conductivity
has a maximum of σDC at ~ω = 0 eV and the imaginary part has maximum of σDC/2 at the
energy of ~ω = ~γ). These relations do not hold when there are more than one type of free
carriers.

Using Eq. (51) one can find the DC conductivity, which is defined as the case when E → 0

σDrudeDC =
ε0
~

(
A

Γ

)
. (52)

The unit of σDC in Eq. (5.4) is (Ωcm)−1 because A = E2
p is in units of eV2 and Γ in units

of eV, and ε0/~ is in units of (ΩcmeV)−1. As shown in Fig. 2.5 , when there is only one

carrier species, σ1(ω) has a maximum of σDC at ω = 0, and σ2(ω) has a maximum of σDC/2

at ω = γ.

The loss function

=
(
−1

ε

)
=

ε22
ε21 + ε22

(53)
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can be found for the Drude term, which yields

=
(
−1

ε

)
=

γωω2
p

γ2ω2 + (ω2 − ω2
p)
. (54)

Equation (54) shows that the value of loss function for free carriers has a peak at ω = ωp

with the maximum of ωp/γ as demonstrated in Fig. 2.6. Figures 2.7 shows the ellipsometric

angles ψ and ∆ as a function of energy for one Drude term with ~ω = 1 eV and ~γ = 0.1 eV.

For this case when the angle of incidence θ = 0◦, ψ is always equal to 45◦ and ∆ = 180◦.

Therefore, Fig. 2.7 is simulated for an angle of incidence of 1◦. The small dips in the

ellipsometric angles are not detectable in measured data. The inset of Fig. 2.7 shows the

ellipsometric angels at the angle of incidence of θ = 70◦. Using the extinction coefficient,

the absorption coefficient α = 4πk/λ is plotted in Fig. 2.8 as a function of energy of the

incident beam. The figure shows that for one type of carriers, there is a drastic decrease

in the absorption coefficient for energies below the scattering rate and above the plasma

energy. Most of the absorption occurs when the energy of the incident beam is between the

scattering rate and the plasma energy. If there are more than one carrier species, one can

easily write the dielectric function as a sum of Drude terms

ε(ω) = 1−
n∑
i=1

ω2
p,i

ω2 + iγiω
. (55)

In this case, the DC conductivity is the sum of the conductivities [41]

σDC,total =
n∑
i=1

σDC,i =
ε0
~

n∑
i=1

(
Ai
Γi

)
. (56)

One should note that when there are n carrier species, the loss function does not show n

peaks. The loss function in this case is complicated. Figure 2.9 shows an example of this

case with two Drude terms with ~ωp1 = 2 eV, ~ωp2 = 3 eV and ~γ1 = ~γ2 = 0.1 eV.
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2.3.3 Lattice Absorption

When the frequency of the electromagnetic wave is the same as the resonance frequency of

a crystal, the wave is absorbed and causes vibrations in the lattice of the crystal. These

vibrations do not have random frequencies, but they are an integer factor of a specific

frequencies that are defined by the bonding between the elements of the crystal. The quanta

of the lattice vibration are called phonons. The phonons are classified into optical and

acoustic ones. The optical phonons are the out-of-phase vibration of the lattice and the

acoustic phonons are the in-phase and coherent vibration of the lattice. The vibrations

where the atoms oscillate perpendicular to the propagation vector of the light are called

transverse phonons and the oscillations along the propagation vector are called longitudinal

phonons. As light is a transverse wave, it excites only transverse optical phonons at the

frequency of ωTO. The absorption of light by lattice occurs only when the crystal has a

dipole moment. For example, the NaCl crystal has ionic bonding between the Na and Cl

atoms. Therefore, they can cause dipole absorption, whereas elemental crystals like Ge or

Si have a covalent bond and do not cause a dipole absorption. Therefore, the phonons in

elemental crystals cannot be excited by light.

A phonon absorption in a crystal can be described by a Lorentzian oscillator defined as [39]

ε(ω) = 1 +
AωTO

ω2
TO − ω2 − iγω

, (57)

which can be simplified into its real and imaginary part

ε1(ω) = 1 +
AωTO(ω2

TO − ω2)

(ω2
TO − ω2)2 + γ2ω2

,

ε2(ω) =
AωTOγω

(ω2
TO − ω2)2 + γ2ω2

.

(58)

24



The refractive index and the extinction coefficient can be derived by substituting Eq. (58)

into Eq. (36)

n =

(
1√
2

)√√√√1 +
AωTO (ω2

TO − ω2)

γ2ω2 + (ω2
TO − ω2)

2 +

√
γ2ω2 + ((ω2

TO − ω2) + AωTO)
2

γ2ω2 + (ω2
TO − ω2)

2 (59)

and

k =

(
1√
2

)√√√√−1− AωTO (ω2
TO − ω2)

γ2ω2 + (ω2
TO − ω2)

2 +

√
γ2ω2 + ((ω2

TO − ω2) + AωTO)
2

γ2ω2 + (ω2
TO − ω2)

2 . (60)

Here, A is the oscillator strength, γ is the scattering rate of the phonons, and ωTO is the

transverse optical frequency of the lattice. Figure 2.10(B) shows the real and imaginary

part of the dielectric function of a Lorentzian oscillator with A = 1, ~ωTO = 1 eV, and

~γ = 0.1 eV. For a Lorentzian oscillator, ε2 has a peak at ωTO with the maximum of A/γ

and FWHM of γ. The scattering rate reflects the damping effect that the presence of the

other atoms have on the oscillating dipole. If the scattering rate is zero, the extinction

coefficient k becomes zero and the oscillator vibrates for an infinite amount of time and the

incident light does not get attenuated. The real part of the dielectric function has extrema

at
√

(ω2
TO ± γωTO) with the maximum and minimum of

ε1

(
ω =

√
(ω2

TO − γωTO)

)
= 1 +

γω2
TO

γ2ω2
TO + γ2(ω2

TO − γωTO)
,

ε1

(
ω =

√
(ω2

TO + γωTO)

)
= 1− γω2

TO

γ2ω2
TO + γ2(ω2

TO + γωTO)
,

(61)

respectively.

Figure 2.10(A) demonstrates the reflectivity for a Lorentzian oscillator. The region where the

reflectivity is maximum is called Reststrahlen band. If the scattering rate is zero, this region

has a reflectivity of 1. As the scattering rate increases, the reflectivity at this region decreases
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as shown in Fig. 2.10(A) . This region occurs at normal incidence when the frequency of the

incident beam is between the optical transverse frequency (ωTO) and the optical longitudinal

frequency (ωLO), and ωLO is defined as the frequency where ε1 = 0 , which makes the

propagation of longitudinal phonons possible. For semiconductors with band gaps far away

from the phonon absorption, one can use the LST relation to find the relation between ωTO

and ωLO [39]

ωLO
ωTO

=
εst
ε∞
, (62)

where εst is the dielectric constant at ω = 0 and ε∞ is the dielectric function at high fre-

quencies (ω � ωLO) but still far below the bandgap. If there are more than one phonon

absorption, one can write the phonon contribution to the dielectric function as a sum as

follows

ε(ω) = 1 +
n∑
i=0

AiωTO,i
ω2
TO.i − ω2 − iγiω

. (63)

One should note that applying Eq. (49) to the dielectric function of phonons to find the

optical conductivity is not valid because phonon absorption does not cause a conductivity

in the material. However, the scattering of free electrons with phonons reduces the DC

conductivity. This topic will be discussed in chapter 5.

2.3.4 Electronic Absorption

The minimum energy required to excite an electron from the valence band to the conduction

band is called the band gap (Eg) of the crystal. A thorough discussion of the band gap

and the electronic properties of semiconductors can be found in Ref. 42. Excitation of an
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electron to the conduction band can also be discussed by using Eq. (57) with a slightly

different notation and meaning of the parameters

ε(ω) = 1 +
Aω0

ω2
0 − ω2 − iγω

, (64)

where ω0 is the energy required to excite an electron from the valence band to the conduction

band, and γ is the scattering rate of the electrons. As there are usually more than one type of

electronic absorption, one needs to use many Lorentz oscillators to describe the contribution

of the interband absorption to the dielectric function of materials. In general, the total

dielectric function of a crystal is written as

ε = 1 + χFC + χph + χe, (65)
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where

χFC(ω) =
n∑
i=1

−
ω2
p,i

ω2 + iγiω
,

χph(ω) =
n∑
i=1

AiωTO,i
ω2
TO,i − ω2 − iγiω

,

χe(ω) =
n∑
i=1

Aiω0,i

ω2
0,i − ω2 − iγiω

.

(66)

To find the optical conductivity of a material one should substitute Eq. (65) into Eq. (49).

The DC conductivity is still driven by the free carriers since the optical conductivity due to

interband transitions has the form of

σLorentz(ω) = σ1(ω) + iσ2(ω) =
ε0γω0ω

2

(ω2
0 − ω2)2 + γ2ω2

− i ε0ω0ω(ω2
0 − ω2)

(ω2
0 − ω2)2 + γ2ω2

. (67)

Both terms in Eq. (67) vanish when ω → 0. Therefore, interband transitions do not

contribute to the DC conductivity of a crystal. Figure 2.12 demonstrate the optical conduc-

tivity of interband transitions described by a Lorentz oscillator with A = 1, ~ω0 = 1 eV, and

~γ = 0.1 eV.
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3 EXPERIMENTAL SETUP

Figures 3.1 and 3.2 show the two instruments that were used to measure the ellipsometric

angles of Ni in air as well as in the cryostat at different temperatures. The J. A. Woollam

VASE (Variable Angle Spectroscopic Ellipsometer) has an Xe arc light source with the

spectrum of 0.5 eV to 6.5 eV (190 nm to 2 µm) as is shown in Fig. 3.3. This ellipsometer can

measure the optical properties of a sample in air in the range of angles of incidence between

15◦ and 90◦. The Xe lamp emits unpolarized light, which goes through a monochromator with

low pass filters and is transferred via an optical fiber into the box called ”incident beam” in

Fig. 3.1 where it goes through a polarizer and a Bereth wave plate compensator (retarder)

to become polarized. The polarized light then irradiates the sample and its polarization

changes upon reflection off the sample before it enters the detector unit where the light goes

through a rotating analyzer towards the detector. The detector of this instrument consists

of a Si photodiode detector (1.1 eV to 6.5 eV) and an InGaAs photodiode detector for

lower energies. The transition of the detectors occurs at the band gap of Si (1.14 eV). This

transition does not affect the ellipsometric angles in a typical ellipsometry measurement.

However, a small step in the off-diagonal measurements of an MM-measurement is observed

at this energy. All measurements that we have taken in this work have an energy step size

of 20 meV.

For temperature dependent measurements a sample is mounted inside a JanisST-400 UHV

cryostat as is demonstrated in Fig. 3.1. All measurements in the cryostat are performed

at an angle of incidence of 70◦. However, the entrance and exit windows of this cryostat

have a 3◦ angle offset to avoid multiple reflections of light by windows. These windows are
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Figure 3.1: VASE ellipsometer (spectral range from 0.5 eV to 6.5 eV) with a cryostat attached
for temperature dependent measurements. The VASE cryostat has quartz windows with a
transparent region between 0.45 eV and 6.6 eV.
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made out of fused silica (quartz) which is transparent between 0.45 eV and 6.6 eV. Using a

roughing pump and a turbo pump, one can achieve a pressure below 10−9 Torr at 77 K and

10−7 Torr at 770 K. The pressure is in the range of 10−9 Torr at room temperature. The

cryostat can be used for measurements from 4 K to 800 K.

Figure 3.2 shows the FTIR (Fourier transform infrared) ellipsometer that is utilized for

Figure 3.2: FTIR ellipsometer (spectral range from 0.03 eV to 0.8 eV). The sample stage
in the picture is used for measurements at room temperature on small samples. The FTIR
cryostat with diamond windows can be seen in the back.

the measurements in the IR range. The light source of this instrument is a globar, which

is a silicon carbide bar that is heated electrically to produce black body spectrum. Figure

3.3 shows the baseline of this light source which emits from 0.03 eV to 0.8 eV. There is no

monochromator in this instrument and the whole spectrum is detected at the same time by

a Michelson Fourier-transform interferometer detector. A polarizer, which is usually fixed
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at 45◦, is mounted at the source side, while the compensator and analyzer are located at

the detector side. The position of the compensator matters only in MM measurements. All

measurements in this work were taken with a resolution of 16 cm−1 which is 2 meV.

The cryostat that is used for IR ellipsometry measurements is identical to the VASE cryostat

except for the windows. Different types of view ports exist that can be used based on the

desired range of measurements. The ZnSe view ports are very common because they are

transparent between 0.06 eV and 1.7 eV and relatively inexpensive. For measurements at

lower energies one can use diamond windows, which are transparent between 0.01 eV and

5.4 eV. The temperature and the pressure range are the same as those of the VASE cryostat.
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4 OPTICAL PROPERTIES OF POLY-CRYSTALLINE NI FROM 0.06 eV TO

6.0 eV AT 300 K

This article was published in the Journal of Vacuum Science and Technology B, volume 37,

062920 (2019).

Farzin Abadizaman1 and Stefan Zollner1,2

1. Department of Physics, New Mexico State University, P.O. Box 30001, Las Cruces, NM

88003, USA

2. Fyzikálńı ústav AV ČR, v.v.i., Sekce optiky, Na Slovance 2, CZ-18221 Praha 8, Czech

Republic

4.1 Abstract

Using spectroscopic ellipsometry from 0.06 to 6.0 eV at room temperature, we determined

the optical constants (complex dielectric function, refractive index, optical conductivity)

of bulk cold-rolled polycrystalline Ni. To reduce the thickness of surface overlayers, the

sample was heated in ultrahigh vacuum at 750 K for 6 hours and then kept in vacuum

during measurements. We analyze the optical constants using three alternative, but mutually

exclusive methods: we write the dielectric function as a multiband sum or product of Drude

and Lorentz oscillators or with a Drude model with a frequency dependent scattering rate

and plasma frequency. Below 1 eV, we find significant contributions from both d-intraband

transitions and free carriers.
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4.2 Introduction

Determining the complex dielectric function (DF) of bulk metals [43–45] is difficult, since

one needs to minimize overlayers and surface roughness. For example, a Ni surface in air

can be covered with a 50 Å thick film of water (or an adsorbed layer with similar optical

constants), which is removable by annealing [46]. It is easier to achieve smooth surfaces

of semiconductors than of metals. Clean metal surfaces are best prepared in ultra-high

vacuum (UHV). Ellipsometry measurements should then be performed in UHV without

breaking vacuum, to maintain a clean surface. This requires window corrections, since

vacuum chamber windows disturb the polarization of the incident and reflected light beams

[32,48].

As early as 1969, Shiga and Pells [49] overcame these difficulties and measured the optical

absorption of annealed polycrystalline bulk Ni from 0.5 to 6.0 eV at temperatures from 300 to

770 K in UHV using a rotating-analyzer ellipsometer [50]. Similar ellipsometry measurements

of Ni at room temperature were performed by Lenham and Treherne [51, 52] at selected

infrared wavelengths between 5 and 20 µm. Lynch, Rosei, and Weaver [53] measured the

absorptivity of single-crystalline Ni at 4.2 K from 0.08 to 3.0 eV using a calorimetric technique

and determined the DF by Kramers-Kronig transform. At higher photon energies (0.5 to 6.5

eV), Johnson and Christy [54] calculated the DF of evaporated semitransparent (20−50 nm

thick) Ni thin films in nitrogen atmosphere from transmission and reflection data. A review

of the early DF results of Ni was given by Lynch and Hunter in Palik’s handbook [43]; also

by Adachi [45]. More recently, ellipsometry measurements were also performed on Ni1−xPtx

thin films for applications in semiconductor manufacturing metrology [9, 46,47].
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Considering the advances in spectroscopic ellipsometry and vacuum techniques over the

last 50 years, it seems worthwhile to revisit the optical constants of Ni and determine the

DF from 0.06 to 6.0 eV with improved accuracy. We tabulate parameters to calculate the

optical constants of Ni using model DFs. We are particularly interested in the relative

contributions to ε from free carriers and interband optical transitions. We also study the

frequency dependence of the scattering rate and of the plasma frequency.

4.3 Experimental Methods

Several 10×10 mm2 substrates of cold-rolled polycrystalline Ni (>99.9% purity) with 1 mm

thickness were obtained commercially [55]. No preferred orientation was seen with powder

x-ray diffraction. These pieces had a grain size of 10−50 µm and an rms surface roughness of

1−3 nm (measured with atomic force microscopy in 20×20 µm2 scans and x-ray reflectance).

Before our ellipsometry measurements, all samples were heated to 750 K for six hours in

ultra-high vacuum (UHV) to remove adsorbed overlayers and then kept in vacuum during

the measurements. No significant change in surface roughness was observed after annealing

in UHV.

It was reported previously [56] that there is an anomaly in the optical response of Ni (bulk

single- or poly-crystalline or sputtered thin film), as the sample is heated in UHV beyond

the Curie temperature (627 K), see Fig. 4.1. Initially, we attributed this anomaly to three

potential causes: (i) changes in the magnetic structure (transition between ferromagnetic

and paramagnetic phase at the Curie temperature), (ii) bulk crystal structure of the sample,

for example grain growth after annealing [57], (iii) surface overlayers.

Since we find this anomaly in single-crystalline and poly-crystalline bulk substrates as
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Figure 4.1: Optical pseudo-conductivity of a 1000 Å thick Ni layer on thick SiO2 on a Si
substrate as a function of temperature, measured by ellipsometry in ultra-high vacuum at a
single photon energy of 1.97 eV at an incidence angle of 70◦. Compare Fig. 4.9 with data
for poly- and single-crystalline Ni.

well as in thin layers (see Fig. 4.9), we conclude that the grain size or other structural changes

due to annealing are not a likely cause of our anomaly. Since it is irreversible (only occurs

during the initial heating of the substrate) and cannot be restored by placing the sample

in a saturating magnetic field, while the phase transition (ferromagnetic to paramagnetic)

at the Curie temperature is reversible, the anomaly cannot be a magnetic effect. The most

likely explanation for this anomaly is therefore degassing of the sample surface, for example

by evaporation of adsorbed overlayers. Additional details are given in the supplemental

material. Heating the Ni sample in UHV was the most effective cleaning method we were

able to find.

The ellipsometric angles from 0.06 to 6.0 eV at 70◦ incidence angle were acquired at

room temperature on two different ellipsometers (J. A. Woollam FTIR-VASE and J. A.
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Woollam VASE, Lincoln, NE, USA) as described elsewhere [41]. From 0.5 to 6.0 eV, we

used a commercial UHV chamber (Janis Research ST-400, Woburn, MA, USA) with strain-

free quartz windows [56]. From 0.06 to 0.9 eV, we used a similar chamber, but with ZnSe

windows. Changes in the polarization of the beam by the windows were corrected with a

proprietary algorithm of the supplier. For data analysis, we assumed a surface roughness

thickness of 20 Å. The surface roughness was described within the Bruggeman effective

medium approximation as a 50/50 mixture of Ni and voids [14].

A similar experimental setup for rotating-analyzer ellipsometry measurements using Drude’s

method from 0.46 to 5.9 eV at temperatures from 77 to 950 K in a UHV chamber was already

described in 1967 by Pells [50]. We extend this method further into the infrared spectral

region with the use of a Fourier-transform spectrometer. Our setup also has increased ac-

curacy due its computer-controlled Berek wave plate compensator and corrections for the

effects of windows on the polarization of the incident and reflected light beam. Using their

apparatus, Shiga and Pells [49] showed that Ni could be cleaned by heating at 770 K for at

least twelve hours, confirming earlier photoemission results by Seib and Spicer [58, 59].

4.4 Experimental Results and Data Analysis

The ellipsometric angles ψ and ∆ for bulk cold-rolled poly-crystalline Ni at room temperature

are shown in Fig. 4.2 (symbols). If we assume a surface roughness of 20 Å, we can directly

calculate the DF ε (ω) and the optical conductivity

σ (ω) = −iε0ω [ε (ω)− 1] (68)
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from the ellipsometric angles [14], see Figs. 4.3 and 4.4. This is known as a point-by-point

fit. We also fit these data using multiband model DFs assuming 20 Å surface roughness, see

below.

In our first multiband model, we write the DF as a sum of two Drude oscillators (to

describe the optical response of free carriers) and several Lorentzians (to describe interband

optical transitions of bound carriers) [14,41]

ε (ω) = 1 + χfree (ω) + χbound (ω) , (69)

χfree (ω) =
∑
i

ω2
P,i

−ω (ω + iγD,i)
, (70)

χbound (ω) =
∑
i

Aiω
2
0,i

ω2
0,i − ω2 − iγ0,iω

, (71)

where χ is the susceptibility, ωP,i=nie
2/ε0mi the unscreened (unrenormalized, frequency-

independent) plasma frequency, γD the (unrenormalized, frequency-independent) Drude scat-

tering rate, A the dimensionless Lorentz amplitude, ω0 the resonance frequency, and γ0 the

Lorentzian broadening. ni is the density of the carrier species i and mi their effective mass

(also called the bare optical band mass) [60–62]. The parameters yielding the best fit to our

data with this sum model are listed in Table 4.1

In our second multiband model, we write the dielectric function as a Kukharskii product

[40,41] of one Drude oscillator and several Lorentzians resulting in

ε (ω) =
ω2

LP − ω2 − iγLPω

−ω (ω + iγD)

∏
i

ω2
L,i − ω2 − iγL,iω

ω2
0,i − ω2 − iγ0,iω

, (72)

where ωLP and γLP are the lower plasmon frequency and its broadening, while ω0 is the

Lorentz resonance frequency and ωL the corresponding longitudinal frequency [41], where

ε (ω) crosses zero, with its broadening γL. (A second Drude factor was not needed to achieve
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a good fit.) The parameters resulting in the best fit to our data with this product model are

given in Table 4.2.

These two multiband models are identical only if the broadening parameters in the nu-

merator and denominator are equal and much smaller than the differences between the

resonance frequencies [41]. The additional broadening parameters in the numerators of the

second (Kukharskii product) model offer flexibility by adding different widths to the zeros

and poles of the dielectric function. The lower plasmon frequency ωLP is usually smaller

than the plasma frequency ωP due to the repulsion by the longitudinal frequencies ωL of

bound carriers, similar to plasmon-phonon coupling in the Raman or infrared spectra of

doped semiconductors [40, 41]. See Ref. 41 for the motivation of both models, additional

details, and historical references.

The best fit to the ellipsometric angles using the product model is shown by the lines

in Fig. 4.2. The best fit with a sum model yields similar results. The difference between

the model and the data is no more than 0.3◦ for ψ and no more than 0.7◦ for ∆. Typical

experimental errors from the measurement are 0.01◦ for ψ and 0.1◦ for ∆. The average mean

square deviation between data and model is lower than the experimental errors, but there is

a stastically significant difference between the data and both multiband models from 0.5 to

1.0 eV which we could not reduce with the addition of another oscillator.

The dielectric functions from the point-by-point fit and from the product model (72) are

shown in Fig. 4.3. The corresponding optical conductivities are shown in Fig. 4.4. The loss

function −1/ε is given in Fig. 4.5. We also show the complex refractive index in Fig. 4.11 and

the absorption coefficient and the penetration depth in Fig. 4.12. The complex impedance

in the infrared spectral region is shown in Fig. 4.18.
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The third model to describe the optical constants of a metal assumes that the optical

conductivity is due to a single species of free carriers (single-band model), leading to an

optical conductivity of the form

σ (ω) =
ε0ω

2
P

γ − iω
=

ε0ω
2
P τ

1− iωτ
=

ne2τ

m (1− iωτ)
. (73)

If the Drude model with a single free carrier species truly describes the optical constants,

then γ, τ , and m are frequency-independent constants. If, however, there is more than one

carrier species or if the carriers interact with other elementary excitations or if there is a

contribution to the conductivity from infrared-active optical phonons or interband transi-

tions, then the scattering rate and mass need to be renormalized and depend on the angular

frequency ω. The supplementary material lists the equations how these frequency-dependent

quantitites can be calculated [62]. This method has been used to describe the optical con-

stants of alkali metals [61], heavy Fermion compounds [62, 63], or correlated conducting

metal oxides [64–67]. While this method has often been applied to investigate and interpret

the optical conductivity determined from reflectance measurements, it is not widely known

in the ellipsometry community. We are not aware of an application of this technique to

transition metals with two species of free carriers.

4.5 Discussion

4.5.1 Optical Constants

There are significant differences between our optical constants and those in the literature

[43, 46, 54]. see Fig. 4.6. Our in situ data of a polycrystalline Ni sample cleaned by heating

and corrected for 2 nm surface roughness show the highest (lowest) values of ε2 (ε1) and
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Figure 4.2: Ellipsometric angles ψ and ∆ of clean poly-crystalline bulk Ni at room temper-
ature. Symbols show experimental data, lines the best fit with a product model (72) with
parameters in Table 4.2.
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described by Eq. (72) with parameters in Table 4.2.
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Table 4.1: Parameters used to describe the optical constants of polycrystalline Ni with a sum
model: amplitude A, plasma frequency ωP , energy ω0, and broadening γ. All parameters
are given with three significant digits. Due to parameter correlations, the uncertainty is
probably much larger. The DC conductivity σ0 was calculated from the Drude parameters
using Eq. (92).

A ~ωP ~ω0 ~γ σ0

(1) (eV) (eV) (eV) (1/Ωcm)

Drude 1 11.9 2.87 6,640

Drude 2 4.86 0.0421 75,500

Lorentz 1 7.07 0.636 0.503

Lorentz 2 3.52 1.56 1.06

Lorentz 3 0.437 2.59 1.27

Lorentz 4 2.90 4.80 2.17

Lorentz 5 1.62 9.17 1.16
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Table 4.2: Parameters (in units of eV) used to describe the optical constants of polycrystalline
Ni with a product model: longitudinal and transverse frequencies ω0 and ωL (or ωLP) and
the related broadenings γ0 (or γD) and γL (or γLP for the Drude factor). All parameters
are given with three significant digits. Due to parameter correlations, the uncertainty is
probably much larger. (f) indicates that the parameter was fixed.

~ω0 ~γ0 ~ωL ~γL

(eV) (eV) (eV) (eV)

Drude 0 0.0426 0.693 0.519

Lorentz 1 0.696 0.468 1.21 3.15

Lorentz 2 1.88 0.916 1.92 0.956

Lorentz 3 2.82 3.67 3.80 2.08

Lorentz 4 4.85 2.23 7.38 2.21

Lorentz 5 9.73 1.0(f) 19.5 1.0(f)
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therefore likely represent the most pristine surface compared to other experiments, see Fig.

4.10. It is not likely that we over-corrected our ellipsometric angles to obtain the dielectric

function, since our surface roughness was determined by atomic force microscopy and x-ray

reflectance.

Johnson and Christy [54] as well as Vehse and Arakawa [68] briefly exposed their layers

to air and measured in N2 gas, likely leading to an adsorbed water layer, similar to Abdallah

et al. [46] In the near-infrared region, our ε1 data agree well with those of Johnson and

Christy [54], but there is a large discrepancy for ε2. This might also be related to cleaning, see

Fig. 4.10. Data from Ref. 43 below 3.0 eV were acquired at 4 K on single crystals. Therefore,

the structure at 1.5 eV is much more pronounced than in our data taken at 300 K. Also,

the Drude scattering rate is expected to be much smaller at low temperatures and therefore

the Drude divergence should be sharper at 4 K. This might explain the difference between

our data and those listed by Lynch and Hunter [43] in the near-infrared. Above 3.1 eV, Ref.

43 reports data from Vehse and Arakawa [68] on a sample exposed to air that might not

have been as clean as ours. In the infrared, differences between our impedance (Fig. 4.18)

and that of Lenham and Treherne [52] are likely related to the lower scattering rate of single

crystals compared to polycrystalline Ni. Losurdo et al. [57] report 〈ε1〉=−1.0 and 〈κ〉=2.1 at

4.2 eV. This compares well with our roughness-corrected results of ε=−1.4+9.6i (or κ=2.4).

4.5.2 Interband Transitions

The spin-polarized band structure of Ni, including Fermi surfaces, effective masses, and

optical conductivity, has been discussed by Ehrenreich et al. [69] and by Wang and Callaway

[70–72] as well as others [46, 73, 74]. Electronic states near the Fermi level are comprised
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Figure 4.6: Comparison of the dielectric function of Ni from this work on bulk polycrystalline
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measurements of thin layers by Johnson and Christy [54] at 300 K, and as tabulated by
Lynch and Hunter [43] (at 300 K above 3.1 eV and at 4 K below 3.0 eV).

of sp- and d-orbitals. Because of ferromagnetic ordering, there is a considerable exchange

splitting [75] (about 0.5 eV) between the majority (spin-up) and minority spin (spin-down)

d-orbitals. The spin-up band is completely full, while the spin-down d-orbital crosses the

Fermi surface. Therefore, we expect d-intraband transitions at arbitrarily low energies, as

well as interband transitions between sp- and d-orbitals.

Refs. 70 and 72 predict interband transitions at 0.3 eV (buried in the Drude background

in our room-temperature data, but perhaps observable in low-temperature ellipsometry mea-

surements), 0.8 eV (between parallel d-bands, related to the exchange splitting), at 2 or 2.5

eV, and between 5.1 and 5.5 eV (from the lower d-bands to the sp-bands above the Fermi

energy). The latter peak can be lowered to 4.8 eV by self-energy corrections. Several regions

in the Brillouin zone contribute to these transitions. Due to spin-orbit splitting, spin-flip

interband transitions are weakly allowed [72].

49



An inspection of the ellipsometric angle ψ at low photon energies shows immediately that

Ni is not a good Drude metal. ψ is related to the reflectivity R and ψ=45◦ is equivalent to

R=1. In a Drude metal (compare gold in Fig. 4.19), ψ remains near 45◦ until the onset of

interband transitions (near 2.5 eV for Au). In Ni, ψ drops nearly linearly from 44.3◦ at 0.06

eV to 35.1◦ at 1.3 eV (for an incidence angle of 70◦). Therefore, intraband transitions occur

at very low energies, as expected from the partially filled d-band.

It is difficult to quantify the interband transitions in our dielectric function (Fig. 4.3) be-

cause the Drude contribution is dominant at low energies. Therefore, we subtract the Drude

contribution (70) from our multiband sum model (69) and plot the remaining interband

contribution (71) in Fig. 4.13. The parameter correlations for our Drude-Lorentz model are

below 0.9 (not as bad as it could be). Nevertheless, this subtraction method is somewhat

arbitrary, because it depends on the number of oscillators and whether they are characterized

as Drude or Lorentz oscillators. This was already pointed out by Ehrenreich et al. [69] Our

best model in Table 4.1 has strong Lorentz peaks in ε2 at 0.6, 1.5, and 4.7 eV and a shoulder

at 2.5 eV. This is, of course, related to the Lorentzian resonance energies listed in Table 4.1.

The sum of the Lorentzian amplitudes yields ε∞ =
∑
Ai=15.5. A significant contribution

to ε∞ is from the lowest peak at 0.64 eV. The broadenings of the interband transitions are

quite large, between 0.5 and 2.2 eV. The temperature dependence of interband transition

energies and broadenings will be published elsewhere. In general, the agreement between

our Drude-Lorentz model (69) and theory [70,72] is excellent.

Our product model (72) also shows five interband transitions with energies and broad-

enings similar to the Drude-Lorentz model (69), but separating the Drude and interband

contributions in the product model is not straightforward.
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Lynch, Rosei, and Weaver [53] report several infrared peaks below 1 eV in their absorp-

tion (calorimetry) measurements at 4 K. These peaks are absent in our analysis, see Table

4.1, possibly because the free-carrier absorption in our results at 300 K overwhelms these

interband transitions. Our results agree on interband transition peaks near 1.5 eV. Our peak

at 2.6 eV was also found in ellipsometry measurements at 77 K by Stoll [76, 77], but we do

not observe any fine structure due to spin-orbit splitting.

Johnson and Christy [54], Shiga and Pells [49] as well as Abdallah et al. [46] report a

strong conductivity or ε2 peak at 4.8 eV, which is also present in our data. As mentioned,

it arises from transitions from the lower d-orbital to the sp-like bands. Shiga and Pells [49]

report that the peak at 4.8 eV is a superposition of two peaks separated by an energy dif-

ference, which is proportional to spontaneous magnetization. This energy difference may be

related to the exchange splitting. They show that the broadening of this peak has an anoma-

lous temperature dependence, which decreases with increasing temperature. The width of

our 4.8 eV peak is indeed quite large (2.1 eV), but we could not improve our fit with two

separate contributions. We will revisit this topic when we report temperature-dependent

ellipsometry results for Ni.

4.5.3 Free-Carrier Properties

The only Drude parameters reported previously for Ni that we are aware of are those of

Lenham and Treherne [78] cited by Wang and Callaway [70]: n=6.5×1021 cm−3, EP=2.99 eV

(assuming an optical mass m0, the electron mass in vacuum), σ0=186,000/Ωcm (18.6×1015/s

in Gaussian units), and τ=11.3 fs (Γ=58 meV). Lynch et al. [53] report a Drude scattering

rate of Γ=20 eV at 4 K, which is unphysically large because of the anomalous skin effect [43].
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However, their value of σ0=658,000/Ωcm is quite reasonable at 4 K.

In the limit of high frequencies (but below the onset of interband transitions) and low

scattering (ωτ�1), the dielectric function of a Drude metal is approximated by

ε1 (ω) ≈ ε∞ −
ω2
P

ω2
= ε∞ −

E2
P

E2
, (74)

where ε∞ is the high-frequency dielectric constant, i.e., the contribution to ε by bound

charges. It is therefore customary [78–80] to plot ε1 versus 1/E2, which yields ε∞ as the

intercept and E2
P as the slope. This technique was used by Lenham and Treherne [78] to find

EP=2.99 eV, from which they calculated the carrier density n=6.5×1021 cm−3 (assuming an

optical mass of m0). Our data and a linear interpolation are shown in Fig. 4.7 (a). Our linear

regression to the data for 1/E2 < 30 (0.18 to 6.0 eV) finds a plasma frequency of 4.7 eV,

which is consistent with one of the plasma frequencies found in our sum model, see Table

4.1. We also find an unphysical (negative) value of ε∞=-5.4. We expect ε∞ ≈15, see Fig.

4.13. A linear fit over the entire spectral range from 0.06 to 6.0 eV finds a plasma frequency

of 3.7 eV, which is similar to the energy of the main loss function peak, see Fig. 4.5. If we

fit from 71 to 100 meV (our lowest-frequency data), we find EP=3.4 eV. We see that this

interpolation scheme only yields a rough estimate of the plasma frequency for one of the two

carrier species.

To calculate the carrier density, we need to know the optical (effective) masses. Ehrenre-

ich et al. [69] find an optical mass of 1.4 for s-electrons and 3.5 for d-electrons. If we associate

the Drude term with small Γ = 42 meV (Drude 2) with s-electrons, then EP = 4.86 eV re-

sults in an electron density of 24×1021 cm−3 (0.26 e/atom). Similarly, if the Drude 1 term

with Γ = 2.87 eV and EP=11.9 eV arises from d-electrons, then the carrier density is
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359×1021 cm−3 (3.9 e/atom). We thus find a total density of about 4.2 e/atom from our

optical measurements (assuming masses from Ref. onlineciteEhPh63), less than half of the

expected density of 10 electrons per atom. Similarly, if we use effective masses calculated by

Wang and Callaway [70], we overestimate e/atom.

In the same high-frequency limit (ωτ �1), we also find

ε2 (ω) ≈ ω2
P

ω2
× 1

ωτ
=
E2
P

E2

Γ

E
. (75)

One therefore plots [80] ε2E versus 1/E2, which should yield (for a Drude metal) a straight

line through the origin with a slope of E2
PΓ. If EP is found from the plot of ε1 versus 1/E2

(as discussed above), then one can calculate the scattering rate Γ. We apply this analysis

method to our data in Fig. 4.7 (b) and find a slope of E2
PΓ=0.82 eV3, which agrees well

with the results listed in Table 4.1, where we find E2
PΓ=0.77 eV3 for one species of carriers.

The positive (non-zero) intercept of the ε2E versus 1/E2 graph can be explained with the

contributions of bound carriers to ε2 (interband transitions).

Without having to rely on the ωτ �1 limit, the Drude model implies [61]

ε1 (ω) = 1− ωτε2 (ω) = 1− 1

Γ
ε2 (E)E. (76)

One therefore plots ε1 versus ε2E, which should yield −1/Γ as the slope. Using this method,

Lenham and Treherne [78] found Γ=58 meV, which compares well with our Drude 2 broad-

ening in Table 4.1. As shown in Fig. 4.8, this graphical approach results in Γ=53 meV for our

data. This value is larger than Γ=42 meV in Table 4.1 because of the discrepancy between

the ellipsometry data and our Drude-Lorentz model in this energy range (compare the line

and symbols in Fig. 4.8).
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Figure 4.7: Drude parameters of polycrystalline Ni at 300 K extracted from the dielectric
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(75).
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Figure 4.8: Drude parameters of polycrystalline Ni at 300 K extracted from the dielectric
function using Eq. (76).

It has been argued that free-electron contributions to the optical constants of Ni are

neglible [54,80,81], because intraband transitions between different partially filled d-orbitals

are possible at arbitrarily low energies [43]. Nevertheless, our Drude-Lorentz model with two

carrier species gives a remarkably good agreement with our near-infrared and visible optical

constants of Ni. Since we use two free carrier species with different plasma frequencies and

broadenings, there is a significant Drude contribution even at 6 eV, see Fig. 4.13. The usual

graphical techniques [80], when applied to our infrared data, yield reasonable values for the

plasma frequency and broadening without any modeling, but only for species of carriers with

the smaller broadening. The other Drude contribution (with large broadening) has a strong

overlap with visible and UV interband transitions and therefore can only be extracted by

fitting the ellipsometric angles with a Drude-Lorentz lineshape.
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4.5.4 Frequency Dependent Scattering Rate

Instead of modeling our experimental data with multiband sum or product lineshapes, we can

also attribute the entire optical response to a single Drude term with frequency-dependent

scattering rate, effective mass, and plasma frequency [62], as described in the supplementary

material. Between 0 and 2 eV, we see a nearly threefold increase of the plasma frequency in

Fig. 4.15. This can be explained as follows: at low energies, the Drude 2 term (EP=4.86 eV

and Γ=42 meV) dominates. At higher frequencies, the Drude 1 term with its larger broad-

ening (EP=11.9 eV, Γ=2.87 eV) becomes more important, roughly explaining the threefold

increase in EP . Above 2 eV, the frequency-dependent plasma frequency is dominated by

interband transitions, leading to a large peak at 4.3 eV.

Similarly, the frequency-dependent renormalized scattering rate shown in Fig. 4.16 is

small (about 50 meV) at low energies, dominated by the Drude 2 term. It increases nearly

linearly (with a quadratic onset at very low energies) and flattens out above 1 eV at a value

of 2.4 eV, similar to the scattering rate of the Drude 1 term.

4.6 Summary

We used thermal cleaning in UHV to prepare a nearly pristine poly-crystalline Ni surface.

With in situ spectroscopic ellipsometry from 0.06 to 6.0 eV on two different instruments,

we determined the ellipsometric angles and the optical constants of Ni, superseding 50 year-

old literature data from various sources. Our data can be described well with a multiband

Drude-Lorentz model. Parameters are listed and can be used to calculate reference dielectric

functions for Ni. Our model separates contributions to the optical constants from free carriers
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and interband transitions. We require two species of carriers (perhaps sp- and d-electrons)

to describe our data, with very different plasma frequencies and scattering rates. Despite

earlier claims to the contrary, graphical methods to extract free-carrier properties from the

optical constants work quite well. We also find broad d-intraband transitions even at our

lowest energies. At higher photon energies, several interband transitions take place, which

agree well with previous studies.
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4.7 Supplementary Material

4.7.1 Optical Constants Anomaly of Ni Near the Curie Temperature

The optical pseudo-conductivity < σ1 > at 1.97 eV for three different Ni samples as a

function of temperature is shown in Fig. 4.9, determined using spectroscopic ellipsometry at

a 70◦ incidence angle. All data were acquired in UHV with a pressure below 10−8 Torr, to

avoid surface contamination. During the first run (blue), the temperature of the sample was

increased slowly from room temperature to 750 K. The heater was then turned down slowly

and we measured < σ1 > as the sample cooled down to 400 K (run 2, green). We then

turned the heater on again and heated the sample again to 750 K (run 3, black). Finally

(run 4, red), we turned the heater down again and measured < σ1 > as the sample cooled

down. Similar data for the pseudo-dielectric function of poly-crystalline Ni were reported
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previously [56].

All Ni samples show an anomaly in the optical pseudo-conductivity at elevated temper-

atures, where there is a rapid rise of < σ1 >. Since the temperature was measured with a

thermocouple attached to the sample, it is difficult to obtain accurate temperature readings.

Errors of up to 50 K are possible. Therefore, the temperature where the rise of < σ1 >

occurs may or may not be the same for all samples, due to these errors.

The anomaly occurs only during the first heating of the sample past the Curie tempera-

ture. Since magnetic phase transitions (ferromagnetic to paramagnetic) should be reversible,

it is not likely that the anomaly is due to magnetic effects. The anomaly could not be re-

stored by removing the sample from the cryostat and placing into a saturating magnetic field

of about 1 T. A partial restoration of the anomaly was possible by leaving the sample in

humid air for several weeks. We therefore conclude that the anomaly is not due to magnetic

effects as argued previously [56], but due to changes in surface conditions. We attribute the

initial low-temperature pseudo-conductivity for each sample to different adsorbed surface

layers (which were removed by the initial heating of the Ni sample). It was reported pre-

viously [46] that about 50 Å of water can be removed from the surface of thin Ni layers by

heating in UHV. After heating, when adsorbed overlayers have evaporated, the final optical

pseudo-conductivity is due to different surface roughness conditions (or other overlayers that

cannot be removed by heating) or due to different bulk conduction mechanisms. For exam-

ple, single-crystalline Ni is expected to be more conducting than cold-rolled poly-crystalline

Ni.

We conclude that heating our Ni samples above the Curie temperature for about six hours

is an effective way of preparing Ni surfaces for optical constants measurements. This cleaning
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Figure 4.9: Optical pseudo-conductivity < σ1 > as a function of temperature, measured by
ellipsometry in ultra-high vacuum at a single photon energy of 1.97 eV at an incidence angle
of 70◦ for (a) a 1000 Å thick sputtered Ni layer on thick SiO2 on Si, (b) a bulk poly-crystalline
cold-rolled Ni substrate, (c) a single-crystalline Ni (001) substrate. The dashed vertical line
shows the Curie temperature.
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Figure 4.10: Ellipsometric angles ψ and ∆ at 70◦ incidence angle (top) and pseudodielectric
function (bottom) as a function of photon energy for a cold-rolled polycrystalline Ni substrate
at room temperature, acquired in a UHV cryostat before (solid) and after (dashed) heating
to 750 K for 6 hours. ψ and < ε1 > are shown in green, ∆ and in < ε1 > blue.
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procedure was therefore used for all ellipsometry measurements on Ni described in this work.

To demonstrate the impact of cleaning, we show the room-temperature ellipsometric angles

and the pseudo-dielectric function of cold-rolled pseudo-crystalline Ni in Fig. 4.10. The

ellipsometric angle ψ decreases and ∆ increases, as adsorbed layers are removed by heating,

especially near the critical point at 4.8 eV. Changes in the ellipsometric angles are smaller

in the near-infrared below 1 eV than in the UV. Similarly, < ε1 > decreases and < ε2 >

increases after heating of the sample. The largest changes of < ε > are observed in the

near-infrared spectral region.

In vacuum technology processing (for example in the semiconductor industry), heating

of a wafer in vacuum is known as degassing. The experiments described in this section

essentially monitor the degassing of Ni by in situ spectroscopic ellipsometry.

Similar changes in the ellipsometric angles and the pseudo-DF after heating in H2 or

exposure to O2 have been reported by others [57] (Hanekamp 1983). Slow annealing of an

amorphous as-sputtered Ni layer in H2 promotes crystallization and desorption of surface

layers [57]. This leads to a decrease of 〈ε1〉 by 1.4 and an increase in 〈κ〉 by 1.0 at 4.2 eV. (If

the sample remains in H2 too long at high temperatures, nickel hydrides may form, which

deteriorates the pseudo-DF again.) In our annealing experiments, we find an increase of our

polycrystalline bulk Ni samples of 〈ε1〉 by 0.2 and an increase in 〈κ〉 by 0.2 at 4.2 eV. This

discrepancy of sign and magnitude can perhaps be explained by the fact that crystallization

of an amorphous sputtered layer (associated with changes in position and broadening of the

peak at 4.8 eV) and surface cleaning both contribute to the pseudo-DF. An energy of 4.2

eV may not be the best position for monitoring the cleanliness of a Ni surface. Hanekamp

and van Silfhout (1983) show a decrease of ∆ by about 1◦ at 1.97 eV after exposure to O2,
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Figure 4.11: Complex refractive index of polycrystalline Ni at 300 K calculated from the
data shown in Fig. 4.3. Symbols show results from a point-by-point fit, lines the results from
the product model using Eq. (72).

significantly smaller than our observed change of 5◦ due to annealing.

4.7.2 Additional Experimental Data

The complex refractive index calculated from the dielectric function of polycrystalline Ni is

shown in Fig. 4.11. The absorption coefficient and penetration depth are shown in Fig. 4.12,

the infrared complex impedance in Fig. 4.18. Separate Drude and Lorentz contributions to

the total dielectric function in the sum model (69) are shown in Fig. 4.13. A spreadsheet

with experimental and sum model data (ψ, ∆, ε1, ε2, n, k) versus photon energy is also

available as supplementary material.
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4.7.3 Drude Model with Frequency Dependent Scattering Rate

A) Dielectric function

Within the Drude model (for a single species of free carriers), the dielectric function ε

versus angular frequency ω is written as [14]

ε (ω) = 1− ω2
P

ω2 + iγω
= 1 + i

ω2
P

ω (γ − iω)
, (77)

where

ω2
P =

ne2

ε0m
(78)

is the unscreened plasma frequency and γ the scattering rate, with the carrier density n,

the effective mass m (sometimes called bare optical band mass) [61], electronic charge e,

and the permittivity of vacuum ε0. These equations assume that time-dependent fields vary

like e−iωt. Otherwise, all expressions in this section need to be replaced with their complex

conjugates.

Some authors [61] add a high-frequency dielectric constant ε∞ to the Drude expression

(77) and introduce an associated screened plasma frequency [41]. We do not need this

approach, because our models include explicit oscillators outside of our spectral range to

consider the optical contribution from high-energy oscillators.

Written in real and imaginary components, Eq. (77) becomes

ε (ω) = ε1 (ω) + iε2 (ω) = 1− ω2
P

ω2+γ2
+ i

ω2
P

ω2+γ2
× γ

ω
. (79)

ε1 (ω) = 1− ω2
P

ω2 + γ2
= 1− ω2

P τ
2

1 + ω2τ 2
(80)

and

ε2 (ω) =
ω2
P

ω2 + γ2
× γ

ω
= [1− ε1 (ω)]× γ

ω
=

ω2
P τ

2

1 + ω2τ 2
× 1

ωτ
, (81)
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where τ = 1/γ is the unrenormalized scattering time.

In the limit of high frequencies (but below the onset of optical interband transitions) and

low scattering, ωτ � 1, we find

ε1 (ω) ≈ 1− ω2
P

ω2
and ε2 ≈

ω2
P

ω2
× 1

ωτ
≈ 0. (82)

One can therefore plot ε1 (ω) versus ω−2, which yields −ω2
P as the slope. Similarly, plotting

ε (ω)ω versus ω−2 yields ω2
Pγ as the slope.

Sievers [61] writes the result (81) as

1

ωτ
=

ε2 (ω)

1− ε1 (ω)
or ε1 (ω) = 1− τωε2 (ω) . (83)

Plotting ε1 (ω) versus ωε2 (ω) therefore yields the scattering time −τ as the slope.

B) Drude optical conductivity

The complex optical conductivity is defined as

σ (ω) = −iε0ω [ε (ω)− 1] (84)

or written in components as

σ (ω) = σ1 (ω) + iσ2 (ω) (85)

with

σ1 (ω) = ε0ωε2 (ω) and σ2 (ω) = ε0ω [1− ε1 (ω)] . (86)

Sievers’ result (83) for the Drude scattering rate can also be written in terms of the optical

conductivity as

1

ωτ
=
σ1 (ω)

σ2 (ω)
. (87)
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One can therefore determine the scattering rate directly at each frequency, if both real and

imaginary parts of the optical conductivity are known, for example from an ellipsometry

measurement.

Within the Drude model (77), the optical conductivity (84) becomes

σ (ω) =
ε0ω

2
P

γ − iω
=

ε0ω
2
P τ

1− iωτ
=

ne2τ

m (1− iωτ)
. (88)

This can be written in components as

σ1 =
ε0ω

2
Pγ

ω2 + γ2
=

ε0E
2
PΓ

~ (E2 + Γ2)
, (89)

σ2 =
ε0ω

2
Pω

ω2 + γ2
=

ε0E
2
PE

~ (E2 + Γ2)
, (90)

|σ|2 =
ε20ω

4
P

ω2 + γ2
=

ε20E
4
P

~2 (E2 + Γ2)
. (91)

We note that

σ1 (ω = 0) =
ε0
~
E2
P

Γ
= σ0 and σ2 (ω = 0) = 0. (92)

The real and imaginary parts σ become equal at ω=γ.

Figure 4.14 shows the real and imaginary parts of the optical conductivity calculated

from two sets of parameters similar to those labeled Drude1 and Drude2 in Table 4.1. We

calculate σ0=6640/Ωcm for Drude1 and σ0=75,500/Ωcm for Drude2. We therefore associate

the Drude1 term with d-electrons (because of their large scattering rate) and the Drude2

term with sp-electrons (because of their dominant contribution to the DC conductivity, see

Mott 1936). The total conductivity calculated from our optical data is 82,100/Ωcm, which is

lower than, but of the same order of magnitude as the commonly cited electric conductivity

of Ni of 146,000/Ωcm. σ2 indeed becomes 0 at low frequencies for the Drude1 term, but

we cannot observe this for the Drude2 term because we did not measure at sufficiently low
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Drude2 (blue): EP=4.73 eV, Γ=34.6 meV. The black line shows the sum of both contribu-
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energies (below Γ=42.1 meV).

There is a crossing of σ1 and σ2 at Γ=2.76 eV for the Drude1 term. This crossing is

below our spectral range for the Drude2 term. At the lowest frequencies, the Drude2 term

is the dominant contribution to σ1, while the Drude1 term dominates above 1 eV.

Equation (88) implies

τ−1 = γ =
ε0ω

2
P

σ
+ iω =

ε0E
2
Pσ1

~2 |σ|2
+ i

(
ω − ε0E

2
Pσ2

~2 |σ|2

)
(93)

τ−1 = γ =
ε0ω

2
Pσ1

|σ|2
+ iω

(
1− ε0ω

2
Pσ2

ω |σ|2

)
, (94)

where we have introduced EP = ~ωP . We also note that ε0/~=134.52 1/ΩcmeV and

~2e2/ε0m0=1.379×10−21 cm3eV2. In Gaussian units, 1/Ωcm is equivalent to 10−11/s. Equa-

tion (94) allows us to calculate the unrenormalized scattering rate from the measured optical
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conductivity, if we “guess” the plasma frequency or determine it from other sources.

4.7.4 Renormalized Frequency Dependent Scattering Rate, Plasma Frequency,

and Effective Mass

Following Sulewski et al. [62], we define in MKSA units

Γ1 (ω) =
ε0E

2
Pσ1

~ |σ|2
, (95)

1 + λ (ω) =
ε0E

2
Pσ2

~E |σ|2
, (96)

~γ∗ (ω) =
~

τ ∗ (ω)
=

Γ1 (ω)

1 + λ (ω)
, (97)

ω∗2P (ω) =
ω2
P

1 + λ (ω)
, and (98)

m∗ (ω) = m [1 + λ (ω)] , (99)

which makes Eq. (94) equivalent to

~τ−1 = ~γ = Γ1 (ω)− iEλ (ω) . (100)

Sievers [61] writes Eq. (98) in terms of the dielectric function ε (ω) as

E∗2P (ω)

E2
=
ε22 (ω) + [1− ε1 (ω)]2

1− ε1 (ω)
(101)

which is, of course, equivalent.

The unstarred quantities τ , γ, ωP , and m are the unrenormalized scattering time, scat-

tering rate, plasma frequency and the bare optical band mass. The equivalent quantities with

the asterisk are called the frequency-dependent renormalized quantities. m∗ is also called the

infrared (experimental) mass [61], if it is calculated using Eq. (99) from the measured optical

conductivity. The quantity 1 + λ (ω) is the frequency-dependent mass enhancement factor.

We have defined Γ1 in units of energy with an ~ prefactor. All equations are in MKSA units.
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If the optical conductivity σ (ω) follows the Drude model, then it is easy to see from Eq.

(87) that

γ∗ (ω) =
1

τ ∗ (ω)
=
σ1

σ2

ω =
1

τ
(102)

and 1 + λ (ω) = 1. Therefore, the renormalized plasma frequency is equal to the unrenor-

malized plasma frequency and the renormalized mass is equal to the bare optical band mass.

It gets more interesting, if the optical conductivity does not show pure Drude behavior,

for example because the (classical) frictional force is not proportional to the velocity (which

was one of the assumptions in deriving the Drude and Lorentz models). In a quasi-particle

picture, free electrons might interact with other excitations (phonons or interband transitions

or surface plasmons [61]), which causes deviations of the optical conductivity from the pure

Drude response. This is sometimes called the Holstein (1954, 1964) effect. In such cases, we

can still calculate the renormalized frequency-dependent scattering rate, because the plasma

frequency cancels in Eq. (97). We can only calculate the renormalized frequency-dependent

mass, if the plasma frequency is known (at least approximately). Sometimes, we will guess

a value of the plasma frequency in this calculation. An error introduced by an incorrect

plasma frequency will only cause a constant factor in the renormalized mass m∗.

4.7.5 Application to Drude Model with Two Carrier Species

While the frequency-dependent scattering formalism has been applied to a variety of ma-

terials [61–67], especially alkali metals, heavy Fermion compounds, and conducting metal

oxides, we are not aware of an application of this concept to a dielectric function determined

by two species of free carriers. Drude (1900) already speculated that metals required two

different species of free charge carriers to explain their optical constants. This topic was
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revisited by Roberts (1955, 1959) and applied to Ni.

For a single Drude carrier species, the mass enhancement factor equals unity, as already

mentioned. The dotted line in Fig. 4.15 (a) shows the mass enhancement factor calculated

with Eq. (96) from an optical conductivy written as a sum of two free carrier terms [41] given

in Eq. (88). This calculation requires choosing a fixed value of the plasma frequency, so we

picked EP=4.73 eV similar to Table 4.1. At first, it seems strange that the renormalized mass

parameter would drop from 80% of the bare mass to 13% as the photon energy increases.

Since the free carrier absorption is dominated by s-electrons (with a small mass) at low

energies and by d-electrons (with a large mass) at high energies, the opposite should be the

case. The key to understand this graph is to consider that we used a fixed plasma energy of

EP=4.73 eV in this calculation.

It is more helpful to plot the energy dependence of the inverse mass enhancement factor,

see the dotted line in Fig. 4.15 (b). This equals the square of the ratio of the energy-dependent

plasma frequency to our assumed value of EP=4.73 eV. For low photon energies, free carrier

absorption is dominated by the sp-electrons (term Drude2) with a plasma frequency of

EP=4.73 eV, equal to our assumed value. Therefore, the inverse mass enhacement factor

is about 1. As the photon energy increases, the contribution to the free carrier absorption

by the sp-electrons decreases and the contribution of the d-electrons (Drude1 term) with a

plasma frequency of 12.3 eV increases. We therefore expect the inverse mass enhancement

factor to reach 6.8 at very high energies, which is close to the value of 7.6 at 6 eV, see Fig. 4.15

(b). The plasma frequency (78) ω2
P=ne2/ε0m is determined by the ratio of two parameters,

the carrier density and the effective mass. While we expect the effective mass to be larger for

d-electrons than for sp-electrons (which tends to decrease the plasma frequency), the carrier
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density increases even more than the effective mass and therefore the plasma frequency for

d-electrons is larger than for sp-electrons,

We now understand why m∗ (E) decreases with photon energy. m∗ is close to unity at low

frequencies, because we have chosen the correct plasma frequency of sp-electrons (4.73 eV) in

this frequency range. At higher energies (above 1 eV), the contribution from d-electrons with

a plasma frequency of 12.3 eV dominates. The effective mass parameter therefore decreases,

because we have chosen a plasma frequency which is much too low for the spectral range

above 1 eV. (The same decrease of m∗ with increasing energy would occur, if we had chosen

EP=12.3 eV in our calculation, but it would reach a high-energy limit of unity.)

In summary, it is our impression that a frequency-dependent mass parameter is not a

useful concept in the description of the optical constants of a free electron gas with two types

of carrier with different densities and optical band masses. Instead, it is more intuitive to

consider the frequency dependence of the renormalized plasma frequency, see Fig. 4.15 (b).

The frequency-dependent renormalized scattering rate ~/τ ∗ calculated from a sum of

two Drude terms with parameters in Table 4.1 is shown in Fig. 4.16 (dotted). At low

energies, ~/τ ∗ equals 0.05 eV, because most of the scattering is due to sp-electrons with a

scattering rate of 0.0421 eV. Only a small contribution to the scattering rate is due to d-

electrons (and therefore the total value of ~/τ ∗ slightly larger than 0.0421 eV). As the photon

energy increases and scattering of d-electrons becomes dominant, ~/τ ∗ increases also, first

quadratically and then linearly. The increase flattens out above 1 eV and ~/τ ∗ approaches

2.4 eV at an energy of 2 eV, close to the Drude1 scattering rate of d-electrons shown in Table

4.1.
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4.7.6 Impedance and Refractive Index

Faraday’s Law (the third Maxwell equation) for electromagnetic waves in vacuum reads in

MKSA units

~∇× ~E = −µ0
∂ ~H

∂t
, (103)

where ~E and ~H are the electric and magnetic field strengths and µ0 the permeability of free

space. For a plane wave with wave vector ~k and angular frequency ω, this becomes

~k × ~E0 = ωµ0
~H0, (104)

where the subscript 0 stands for the complex amplitude of the plane wave. We can eliminate

~k with the wave equation

~∇2 ~E − 1

c2

∂2 ~E

∂t2
= 0 (105)
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and the resulting dispersion equation

k2 =
ω2

c2
. (106)

From Eqs. (104) and (106), we find the relationship

E0 = µ0cH0 =

√
µ0

ε0
H0 = Z0H0 (107)

between the magnitudes of the electric and magnetic field strength amplitudes, where we

have introduced the speed of light in vacuum

c =
1

√
ε0µ0

(108)

and the impedance of vacuum

Z0 =

√
µ0

ε0
= 377 Ω. (109)

The corresponding Maxwell equation (Faraday’s Law) in a dispersive medium (e.g., a

metal) is

~∇× ~E = −∂
~B

∂t
, (110)

where ~B = µµ0
~H is the magnetic flux density, or

~k × ~E0 = ω ~B0 = ωµµ0
~H0 (111)

for plane waves. At optical frequencies, µ=1. In an anisotropic medium, we no longer have

a wave equation similar to Eq. (105) (because ~E is not in general perpendicular to the wave

vector). We therefore restrict the following discussions to isotropic media.

The wave equation

~∇2 ~E − 1

c2

∂2ε ~E

∂t2
= 0 (112)
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Figure 4.17: Lenham-Treherne diagram [51] for the complex impedance (in units of Z0) at
selected wavelengths between 8 and 17 µm calculated from a Drude dielectric function with
EP=4.7 eV and a Drude broadening Γ=35 meV. Note the reciprocal axes.
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Figure 4.18: Argand diagram of the complex optical impedance (in units of Z0) defined in
Eqs. (117) and (118) calculated from the complex dielectric function shown in Fig. 4.3 for
polycrystalline Ni at 300 K. Note the linear axes. Small symbols show results from a point-
by-point fit. The line was calculated from the product model (72) with parameters in Table
4.2. Large symbols show the results of Lenham and Treherne on Ni single crystals from 8 to
17 µm wavelength [52], indicated by numbers.
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for an isotropic medium with µ=1 results in the dispersion relation

|k|2 = ε
ω2

c2
(113)

for a generalized (or inhomogeneous) plane wave with a complex wave vector ~k and real

angular frequency ω (Mansuripour 1995, Stratton 2007). From Eqs. (111) and (113), we find

the relationship

√
εE0 = µ0cH0 =

√
µ0

ε0
H0 = Z0H0 (114)

between the magnitudes of the amplitudes of the electric and magnetic field strengths. This

is similar to Eq. (107) except for a factor
√
ε, where ε is the frequency-dependent dielectric

constant. This results in

E0 =
Z0√
ε
H0 = ZH0, (115)

where Z = Z0/
√
ε = R + iX is the complex impedance of the wave in an isotropic medium

with µ=1. R and X are the real part (resistance) and imaginary part (reactance) of the

complex impedance [52]. It is convenient to introduce the dimensionless complex impedance

[52]

Z ′ = R′ + iX ′ =
Z

Z0

=
1√
ε

=
1

n+ iκ
(116)

with real part

R′ =
n

n2 + κ2
(117)

and imaginary part

X ′ =
−κ

n2 + κ2
. (118)

The older literature [52] sometimes includes a factor of 4π/c, which arises from the definition

of the surface impedance of a conductor (Dingle 1953, Jackson 1975) in Gaussian units. This
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does not affect the definition of the dimensionless impedance Z ′ in Eq. (116). Our results

are therefore directly comparable to those of Lenham and Treherne [52].

It was customary in the older literature [52] to plot X ′ (reactance) versus R′ (resistance),

in units of Z0, sometimes with reciprocal axes [51]. It is not possible to write the complex

refractive index with real part (Fox 2010)

n =
1√
2

√
ε1 +

√
ε21 + ε22 (119)

and imaginary part

κ =
1√
2

√
−ε1 +

√
ε21 + ε22 (120)

for free-carrier absorption with simple equations, without approximations that are too re-

strictive (ωτ � 1) for our purposes. We therefore show −X ′ versus R′ with reciprocal axes

for a Drude metal with plasma frequency 4.7 eV (carrier density n=1.6×1022 cm−3) and a

Drude broadening of 35 meV, which corresponds to a scattering time τ=19 fs (similar to Ni,

see Table 4.1) in Fig. 4.17. The negative sign in −X ′ is due to our convention exp (−ωt) for

the time-varying fields. This figure is similar to Fig. 1 in Ref. 51.

From our dielectric function for polycrystalline Ni at 300 K (determined from a point-by-

point fit and from our product model), we can calculate the complex impedance. The results

are shown in Fig. 4.18. As mentioned by Lenham and Treherne [51], an Argand diagram for

the complex impedance is much more sensitive to show small differences between data and a

model than the dielectric function (Fig. 4.3) or the complex optical conductivity (Fig. 4.4).

We compare our results with those measured by Lenham and Treherne [52] in Fig. 4.18. The

agreement between our data and theirs is about the same as the agreement between our data

and our product model. A horizontal shift of the Argand impedance curve towards smaller R′
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values indicates a larger scattering time [51]. In other words, the resistance in the Lenham-

Treherne single crystals [52] should be expected to be smaller than in our polycrystalline Ni

samples.

4.7.7 Anomalous Skin Effect

The anomalous skin effect [43] (Dingle 1953, Wooten 1972, Jones 1972) affects the optical

response of metal surfaces when the electron mean free path l=vF τ (where vF is the Fermi

velocity) becomes of the order of the penetration depth or larger. We calculate l=16 nm

from vF=108 cm/s, see Ref. 69, and τ=~/Γ=16 fs (Table 4.1). Our penetration depths are at

least 75 nm, i.e., much larger than the electron mean free path, see Fig. 4.12. We therefore

do not take the anomalous skin effect into account in the analysis of our room temperature

data. (We were unable to confirm the value of vF given by Kamineni et al. [9] in the sources

they cited.)

According to Lynch and Hunter [43], the anomalous skin effect correction to the normal-

incidence reflectance is 3
4
vF
c

for diffuse surface scattering, which equals 0.0025 for Ni.

The question about the anomalous skin effect contributions to ellipsometry data should

be revisited with low-temperature measurements of a high-conductivity metal like Au or Al.

Brückner et al. (1989) write that the complex refractive index must sometimes be modi-

fied due to the anomalous skin effect. An ellipsometry or reflectance experiment measures an

effective complex refractive index n∗ + iκ∗, which is related to the Drude-Lorentz refractive

index n+ iκ by

n∗ + iκ∗

n+ iκ
= 1− 3vF

16c

κ− in
−i+ (1/ωτ)

. (121)

Shelton et al. (2008) take the viewpoint that the free carrier concentration n in the Drude
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model must be replaced with a frequency-dependent carrier concentration

n∗ (ω) =
n

τ

β2/3

v
2/3
F

3

√
2m

ωne2µ0

. (122)

The dimensionless parameter β is related to the surface roughness and describes if scattering

of electrons by the surface is specular or diffuse.

4.7.8 Zeros and Poles on the Imaginary Axis

It is well known [40,41] (Berreman 1968) that the dielectric function of a solid can be written

as a product (72) with zeros and poles in the complex plane. In the case of infrared lattice

absorption, the poles represent the transverse optical phonons and the zeros the longitudinal

optical phonons. For electronic transitions, the poles represent the energy gap (resonance

frequency) and the zeros the strengths of the transitions [41]. For a metal, the free carrier

absorption is described by a pole on the imaginary axis, where the associated zero (which

represents the plasma frequency) is not on the imaginary axis.

We struggled for some time with how to model the dielectric function of a metal using

Eq. (72) if the free carrier absorption is described by two species of carriers. We solved

this problem numerically and found an equivalent description of the dielectric function as a

sum or a product of Drude oscillators with parameters listed in Table 4.3. The results are

somewhat surprising and warrant some discussion. We find that the Drude parameters of

the term with the larger plasma frequency (Drude 1) are comparable in both models. The

broadenings are identical and the plasma frequency differs by only 10%. The broadenings

of the second Drude term are also identical. It is surprising, however, that the zero of the

second Drude term is on the imaginary axis. This is the first time we have encountered the
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Table 4.3: The optical constants of a metal calculated from a sum of two Drude terms in
Eq. (69) (top part) were fitted with a product of two Drude terms as in Eq. (72) (bottom
part).

~ωP ~γ

(eV) (eV)

Drude 1 11.9 2.87

Drude 2 4.86 0.0421

~ω0 ~γ0 ~ωL ~γL

(eV) (eV) (eV) (eV)

Drude 1 0 2.87 12.8 2.46

Drude 2 0 0.0422 0 0.450

need for a zero of the dielectric function on the imaginary axis.

4.7.9 Optical Constants of Gold

A) Ellipsometric angles and model parameters

For comparison with Ni, we also measured the ellipsometric angles for gold using the same

instruments, but in air with angles of incidence from 65◦ to 80◦ with 5◦ steps. The gold

layer used for these measurements was a calibration standard (gold mirror) shipped with

the FTIR ellipsometer by the J. A. Woollam Company. This gold layer was not cleaned (by

heating in UHV) and measured in air. Therefore, this sample was probably not clean, but

covered with surface layers. Therefore, we consider the optical constants reported here a

qualitative estimate. They do not carry the same accuracy as our Ni data. The main reason

for reporting optical constants of gold in this context is to have a qualitative comparison of
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Figure 4.19: Ellipsometric angles ψ and ∆ for a gold mirror measured in air as a function of
photon energy from 65◦ to 80◦ angle of incidence.

the physics governing the optical constants of these two materials. Using x-ray reflectance,

we estimate the surface roughness of the gold mirror to be about 3 nm.

The ellipsometric angles of gold acquired at four angles of incidence (65◦ to 80◦ with

5◦ steps) are shown in Fig. 4.19. We see that the restrahlen band in gold is much more

pronounced than in Ni. For gold, ψ stays just below 45◦ to about 2 eV. For Ni, ψ drops

below 45◦ at very low energies, because of d-intraband transitions. (Within a reststrahlen

band, where ψ is nearly 45◦, ellipsometry is very sensitive to weak absorption processes, see

Willett-Gies, 2015.) Since Au is a noble metal, the d-bands are completely full and such

d-intraband transitions are not possible.

The deviation of ψ from 45◦ is measurable and increases with angle of incidence (0.3◦ for

65◦ incidence angle, 0.6◦ at 80◦). It is related to the Drude scattering rate. We observe a

small discontinuity in our ψ data at 1.2 eV, where the VASE ellipsometer switches detectors.

The ellipsometric angle ∆ decreases almost linearly from 180◦ with increasing photon energy.
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At our low-energy end of the spectral range (0.03 eV), ∆ is still a few degrees lower than

180◦, especially for shallow incidence angles. The deviation of ∆ from 180◦ is not related to

the Drude scattering rate. Instead, the slope of ∆ is related to the plasma frequency. At

zero energy, all ∆ curves converge to 180◦ like a fan.

The ellipsometric angle ψ drops sharply at 2.5 eV due to the onset of interband tran-

sitions. We model this transition with a Tauc-Lorentz oscillator centered at 2.54 eV. The

asymmetry of this oscillator, with a sharp cutoff at the Tauc gap of 2.34 eV and a broadening

of 0.47 eV shapes the knee of ψ between 1.8 and 2.3 eV. Depending on the angle of incidence,

∆ has a more or less pronounced minimum at this transition. We added six Gaussians and

a pole to model the dispersion and achieved an excellent fit to the data in Fig. 4.19, with

the parameters listed in Table 4.4. (We chose Gaussians rather than Lorentzians to avoid

the slow drop of the Lorentzians, which might influence the absorption at low energies.) The

strongest Gaussians at 3.1 and 4.2 eV lead to valleys in ψ and ∆.

B) Optical constants

The pseudo-dielectric function of gold, determined from the ellipsometric angles with a

point by point fit (ignoring surface overlayers) and from the model with parameters listed

in Table 4.4, is shown in Fig. 4.20. The Drude divergence is much stronger in gold than in

nickel, because gold has a very low scattering parameter. In gold, conduction is entirely due

to s-electrons (which have a low value of Γ). The d-band conduction (with its large scattering

rate) is missing in gold, because all d-bands are filled. Therefore, < ε2 > dips below 1 at

1.8 eV. At higher energies, < ε2 > rises again due to interband transitions. The onset of

interband transitions is very sharp and stands well above the low Drude contribution, thus
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Table 4.4: Parameters used to describe the optical constants of polycrystalline gold with
a sum of oscillators: Energy E, Tauc gap Eg, plasma frequency EP = ~ωP , broadening Γ,
and the pole amplitude A are in units of eV, the Gaussian amplitudes are dimensionless.
All parameters are given with three significant digits. Due to parameter correlations, the
uncertainty is probably much larger.

A E Γ Eg EP

Drude 0.0438 8.53

Tauc-Lorentz 61.5 2.54 0.466 2.34

Gauss 1 3.63 3.08 1.20

Gauss 2 0.697 3.75 0.479

Gauss 3 2.82 4.16 1.02

Gauss 4 0.670 5.013 1.10

Gauss 5 1.01 5.33 2.33

Gauss 6 2.68 8.28 7.07

Pole 21.3 423
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Figure 4.20: Pseudodielectric function of a gold mirror (without surface corrections). Sym-
bols show the results of a point-by-point fit, ignoring overlayers, lines show the best fit to
the ellipsometric angles using a sum of oscillators with parameters shown in Table 4.4.

the need for a Tauc-Lorentz oscillator.

The Drude divergence can be removed partially by plotting the optical conductivity,

which is shown in Fig. 4.21. However, for Au the electrical conductivity at low energies is

much larger than the interband conductivity above 2 eV. This makes it hard to show the

electrical and interband conductivity on the same graph. From our Drude parameters in

Table 4.4, we calculate a DC conductivity of 5×106 1/Ωcm from Eq. (92), which is an order

of magnitude lower than σ0 derived from electrical measurements. The anomalous skin effect

may play a role here, since high frequencies reduce the number of carriers contributing to

the electronic transport (Shelton 2008).

The loss function for gold (shown in Fig. 4.22) is dominated by peaks related to interband

absorption in the 2 to 4 eV range. At higher photon energies, Im(−1/ < ε > ) still rises, be-

cause the plasma frequency at 8.5 eV is outside of our spectral range. The complex refractive
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Figure 4.25: Argand diagram of the complex optical pseudo-impedance of gold at 300 K
(in units of Z0) defined in Eqs. (117) and (118) in the mid-infrared (from 0.07 to 0.16 eV),
calculated from the complex pseudo-dielectric function shown in Fig. 4.20. Small symbols
show results from a point-by-point fit. The line was calculated from the Drude-Lorentz
model with parameters in Table 4.4.
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index is shown in Fig. 4.23. We note that < n >�< κ > (Fox 2010). Interband transitions

are more obvious in < n > than in < κ >. The pseudo-absorption coefficient < α > and the

pseudo-penetration depth < λP > are shown in Fig. 4.24. We note that a discontinuity in the

data near 0.7 eV, where we have merged data from both ellipsometers. Also, the absorption

coefficient is more sensitive to small differences between data and model. The absorption

coefficient is small at the longest wavelengths and then rises sharply and reaches a global

maximum near 0.3 eV. It then falls gradually and reaches a global minimum near 2.5 eV,

just below the onset of interband transitions. As we compare the penetration depth in the

mid-infared between Au and Ni, we notice that the penetration depth is only 125 nm below

1 eV, signifcantly lower than for Ni due to the absence of d-intraband transitions in Au.

This will have consequences for the anomalous skin effect in both materials. The complex

optical pseudo-impedance of gold at 300 K (in units of Z0), defined in Eqs. (117) and (118),

is shown in Fig. 4.25 in the mid-infrared spectral region (from 0.07 to 0.16 eV). We note that

the resistance of gold is lower than the resistance of Ni, as expected. The reactance also is

much smaller for gold. This graph clearly shows the discrepancy between our model and the

point-by-point fit results.

C) Drude parameters

To determine the plasma frequency graphically using Eq. (82), we plot ε1 versus 1/E2 in

Fig. 4.26. We find EP=8.13 eV, which is in good agreement with our parameter EP=8.53 in

Table 4.4 determined from a Drude-Lorentz fit to the ellipsometric angles. We also plot ε2E

versus 1/E2, which yields E2
PΓ=2.7 eV as the slope, in good agreement with the value of

3.2 eV calculated from the data in Table 4.4. Overall, this graph seems qualitatively similar
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for Ni and Au and therefore free carrier absorption should play an important role in both

materials.

The frequency-dependent mass parameter m∗ (E) = m [1 + λ (E)] calculated from Eq.

(96) and its inverse, the frequency-dependent plasma frequency EP (E) are shown in Fig.

4.27. In our Drude-Lorentz model (solid line), the mass is constant in the infrared, as

expected for transport with a single species of Drude carriers (dotted line). This trend is

supported by the data obtained from the point-by-point fit between 0.2 and 0.8 eV (symbols).

In the visible, the mass peaks sharply, as interband transitions contribute as well. The initial

rise of the mass below 0.2 eV is puzzling. In a complementary view, the plasma frequency

drops here. This is not supported by our Drude-Lorentz model. Indeed, as we explore the

ellipsometric angles in this spectral region, we find that ψ approaches the ideal metallic

value of 45◦ faster than predicted by our Drude-Lorentz model, see Fig. 4.28. It is not clear

if this is an issue with our model parameters, an experimental error in the ellipsometry

measurement, or a physics effect, such as the anomalous skin effect or diffraction effects

described by Humĺıček and Bernhard (2004). This discrepancy requires additional work, for

example measurements at low temperatures on a clean Au sample.

The frequency-dependent scattering rate for gold at 300 K, calculated from Eq. (97), is

shown in Fig. 4.29. It is quite apparent that the scattering rate is nearly independent of

energy in the infrared, as expected from the Drude response for an electron gas with a single

species of carriers (shown by the dotted line). It increases only slightly from 0.042 at 0.03 eV

to 0.049 eV at 1eV, similar to the Drude scattering rate of 0.044 eV in our Drude-Lorentz

model, see Table 4.4. This slight increase is probably from the tail in our Tauc-Lorentz

oscillator due to interband transitions. These interband transitions show a strong rise in the
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Figure 4.28: Ellipsometric angle ψ of gold at 300 K in the infrared. Green and red lines show
experimental data and results from a Drude-Lorentz model, respectively. The experimental
data approach 45◦ faster than our model at the lowest energies.

scattering rate in the visible and UV spectral regions. This nearly constant scattering rate

for gold is in stark contrast to Ni, see Fig. 4.16. Conduction from d-electrons in Ni (with a

much larger scattering rate) causes a nearly linear rise of ~/τ ∗. Since the d-bands are full

in gold and do not contribute to electronic conduction, there is only one species of Drude

carriers and thus a nearly frequency-independent ~/τ ∗.
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5 OPTICAL CONSTANTS OF SINGLE-CRYSTALLINE NI(100) FROM 77 K

TO 770 K FROM ELLIPSOMETRY MEASUREMENTS

5.1 Abstract

Ellipsometry measurements were taken on single-crystalline Ni(100) at various temperatures

between 77 K and 770 K. DC conductivity and resistivity are extracted from the model

optical constants and their temperature dependence is discussed. The authors find only

qualitative agreement in the general shape of the resistivity measured by ellipsometry and

electrical measurements. The temperature dependence of the main absorption peak at 4.8 eV

indicates that the interband transitions are broadened by magnons with an effective energy of

about 77 meV. The reduction of the width of the main absorption peak is found to be 0.31 eV

and is interpreted as the ferromagnetic exchange energy at the L-point. The temperature

dependence of the absorption peak at 1.5 eV is explained by assigning the peak to L3↓ → L3↓

transitions, which accounts for the decrease in magnitude of the peak and its constant energy.

5.2 Introduction

This paper is an extension of our previous article [82], hereafter referred to as I, where we

modeled the dielectric function of bulk poly-crystalline Ni from ellipsometry measurements

in an energy range of 0.06 eV to 6 eV at 300 K. The model consists of two Drude and five

Lorentzian oscillators to describe the two carrier types (s- and d-electrons) and interband

transitions. In this work, we model the dielectric function of single-crystalline Ni(100) at

temperatures from 77 K to 770 K with temperature steps of about 50 K. The temperature
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dependence of interband transitions shines light on the origin of the absorption peaks in the

optical conductivity. Nickel has been extensively studied theoretically and experimentally,

for instance in Refs.70,83–89 and the references therein. This paper is inspired by the work

of Shiga and Pells [49] and Kirillova et. al. [90] who studied the temperature dependence

of the optical properties of poly-crystalline and single-crystalline Ni(110), respectively. The

purpose of this work is to investigate the discrepancies that are observed in the description

of the temperature dependence of the energy of the main peak. Shiga and Pells [49] describe

the red shift of the main absorption peak in the optical conductivity as a linear shift. In this

work, we fit the red shift with a Bose-Einstein model [91] and further discussion about the

interband transitions is provided. In addition, the temperature dependence of the absorption

peak at 1.5 eV is studied using the change of optical conductivity [92] δσ = σ(T ) − σ(77).

This new method reveals a significant feature of this peak that has not been observed before

due to being buried under the large plasma frequencies of Ni. This method also provides a

new insight into the origin of the absorption peak at this energy.

5.3 Experimental Results and Data Analysis

The measurements were taken on a 10×10 mm2 single-crystalline Ni(100) sample with a

thickness of 1 mm that was obtained commercially [55]. The cleaning procedure and exper-

imental setup are described in I. After heat treating the sample in a UHV cryostat at 770 K

and at a pressure of 10−7 Torr, ellipsometry measurements were taken by a J. A. Woollam

VASE ellipsometer from 0.5 eV to 6.5 eV with a step size of 20 meV from 770 K to 77 K in

50 K steps. The sample was kept at each temperature for 30-45 min to reach a thermal equi-

librium. Afterwards the same measurements were taken from 77 K to 770 K. No significant
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changes in the data at the same temperatures in the two runs of increasing and decreasing

temperature were observed. Next, the sample was mounted in another UHV cryostat with

diamond view ports and was heat treated at 770 K to remove possible contamination and

oxidation from transferring the sample from one instrument to the other. The same ellip-

sometry measurement were then taken by a J. A. Woollam FTIR ellipsometer from 0.03 eV

to 0.8 eV with a resolution of 16 cm−1. The data from two instruments were merged using

the method explained in appendix A. Two Drude and four Lorentzian oscillators were used

to model the dielectric function of Ni. This model has one Lorentzian oscillator less than

in I, because the new merging procedure removes the mismatch between the data from two

instruments and reduces the minimum number of oscillators needed to model the dielectric

constant, which is given by six oscillators with a total of 16 parameters to fit [82]

ε(E) = 1 +
2∑
i=1

−E2
p,i

E(E + iγi)
+

4∑
i=1

AiE
2
0,i

E2
0,i − E2 − iγiE

. (123)

Figure 5.1 demonstrates the measured ellipsometric angles of cleaned single-crystalline

Ni(100) for a 70◦ angle of incidence at 300 K modeled by Eq. (123) with the parameters

given in Table 5.1. To minimize the number of correlated parameters, the energy of the

first Lorentzian oscillator at about 1.5 eV is retained constant as suggested by Fig. 5.2,

which shows the change in the optical conductivity with temperature, and other studies [49].

Furthermore, the broadening of the Lorentzian oscillator at about 12 eV is retained constant

since it is beyond our spectral range. All data were corrected for 20 Å of surface roughness.
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Figure 5.1: Ellipsometric angles ψ (N) and ∆ (•) of clean single-crystalline Ni(100) at 300 K
at an angle of incidence of 70◦. Symbols show experimental data, lines the best fit with Eq.
(123) and parameters in Table I. Not all data points are shown.

Table 5.1: Parameters used to describe the optical constants of single-crystalline Ni(100)
at T = 300 K: Amplitude A, plasma energy Ep, energy E0, and broadening γ. The DC
conductivity σ0 was calculated from the Drude parameters using Eq. (124).

A EP E0 γ σ0

(1) (eV) (eV) (eV) (1/Ωcm)

Drude 1 12.1 2.91 6,766

Drude 2 4.81 0.0403 77,200

Lorentz 1 1.83 1.57 0.847

Lorentz 2 0.138 2.58 0.888

Lorentz 3 2.42 4.77 2.08

Lorentz 4 1.91 12.7 6.01
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Figure 5.2: Change in optical conductivity of single-crystalline Ni (100) δσ1 = σ1(T ) −
σ1(77 K) at temperatures between 77 K and 770 K. The dash-dotted line is the data at T
= 627 K. The inset shows the infrared spectral range.
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Figure 5.3: Optical conductivity of single-crystalline Ni(100) from 77 K to 770 K. The inset
shows the infrared spectral range. The arrows indicate the direction of rising temperature.
The data below 0.1 eV and above 6.0 eV are not shown due to noise.
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5.4 Optical Conductivity

Figure 5.3 shows the optical conductivity of our Ni sample at various temperatures. Two

well known features at about 1.5 eV and 4.8 eV are present [49,69,76,93]. The peak at about

1.5 eV is mainly due to the transitions within the minority spin bands (spin down), whereas

both spin directions contribute to the main peak, which is dominated by transitions from

the bottom of the d-band to the states near the Fermi level [72]. The temperature depen-

dence of optical properties of Ni has been little investigated. Johnson and Christy [80] claim

that the optical constants of Ni do not change over the temperature range between 77 K

and 423 K and they are identical to its optical constants at room temperature. However,

Fig. 5.3 displays a noticeable change in the optical constants of Ni as the temperature rises.

Such changes have also been reported by Shiga and Pells [49]. Many interband transitions

have been assigned to the absorption peaks based on the calculated or experimental bands

structures [49, 76, 77]. Using polarimetry techniques, Stoll [77] has reported several small

interband transition peaks in the optical conductivity of ferromagnetic and paramagnetic

single-crystalline Ni(110) at various temperatures. We do not observe any of those peaks

in the optical conductivity of our sample. Stoll’s measurements on poly-crystalline Ni [76]

also show many small structures between 2.0 eV and 2.5 eV, which are not observed in our

data. In order to see the change of optical conductivity with temperature, Fig. 5.2 shows

the change in optical conductivity at each temperature relative to the optical conductivity

at our lowest temperature δσ1 = σ1(T ) − σ1(77K). Stoll and Jung [94] suggest that the

Drude term increases with temperature as function of T 2. Our measured data also indicate

an increase in the Drude term as the temperature rises. However, Fig. 5.2 illustrates that
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the Drude term increases with temperature up to about the Curie temperature Tc and stays

almost constant above that. Another noticeable feature in Fig. 5.2 is that the magnitude of

the absorption peak at 1.5 eV decreases as temperature rises and stays constant above Tc.

To the best of our knowledge, this has not been reported in the literature thus far. We will

discuss this matter further in section VI.

The DC conductivity can be found as the zero energy limit of the Drude response [82]

σDC =
ε0
~
E2
p

γ
. (124)

If there are more than one carrier species, the DC conductivity is defined as [41]

σDC,total =
n∑
i=1

σDC,i. (125)

Figure (5.4) shows the contribution of s- and d-electrons to the total DC conductivity

of Ni(100) by using Eq. (124) and Eq. (125). The s-electron contribution demonstrates the

typical metallic behavior as the temperature increases. The d-electrons, on the other hand,

do not contribute significantly to the total DC conductivity. This behavior can also be seen

in the temperature dependence of the scattering rates of the two Drude terms in Eq. (123)

shown in Fig. 5.5. This figure shows that the scattering rate of the first Drude term does

not change significantly with temperature, whereas the scattering of the second Drude term

increases by a factor of about 9 as temperature rises, thus attributing these terms to d- and

s-electrons, respectively. Comparison of DC conductivity taken from ellipsometry measure-

ments to electrical measurements shows that IR spectroscopic ellipsometry underestimates

the DC conductivity. This is due to the fact that our ellipsometer measures down to 0.1 eV
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Figure 5.4: DC conductivity of Ni obtained from ellipsometry measurements. Total DC
conductivity (�), DC conductivity of s-electrons (N), DC conductivity of d-electrons (•),
DC conductivity from electrical measurements (?). Most of the conductivity of Ni below Tc
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Figure 5.5: Scattering rates of the first (�) and second (N) Drude term in Eq. (123) as a
function of temperature. For clarity the broadening of the second Drude term (s-electrons)
is multiplied by 10.
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Figure 5.6: Extrapolated optical conductivity of single-crystalline Ni (100) between 77 K
and 770 K. The arrow shows the direction of rising temperature.

for measurements on our sample inside the cryostat without too much noise. Below this

energy one has to extrapolate the model to obtain DC conductivity. Figure 5.6 shows the

optical conductivity extrapolated down to zero. As the figure shows, the difference in the

optical conductivity at various temperatures becomes more important at the energies below

0.06 eV, which is lower than our spectral range.

One can calculate the number N of electrons per unit cell that contribute to the conduc-

tivity of Ni in an energy range between zero and 6.0 eV, which is defined as [92]

N =
2m0V

π~e2

∫ E=6

E=0

σ(E)dE, (126)

where V is the volume of the unit cell and m0 is the free electron mass. As Ni has

an fcc crystal structure, it has four atoms in its conventional cubic unit cell with 0.6 free
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Figure 5.7: Number of electrons per cubic unit cell of single-crystalline Ni in the energy
range of zero to 6.0 eV from 77 K to 770 K.

electron and 0.6 free hole per atom [6]. Figure 5.7 depicts Eq. (126) calculated at various

temperatures, which shows that N increases by 3% as the temperature rises from 77 K to

770 K. This increase is in great agreement with 3% volume expansion calculated from the

linear expansion coefficient taken from Wang et al. [95] in the same temperature interval.

Therefore, N is essentially constant as the temperature rises.

The Drude term for a single carrier type can be written as [41]

εD(E) = −
E2
p

E2 + iγE
= −

E2
p

E2 + γ2
+ i

E2
pγ

E(E2 + γ2)
, (127)

which yields

εD1 (E) = −1

γ
(EεD2 ). (128)

This relation is applicable well below the onset of interband absorption edge, where only

103



20 30 40 50 60 70 80
-1000

-800

-600

-400

-200

0

e 1

e2E (eV)

Figure 5.8: ε1 vs. Eε2 for single-crystalline Ni(100).

free carrier absorption is present. According to Eq. (128), plotting ε1 against Eε2 should

be linear and the slope be equal to −1/γ. Figure 5.8 shows ε1 vs. Eε2 of Ni at various

temperatures. Fitting a line in the linear region of Fig. 5.8, we calculated the scattering rate

in Eq. (128). We find good agreement between this scattering rate and the scattering rate

of s-electrons in Eq. (123) as demonstrated in Fig. 5.9.

It has been suggested [96] that the deviation from linearity in Fig. 5.8 indicates the

onset of interband absorption. The linear region in Fig. 5.8 is between ε2E = 50 eV and

ε2E = 80 eV. From this figure, it is found that deviation from linearity occurs at E ≈ 0.5 eV

and varies with temperature. However, it has been shown [97, 98] that the onset of an

interband absorption in Ni occurs at about 0.15 eV and is independent of temperature. The
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Figure 5.9: Scattering rate obtained from Eq. (128) (�), and the scattering rate of the second
Drude term (s-electrons) in Eq. (123) (N) at various temperature.

reason for this discrepancy might be the fact that there are two Drude terms in the dielectric

function of Ni. Assuming two Drude terms, Eq. (127) becomes

εD(E) = −
E2
p1

E2 + iγ1E
−

E2
p2

E2 + iγ2E
, (129)

which yields

εD1 (E) =
E2
p1(E2 + γ2

2) + E2
p2(E2 + γ2

1)

E2
p1γ1(E2 + γ2

2) + E2
p2γ2(E2 + γ2

1)
(EεD2 ). (130)

Due to the large value of the scattering rate of the first Drude term from Table I at

300 K(γD1 = 2.91 eV), Eq. (130) is linear only well above the onset of interband absorption,

where (γ1/E)2 becomes negligible. Therefore, it appears that this method cannot be used to

find the onset of interband transitions of transition metals. The failure of this method also

justifies the use of two Drude terms in the optical properties of Ni.

105



5.5 Resistivity

The resistivity of Ni is governed by scattering of free electrons by impurities (ρimp), lattice

vibrations (ρe−ph), other electrons (ρe−e), and magnons (ρe−mag). According to Matthiessen’s

rule, the total DC resistivity of Ni may be written as a sum of these terms [99]

ρtotal = ρimp + ρe−e + ρe−ph + ρe−mag. (131)

The first term in Eq. (131) is the residual resistivity and can be neglected only for highly

pure metals [7]. However, there are two more contributions in the residual resistivity of fer-

romagnets, namely magnetostriction and magnetocrystal residual resistance [7], that cannot

be ignored even for highly pure samples.

The electron-electron scattering term is called Baber interaction [87] and takes into account

the electron-electron and electron-hole scattering

ρe−e =
2m

ne2

(
e2

2m

)2
m3

h3

(
kT

ζ1

)2
e∆(π2 + ∆2)

2(e∆ + 1)2
H(β, q), (132)

where m is the effective mass of the light carrier, ζ1 is Fermi energy of the group of light

carriers, ∆ = m
2kT

(u2 − V 2
1 ) with the velocity u of the electron and the velocity V1of the

electron at the Fermi surface, β = m2/m1 and q is the screening factor that screens the

field of a positive hole by a factor of e−qr. Reference 87 provides numerical values of the

function H(β, q) for different effective mass ratios and screening factors. For sufficiently low

temperatures where lattice vibrations can be neglected, Eq. (132) can be written as [7]

ρe−e =
π2e2m2

16nh3

(
kT

ζ1

)2

H(β, q) = aT 2, (133)

which shows that at low temperatures, the electron-electron interaction contributes to the

temperature dependence of the resistivity as T 2. This term is negligible when β is unity as
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in the case of Cu [87] and is appreciable for Ni, where md/ms = 22 [99]. If there is only

one type of carriers, electron-electron interaction contributes to the conductivity only when

there is an electron-electron umklapp scattering process, whereas normal scattering does not

contribute to the conductivity [7]. For more than one type of carriers, as in the case of Ni,

the electron-electron scattering contributes to the conductivity according to Eq.(133) even

if there is no umklapp process [7].

Scattering of electrons by phonons may be written as [100]

ρe−ph = 4A

(
T

θD

)5 ∫ θD/T

0

x5

(ex − 1)(1− e−x)
dx, (134)

where A is a constant and θD is the Debye temperature. θD = 345 K at T = 293 K [2]

and θD = 477 K at T = 0 K [3]. The resistivity ρe−ph ∝ T 5 for T<< θD, and ρe−ph ∝ T

for T > θD. This temperature dependence is common in all metals. Another term that

contributes to ρe−ph of transition metals is the shortening of the electron free path due to

the scattering of s-electrons into d-electron bands upon collision with phonons, which was

proposed by Mott [83] and calculated by Wilson [86]

ρsde−ph = d

(
T

θD

)3 ∫ θD/T

θE/T

x3

(ex − 1)(1− e−x)
dx, (135)

where d is a constant and kθE = hνE with νE being the minimum frequency required to

excite s-d transitions, and k is the Boltzman constant. Eq. (135) is proportional to T 3 and

implies that s-d scattering is dominant at high temperatures. At sufficiently low tempera-

tures, ρ is dominated by the normal s-s and d-d scattering events [86].
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The last factor contributing to the resistivity of Ni is the scattering of electrons by

magnons. This scattering mechanism results in a change in the direction of the spin of an

electron [101] by annihilation or creation of magnons. The temperature dependence of the

scattering between electrons and magnons in the range of T0 < T < 0.1Tc, where spin wave

approximation is applicable, is [7]

ρe−mag(T ) ∼ exp

(
−T0

T

)
at T � T0, (136)

ρe−mag(T ) ∼ T 2φ

(
T0

T

)
at T ≈ T0, (137)

ρe−mag(T ) ∼ T 2 at T � T0, (138)

where

φ(t) =
3

2π2

∫ ∞
t

xex

(ex − 1)(x− 1)
dx; t =

T0

T
. (139)

Goodings [102] calculated that below 10-20 K the magnon assisted s-d scattering is neg-

ligible and ρe−mag is dominated by s-s scatterings. He also found that at room temperature

ρe−mag due to s-d scattering is significantly greater than that of s-s scattering (about 130

times) and s-d scattering by two magnons, where the spin of the electron is unchanged, is

two orders of magnitude smaller than s-d scattering by one magnon. Following Goodings’

work, Raquet et al. [99,103] showed that 30% of the resistivity of Ni at room temperature is

due to the spin-flip scattering via magnons and an extremely large external magnetic field

is needed to reduce the magnetic resistivity to zero. They found the frozen temperature

T0, below which the electron magnon scattering is non-effective, to be T0 ≈ 15 K for s±-d∓

scattering and T0 ≈ 40 K for d±-d∓ scattering. By increasing T above Tc the concentration

of spin waves increases [6] and reaches its maximum, thus a constant contribution to the
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resistivity is equal to [104]

ρe−mag =
kF (mΓ)2

4πe2z~3
J(J + 1). (140)

Here, J is the effective local spin, Γ is a coupling parameter and z is the atomic number.

Therefore, above Tc the temperature dependence of the resistivity of Ni is proportional to T

due to the temperature dependence of phonons [105]. However, the resistivity of Ni in the

paramagnetic region is not entirely due to the electron-phonon scattering. Other scattering

mechanisms, such as electron-electron scattering, also contribute to the resistivity [106].

Figure 5.10 displays the resistivity of a single-crystalline Ni(100) (this work) and resistiv-

ity of poly-crystalline Ni by other authors [100,101,106]. The overall temperature dependence

of the resistivity is in only qualitative agreement with Laubitz et al. [106]. This is probably

due to the different methods of the measurement of the resistivity and also the fact that

the resistivity from ellipsometry measurements is derived from an extrapolation, not from a

direct and contact measurements on the sample. Another discrepancy that can be observed

is the Curie temperature in our measurement which appears to be slightly higher than the

accepted Curie temperature of Ni, Tc = 627 K. This is probably due to temperature gra-

dient between the thermocouple and the sample. Figure 5.11 shows log(ρ) vs. log(T ) and

the fitted lines in selected regions. The resistivity shows a temperature dependence of T 2

between θD and Tc. In this temperature interval both electron-phonon and electron-magnon

interactions contribute to the resistivity of Ni. Although ρe−mag ∝ T 2 at low temperatures,

its temperature dependence is not a simple function of T at higher temperatures [107]. The

stiffness of the spin waves decreases as temperature rises and its value at Tc decrease to
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Figure 5.10: Comparison of the optical resistivity (ω = 0) of Ni from this work on (100)
single-crystalline Ni (�) and electrical measurements on poly-crystalline Ni by White and
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et. al [106](H).

the order of a quarter of the room temperature value [108]. Therefore, it is not possible to

separate the temperature dependence of ρe−mag and ρe−ph in this region. Figure 5.11 also

shows that between 77 K and 250 K, the temperature dependence is proportional to
√
T ,

which is not consistent with the temperature dependence of any individual contributions to

the total resistivity. We do not have any explanation for this behavior at the present. One

important point is that since the sample is kept at low temperature for a considerably long

time, formation of a very thin layer of ice on the surface of the sample is inevitable. This

surface condition of the sample can alter the results taken from ellipsometry measurements,

whereas the potentiometric techniques that were employed by Farrell and Greig [101] are

more likely to be insensitive to the surface conditions.
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Figure 5.11: Log-log plot of the optical resistivity of Ni at various temperatures. The solid
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temperature Tc with a slope of 1.97± 0.03.
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5.6 Main Peak at 4.8 eV

The main peak in the optical conductivity of Ni has been assigned to (L2 → L1u) based on

the symmetric shape of the peak and its similarities to the main peak of gold and copper [49].

Stoll and Jung [94], however, have assigned this peak to conduction band to conduction band

transitions. Gadenne and Lafait [96] on the other hand, suggested that this peak can be

attributed to transitions from the bottom of the d-band in different points of the Brillouin

zone as it is more realistic than transitions to states well above EF that was suggested by

Stoll and Jung [94], because the density of states of Ni has a peak slightly above EF and

drops drastically with energy.

Our optical conductivity alone does not provide more information about the origin of the

transition resulting in the main peak. However, the temperature dependence of the energy

of this peak might shine light on this issue. Figure 5.12 demonstrates the red shift of the

energy of this peak as the temperature rises. Shiga and Pells [49] as well as Kirillova et.

al. [90] report that the energy of this peak decreases linearly with temperature. However,

we fitted the red shift of the transition energy to the Bose-Einstein function [91]

E(T ) = Ea − Eb
(

1 +
2

exp(θ/T )− 1

)
, (141)

where Ea = (4.99±0.03) eV is the unrenormalized transition energy, Eb = (0.20±0.04) eV

is a coupling strength and kbθ is an effective energy. We found θ = (900 ± 98) K, which

is about 77 meV. This value is too large for an optical phonon energy which is about

30 meV [109] but comparable to the magnon energy of about 100 meV at the L-symmetry

point [110], indicating that the main peak might be due to transitions at the L-point broad-
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ened by magnons. Considering the discussion in the previous part, scattering by magnons

results in a change in the direction of the electron (spin-flip). Furthermore, magnon assisted

s-d scattering has a substantially higher probability than s-s and d-d scattering. Therefore,

one can conclude that the main absorption peak of Ni is due to the transitions from the bot-

tom of the L-point and the peak shifts and broadens as a result of the scattering by magnons.

The discrepancy between Fig. 5.12 and Refs.49 and 90 appears to be due to the smaller

temperature step in our experiment. As can be seen in Fig. 5.12, the shift in energy for

temperatures above room temperature looks linear. Both Refs.49 and 90 conducted mea-

surements above room temperature and Ref. 49 has only one data point below room tem-

perature which was neglected in their linear fit.

Neutron scattering experiments [111] show the existence of spin waves above Tc. Shiga

and Pells [49] measured a poly-crystalline Ni sample and assumed that the main absorption

peak consists of two identical peaks in the vicinity of 4.7 eV, representing the transitions of

minority and majority electrons from L′2. Their energy difference is equal to the exchange

energy of the d-band ∆Ed
ex. They reported this value to be equal to 0.46 eV which was

consistent with some theoretical calculations [112]. However, later experimental band struc-

tures [113, 114] showed that the exchange energy ∆Eex is of the order of 300 meV and its

magnitude and temperature dependence depend on the wave vector [115, 116]. Kirillova et.

al. [90] conducted ellipsometry measurements on Ni(110). Their data are in good agreement

with the data from the poly-crystalline Ni of Shiga and Pells [49]. They further reported that

the main absorption peak consists of three small peaks at room temperature and two peaks
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at 773 K. They concluded ∆Ed
ex = 0.25 eV. Different values have been found for the exchange

splitting of the d-band. [113,115,117,118] Stoll [77] has reported the exchange energy of the

d-band of about (0.55±0.07) eV from optical studies on Ni(110) sample. However, he found

this value to be equal to 0.35 eV for poly-crystalline Ni [76]. Stoll and Jung [119] estimated

0.4 eV for the exchange splitting of L31. It has even been shown that the exchange splitting

of the d-band has different values at different symmetry points [118]. Our data demonstrates

a symmetric peak and does not indicate the existence of the two peaks of Shiga and Pells [49],

nor the three peaks of Kirillova et al. [90]. Therefore, we modeled the data with only one

Lorentzian oscillator at about 4.8 eV. Using two oscillators instead of one results in a high

correlation between the oscillators and erroneous energies and broadenings. It also requires

one oscillator with a very small amplitude compared to the other one, which is inconsistent

with the model proposed by Shiga and Pells [49].

Figure 5.13 shows the broadening of the main absorption peak vs. temperature. This

broadening starts from 2.12 eV at 77 K and reduces to 1.81 eV at 770 K. Therefore, it

decreases by 0.31 eV. This reduction in broadening resembles the decrease in the reduced

spontaneous magnetization (Fig. 5.13). As we could not fit the optical constants with two

oscillators at 4.7 eV unambiguously, we believe that the reduction of the broadening of this

oscillator, as opposed to the energy difference of two peaks proposed by Shiga and Pells [49],

corresponds to ∆Eex at the L-point, which is in a great agreement with Refs. 113 and 117.
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5.7 Small Peak at 1.5 eV

Figure 5.3 displays a small structure in the optical conductivity of Ni at about 1.5 eV. It has

already been noticed that the separation of the contribution of the interband and intraband

absorption to the conductivity of transition metals is not straightforward because a single

band model cannot explain the absorption [98]. While this peak has been traditionally

assigned to interband transitions at the W-point in the Brillouin zone [49], Stoll and Jung

[119] suggest assigning this peak to transitions L31↑ → Ef↑, thus estimating an exchange

splitting of ∆E = 0.4 eV for L31. They further conclude that the persistence of this peak at

higher temperatures indicates that the exchange splitting does not reduce to zero above Tc.

They previously assigned this peak to different transitions [94]. The fact that the absorption

decreases upon rising temperature and stays constant above Tc suggests assigning this peak

to L3↓ → L3↓ transitions. References 118 and 120 show that as the temperature increases,

minority (majority) bands go down (up) and they coincide at Tc. Therefore, we believe that

as the temperature rises, the minority bands L3↓ and L3↓ move downward simultaneously

as demonstrated in Fig. 5.14, that is why the energy of the peak remains constant. This

movement continues until L3↓ touches the Fermi level and stays constant at T > Tc as it is

described in Refs. 118 and 120. As the bands move downwards, the number of unoccupied

states decrease to their minimum at Tc, which explains why the magnitude of the absorption

peak decreases with rising temperature and stays constant above Tc. The energy of this

peak is also consistent with band calculation by Wang and Callaway [71]. Although our

sample is single-crystalline Ni, studies on thin film Ni on Si have pointed out that the peak

becomes weaker as the crystal size becomes smaller [96]. This indicates that there are more
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Figure 5.14: Evolution of spin down bands with rising temperature. (a) below Tc, and (b)
above Tc.

contributions to the origin of this peak than merely interband transitions.

5.8 Summary

We modeled the optical constants of single-crystalline Ni(100) from 77 K to 770 K. Qualita-

tive agreement is found in the general shape of the resistivity from ellipsometry and electrical

measurements. The temperature dependence of the resistivity is proportional to T 2 between

θD and Tc, and is proportional to
√
T below room temperature. The energy of the main

absorption peak displays a red shift upon rising temperature, which is modeled by a Bose-

Einstein function. The fit gives an effective energy of about 77 meV for the transitions at

about 4.8 eV, which we interpret as an interband transition scattered by magnons. The

broadening of the main peak reduces by 0.31 eV and stays constant above Tc. Therefore,

the reduction of the broadening of the peak is interpreted as ∆Eex at the L-point. The tem-

perature dependence of the absorption peak at 1.5 eV is explained by assigning the peak to
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L3↓ → L3↓ transition, which explains the decrease in magnitude of the peak and its constant

energy.
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6 CONCLUSION AND OUTLOOK

6.1 Conclusion

In this work we studied the optical properties of poly-crystalline and single-crystalline Ni at

various temperatures from 77 K to 770 K. The dielectric function of Ni was modeled with two

Drude and four Lorentz oscillators representing s- and d-electrons and interband transitions,

respectively. The temperature dependence of the optical constants shows a typical behavior

of metals for s-electrons and a red shift in the main absorption peak of Ni at 4.8 eV. The

latter is fitted by a Bose-Einstein factor, which indicates that the interband transitions at

4.8 eV are broadened by scattering with magnons of an energy of 77 meV. The change in the

conductivity of Ni at an energy of 1.5 eV reveals that the amplitude of this peak decreases

with rising temperature and stays constant above Tc, while its energy stays constant at all

temperatures. We assign this peak to L3↓ → L3↓ transitions and explain the constant energy

by the simultaneous descent of both L3↓ and L3↓ bands when the temperature increases.

6.2 Outlook

Ferromagnetic properties of Ni make this element suitable in research and application as-

pects. The temperature dependent optical properties of thin films of Ni as a function of

thickness and the anomalous skin effect can be the next step in the optical characterization

of Ni. Research on NiPt alloys or other alloys of Ni would provide a deeper insight into the

optical properties of this element and its alloys because the Curie temperature can be tuned

by the composition. Furthermore, studying optical properties of single-crystalline Ni with

different surface orientation in a magnetic field and using the MM formalism is expected to

119



reveal many collective excitations in the off-diagonal blocks of the MM. In particular, single-

crystalline Ni (111) is expected to show special structures due to the fact that the preferred

magnetic orientation of single-crystalline Ni is along its body diagonal. A comprehensive di-

electric function to describe both diagonal and off-diagonal elements of the dielectric tensor

is yet to be proposed. Comparison of other ferromagnetic metals like Fe, Gd, and Co as well

as non-magnetic metals like Al, Ag, and Au can provide a broader understanding about the

optical constants of metals.
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APPENDIX A

Merging the FTIR-VASE and the VASE data

A.1 Introduction

Well-calibrated spectroscopic ellipsometers based on rotating elements (polarizer, analyzer,

compensator) or phase modulators provide very accurate measurements of the ellipsometric

angles ψ and ∆, which can be analyzed to determine the thickness and properties of thin

layers or to study the vibrational and electronic properties of materials [12, 16–18]. An

instrument calibration [19–23] determines the azimuthal angles of the optical elements with

respect to the plane of incidence, the modulation amplitude or phase retardance of the

modulator or compensator as a function of photon energy, and the optical activity [19] of

various components. Measurement configurations for calibration include straight-through

measurements without a sample [24] (ψ = 45◦, ∆ = 0), oblique reflection ellipsometry of a

calibration sample [21] (usually Si with a thin oxide layer of about 30 nm thickness, where

precise knowledge of the thickness is not required), or normal-incidence reflection from an

isotropic sample. In a straight-through measurement, a typical accuracy of δψ = 0.01◦ and

δ∆ = 0.1◦ can be achieved over most of the spectral range [24].

Broadband ellipsometry measurements over a wide spectral range, for example from the

mid-infrared to the deep ultraviolet, require the use of two or more ellipsometers. Data need
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to be merged, resulting in overlapping spectral regions, where data from two instruments

exist. If the ellipsometers are well calibrated and measurements are performed in air, nearly

perfect overlap can be achieved. See Fig. A.1(a) as an example of a measurement in air

from 190 nm to 25 µm on a bulk Ni (100) single crystal covered with a thin surface layer

(probably water [46] or a similar volatile liquid), using FTIR-VASE and VASE ellipsometers

from the J.A. Woollam Company.

Even well-calibrated ellipsometers suffer from systematic errors [25–29] due to the mis-

alignment and optical activity of the optical components and the strain-induced birefrigence

of windows [30] (if the sample is located in a vacuum or environmental chamber during the

measurement). Some of these systematic errors need to be considered during instrument

calibration [19, 21]. A good summary of various sources of ellipsometry errors and their in-

fluence on the ellipsometric angles was given by de Nijs and van Silfhout [28]. To first order,

most errors are odd functions of the polarizer angle P . Therefore, two-zone measurements

(with positive and negative P ) can eliminate most first-order errors [29].

It is well known [28] that errors due to birefringent windows can not even be eliminated to

first order with a two-zone measurement. Therefore, the effects of window birefringence need

to be determined from measurements of a calibration sample, which are stored as instrument

parameters with the system configuration and other calibration parameters. This technique

works quite well for measurements on a single instrument, but we found that issues arise

in the region of overlap, when data from two instruments are merged, see Fig. A.1(b). The

mismatch is especially large, if the measured sample (here a bulk Ni crystal with a high

conductivity) is very different from the calibration sample (usually Si with a thin thermal

oxide) used to determine the window parameters. The goal of this work is to describe a
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Figure A.1: (a) Ellipsometric angles ψ (green) and ∆ (blue) of a Ni (100) single crystal
in air at 300 K, measured at 70◦ angle of incidence over a broad spectral region with two
ellipsometers, a J. A. Woollam FTIR-VASE (dotted) and a VASE (solid). (b) Same Ni
sample, but measured in two cryostats with diamond and quartz windows for the infrared and
VIS/UV spectral regions, using the default window corrections obtained from a Si calibration
sample. (c) Same data, but with custom window corrections for this specific sample, as
described in the text.
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secondary “custom” sample-dependent correction technique, which results in a good overlap

of the data taken on two different ellipsometers.

A.2 Window Effects in Ellipsometry

A.2.1 Small-Retardance Approximation

Window effects in ellipsometry measurements have been studied by many investigators.

While it is possible to reduce window errors by special mounting procedures to lower the

strain [30,31], windows usually disturb the polarization in measurable ways. Windows have

historically [25] been considered as ideal linear wave-plate retarders and described by two

parameters, the azimuth θw of the fast axis and the retardance δw. The Mueller matrix for

such windows to first order in δw is [25, 32,33]

Mw =


1 0 0 0
0 1 0 −Sw
0 0 1 Cw
0 Sw −Cw 1

 , (A1)

where Sw=δw sin (2θw) and Cw=δw cos (2θw). The corresponding Jones matrix is [12]

Jw = exp
(
− i

2
δw
)( 1 + i

2
Cw

i
2
Sw

i
2
Sw 1− i

2
Cw

)
. (A2)

The resulting errors of the ellipsometric angles from the entrance window within the small

retardance approximation for a rotating analyzer ellipsometer without compensator are [21,

28]

δψ = Sw
sin 2ψ

2 sin 2P
and δ∆ = Cw − Sw cot 2P. (A3)

The corresponding errors from the exit window are [28]

δψ = Sw
sin ∆

2 sin 2P
(1− cos 2P cos 2ψ) and (A4)

δ∆ = Cw + Sw
cos ∆ (cos 2ψ − cos 2P )

sin 2ψ sin 2P
. (A5)
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If the fast retarder axis of the window is in the plane of incidence (θw = Sw=0), then the

error δψ vanishes and δ∆ = Cw. Similarly, if the fast retarder axis is oriented at 45◦ relative

to the plane of incidence, then Cw = 0.

If an instrument has both an entrance window (with parameters Sw and Cw) and an exit

window (with parameters S ′w and C ′w), then the combined effect of both windows [22] will

depend on three parameters Sw, S ′w, and Cw + C ′w. These parameters are typically on the

order of 3×10−3 rad (0.2◦) for low-strain BOMCO windows [30] or fused silica lenses [32]

and an order of magnitude larger for regular quartz vacuum windows. [30, 34] A rotating

analyzer ellipsometer without compensator measures only two Fourier coefficients, which is

not sufficient to determine these three window parameters plus the unknown ellipsometric

angles of the sample [32]. The problem can be solved by adding a compensator, which

provides access to the fourth column or row of the Mueller matrix.

It is apparent from Eqs. (A3-A5) that the window errors from a two-zone measurement

are δψ ≈ 0 (because δψ is an odd function of P ) and δ∆ ≈ Cw. Within the small retardance

approximation, the main effect of windows is to cause a ∆-offset, which depends on the

photon energy E through a modified Cauchy dispersion [22,32,34]

Cw = E
(
Cw0 + Cw2E

2 + Cw4E
4
)
. (A6)

Our results in Fig. A.1(b) show errors in both ψ and ∆ and therefore this framework cannot

be adequate.
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A.2.2 Large-Retardance Approaches

Several options have been proposed to extend this formalism and relax the small-retardance

requirement: Jin and Kondoh [35] employ the precise Mueller matrix for an ideal re-

tarder [12, 36] (for arbitary θw) and measure the complete Mueller matrix for an isotropic

non-depolarizing sample (Si substrate) in a chamber with windows on a dual rotating-

compensator ellipsometer. They then deduce the azimuth and retardance parameters of

both windows from the first row and column of the Mueller matrix. Once the window pa-

rameters have been determined, measurements of more complex (anisotropic) samples can

be corrected for window effects [37]. They also discuss how to average errors caused by

inhomogeneous windows, where only infinitesimal regions of the windows can be treated as

ideal retarders [37].

Azzam and Bashara [26] take a different approach altogether. They start with the general

form of the normalized Jones matrix, which has three complex transmittance parameters.

These parameters and their influence on the ellipsometric angles were determined with a

four-zone measurement on a nulling ellipsometer. The off-diagonal Jones matrix elements

are usually small and may even vanish for some window materials [38].

Johs and Herzinger [34] realized that the complete Mueller matrix MWSW for a sample

with entrance and exit windows [35] for arbitrary retardation (which is given, for example,

by Jin and Kondoh [35]) can be simplified greatly if the fast retarder axes of the windows

are located in the plane of incidence (which they call “in-the-plane”) or at 45◦ relative to the

plane of incidence (which they call “out-of-the-plane”). The corresponding Mueller matrices
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for a single window in these two special cases are [12]

M‖ =


1 0 0 0
0 1 0 0
0 0 cos δ‖ sin δ‖
0 0 − sin δ‖ cos δ‖

 (A7)

and

M⊥ =


1 0 0 0
0 cos δ⊥ 0 sin δ⊥
0 0 1 0
0 − sin δ⊥ 0 cos δ⊥

 , (A8)

where the ‖ and ⊥ subscripts indicate the “in-the-plane” and “out-of-the-plane” cases, re-

spectively. Instead of using the usual two parameters θ and δ for an ideal retarder, Johs

and Herzinger [34] describe windows with in-plane and out-of-plane parameters δ‖ and δ⊥.

These parameters δ‖ and δ⊥ are used to parameterize window effects in the WVASE software

of the J. A. Woollam Company. The functional relationship between δ‖ and δ⊥ on the one

hand and azimuth θ and retardance δ on the other hand was not described. The dispersion

of the in-plane and out-of-plane retardance parameters is given by a Cauchy-like expression

similar to Eq. (A6).

A.3 Experimental Procedure and Results

A bulk Ni single crystal with (100) surface orientation was obtained commercially (MTI

Corporation, Richmond, CA). The ellipsometric angles were measured from 190 nm to 25 µm

(0.03 to 6.6 eV) at 70◦ angle of incidence in air on two different instruments, an FTIR-

VASE and a VASE from the J. A. Woollam Company (Lincoln, NE). Detailed experimental

methods were described previously [82]. Both instruments were calibrated for measurements

in air using the manufacturer’s proprietary method to achieve optimal performance. The

ellipsometric angles ψ and ∆ for this sample are shown from 0.03 to 2.0 eV in Fig. A.1(a).
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Good agrement was achieved in the area of overlap of both instruments (between 0.5 and

0.7 eV).

Measurements in vacuum were performed in Janis ST-400 cryostats (Woburn, MA)

equipped with standard fused silica UHV viewports for VASE measurements and with di-

amond windows (Diamond Materials, Freiburg, Germany) for FTIR-VASE measurements.

The diamond windows were 0.5 mm thick and had a diameter of 24 mm (with a clear aper-

ture of 20 mm diameter). They were mounted on a Conflat CF40 UHV flange and achieved

a good vacuum seal with a base pressure of 10−8 Torr. To avoid multiple reflections of

the light beam during ellipsometry measurements, the windows made a 3◦ angle relative to

the incident beam. This causes different transmission coefficients for the s- and p-polarized

incident beams.

For both types of windows (fused silica and diamond), the in-plane and out-of-plane

retardance values and their dispersion were determined using a windows correction procedure

developed by the J. A. Woollam Company using a Si calibration sample with a thin thermal

oxide. Compare Eqs. (A7), (A8), and (A6). These window parameters were then stored

with the instrument configuration on the data acquisition computer. Measurements of other

samples were then automatically corrected with these stored window parameters. Especially

on the VASE instrument in the near-IR to deep UV region, we usually find good agreement

between the results of a measurement in air and in the cryostat with fused quartz windows.

We call this window calibration the “default window correction”, because it uses the same

window correction parameters for all subsequent measurements.

The results for our Ni sample in UHV using this “default window correction” are shown in

Fig. A.1(b). The agreement from both instruments, the FTIR-VASE with diamond windows
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and the VASE with fused silica windows, is not very good. The differences of ψ and ∆ for

both datasets in the region of overlap between 0.5 and 0.7 eV are on the order of 0.3◦ and 2.2◦,

respectively, much larger than typical systematic errors for measurements in air, compare

Fig. A.1(a). Most likely, the window effects on one or both of the instruments depend not

only on the window parameters, but also on the ellipsometric angles of the sample. Our Ni

sample has a large value of ∆ (typically near 180◦ for a metal) and a value of ψ near 45◦.

Especially the ellipsometric angle ψ is very different for a Si calibration sample with a thin

native oxide, where ψ ≈ 8◦ and ∆ ≈ 145◦ near 0.6 eV.

A.4 Sample-Dependent Window Correction

The following figures explains how the costume window correction for merging the data taken

from the FTIR-VASE and the VASE is performed.
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Assumptions

There are some assumptions in the merge correction procedure:

1. We need to decide whether the VASE data should be corrected with respect 
to the FTIR data or the other way around. In what follows, I assumed that the 
VASE data are correct, and the merging problem comes from FTIR range.  
Therefore, I correct the FTIR-VASE data so that it merges with VASE data. 

2. The window correction for the VASE is much more established and therefore 
more likely to be correct than the FTIR-VASE window correction.

3. Depolarization in the FTIR-VASE data is neglected because it exists in 
measurements in air as well as in the cryostat.

4. Neither VASE nor FTIR-VASE data need to be cut (spectral range).
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Procedure

1. Open a VASE experimental file (dat file).
2. Click Alt+2 to open another window (window 2). Open the FTIR-VASE 

experimental data (same temperature).

Window 1 Window 2
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3. Add a model layer in window 1. We use a model previously established for Ni 
at room temperature (Abadizaman, JVST B 37, 062920, 2019).
4. Add the same model layer in window 2 and couple with the model in window 1 
(click ‘yes’ when it asks if you would like to couple with existing layer).

Window 1 Window 2
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5. Click on the model window, then click on ‘Select’. Then check both models
#1 and #2 in “Active in fit”, then click ‘Ok’.
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6. Go to window 1 and click on the model. Check all oscillators to fit. This will fit the 
model parameters to the data in both regions (with existing window parameters).
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7. Go to window 2. Then click on the 
model window and choose ‘Options’.
8. Click on ‘Window Effects’. This will 
adjust the window parameters in the IR 
region to give a good fit to the data in 
both regions with the oscillator 
parameters defined in step 6. 
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9. Check the boxes as shown in the picture. In some situations (for example
as the temperature rises), one might need to fit the retardance or Delta
offset dispersion. See the appendix slides.
Then click ok. Click ok in the next window as well. ‘Ctrl+F’ to fit all
parameters (oscillator model and window effects).

• The out-of-plane exit window retardance mostly affects psi and corrects
the mismatch of psi.

• The entrance window out-of-plane retardance does not need to be fitted
because the IR measurement is performed with the source side polarizer
fixed at 45 degrees. This ensures that the out-of-plane component does
not affect psi and Delta as light passes through the entrance window.

• Only the exit window out-of-plane retardance is fitted (a constant and a
term proportional to the square of the photon energy). We will show later
that a constant is often sufficient to give a good fit.

• The in-plane window retardance is the Delta offset. It corrects the Delta
mismatch problem. The first parameter is a constant, the next two
parameters depend on photon energy.



9

Now one gets a very good fit in both windows.
Parameters: Oscillator parameters in the model and IR window parameters. 
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This is a trick and we are not done yet. 
What is happening here is that the model parameters are fitted to the VASE and FTIR-VASE data, while 
window effects are fitted only to the FTIR-VASE data. However, without IR window parameter fitting one gets 
a poor fit in both windows. Slide 16 shows a model without IR window effects fitting. 



10

10. Now that we found the IR window 
effects parameters, go to window 2 and 
click on options. Then uncheck all the 
window effects parameters that were 
fitted, so that they are now fixed. Then 
click ok. Click ok in the next window as 
well.  

Do NOT uncheck this one. 
Otherwise it does not apply 
the window effects as 
1/wavelength.
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At this point, we are going to do 
a point by point fit.

11. Go to window 1 and uncheck 
all fit parameters in your model. 
Then check n and k to perform a 
point by point fit. Click ok. 
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12. Go to window 2 and perform 
a point by point fit.

It is important to know that at 
this stage, the point by point fit 
is done while the IR window 
corrections determined in step 9  
are applied to the model.  
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12. While in window 2, click on the model window and go to options. Then set 
all window effects parameters to zero and uncheck 1/wavelength so that the 
window effects are turned off. 
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13. Click ok and click ok in the next window as well.
While in window 2, generate data (ctrl+G). Then click on the generated data 
window and save the generated data (right click > file > save Gen.file). Only 
save the FTIR-VASE generated data.   
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Experimental Data
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We are done with merge correction. Now we can use the saved generated 
FTIR-VASE data as the corrected experimental FTIR-VASE data and 
merge/append them to the VASE data. 
The dashed lines in the left graph below show the corrected data.
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MSE=1.309
Amp1.0         123.1±2.6
Amp2.0         22.682±0.0853
Amp3.0         0.98678±0.14
Amp4.0         0.14742±0.0917
Amp5.0         1.9925±0.0823
Amp6.0         1.8383±0.103
Br1.0          2.7201±0.0629
Br2.0          0.026659±0.000851
En3.0          1.5702±0.0166
En4.0          2.5683±0.0432
En5.0          4.7695±0.0062
En6.0          14.831±1.92
Br3.0          0.60284±0.0687
Br4.0          0.89705±0.306
Br5.0          2.2035±0.0428
Br6.0          10±4.45

MSE=0.8099
Amp1.0         120.42±1.87
Amp2.0         22.064±0.0494
Amp3.0         1.7574±0.142
Amp4.0         0.14335±0.0578
Amp5.0         2.033±0.0532
Amp6.0         1.6434±0.0528
Br1.0          2.7545±0.045
Br2.0          0.017927±0.000506
En3.0          1.5206±0.0108
En4.0          2.6063±0.0271
En5.0          4.7697±0.00388
En6.0          11.964±0.524
Br3.0          0.82799±0.0491
Br4.0          0.89766±0.194
Br5.0          2.2206±0.0273
Br6.0          5.8563±1.14

CorrectedNot corrected

Change in the parameters of the model after 

the merge correction
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Summary

▪ Using window effects parameters, FTIR-VASE experimental data are 
corrected so that they merge with VASE experimental data in the region of 
overlap.

▪ Two window effects parameters are sufficient to obtain a good window 
correction: 

1. constant out-of-plane retardance
2. constant in-plane retardance, 

▪ We do not fit the out-of-plane retardance of the entrance window, because 
this parameter does not influence the ellipsometric angles if the polarizer 
angle is 45 degrees (the usual choice for FTIR-VASE measurements). 

▪ The model is finally fitted to the merged data.
▪ The model parameters change somewhat after the window correction, 

especially near the region of overlap between VASE and FTIR-VASE data. 
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[73] W. Hübner, Phys. Rev. B 42, 11553 (1990).

[74] K. Doll, Surf. Sci. 544, 103 (2003).

[75] E. Dietz, U. Gerhardt, and C. J. Maetz, Phys. Rev. Lett. 40, 892 (1978).

[76] M.-P. Stoll, Solid State Commun. 8, 1207 (1970).

[77] M.-P. Stoll, J. Appl. Phys. 42, 1717 (1971).

[78] A. P. Lenham and D. M. Treherne, in Optical Properties and Electronic Structure of
Metals and Alloys, edited by F. Abelés (North Holland, Amsterdam, 1966), pp. 196-201.

[79] R. E. Lindquist and A. W. Ewald, Phys. Rev. 135, A191 (1964).

[80] P. B. Johnson and R. W. Christy, Phys. Rev. B 11, 1315 (1975).

[81] I. I. Sasovskaya and M. M. Noskov, Fiz. Met. Metallov. 32, 723 (1971).

[82] F. Abadizaman and S. Zollner, J. Vac. Sci. Technol. B 37, 062920 (2019).

[83] N. F. Mott, Proc. R. Soc. Lond. A 167, 580 (1938).

[84] J. C. Slater, Phys. Rev. 36, 57 (1930).

[85] J. C. Slater, Phys. Rev. 49, 537 (1936).

[86] A. H. Wilson, Proc. R. Soc. Lond. A 153, 699 (1936).

[87] W. G. Baber, Proc. R. Soc. Lond. A 158, 383 (1937).

153



[88] W. Nolting, W. Borgiel, V. Dose, and Th. Fauster, Phys. Rev. B 40, 5015 (1989).

[89] W. Borgiel and W. Nolting, Z. Phys. B Condensed Matter 78, 241 (1989).

[90] M. M. Kirillova, Yu. V. Knyavez, and Yu. I. Kuzmin, Thin Solid Films, 527 (1993)

[91] L. Viña, S. Logothetidis, and M. Cardona, Phys. Rev. B 30, 1979 (1984).
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