Molecular beam epitaxy and optical performance in group IV and group III-V semiconductors for photonic applications

Ph.D. Dissertation Defense

Rigo Alberto Carrasco Co-advisors: Dr. Preston Webster and Dr. Stefan Zollner

> Department of Physics New Mexico State University November 5, 2021

٠

Investments in space

In 2020 and 2021 alone, 2823 satellites have been launched into space, that's 24% of the 11858 satellites ever launched since 1957

Optical inter-satellite links concept Spacenews June 8 2020

Data from Unoosa.org

•

Investments in space

- In 2020 and 2021 alone, 2823 satellites have been launched into space, that's 24% of the 11858 satellites ever launched since 1957
- Declining launch and technology costs \rightarrow LEO satellite mega constellation
 - > Missile warning, satellite-satellite communication, real-time warfighter communication

Optical inter-satellite links concept Spacenews June 8 2020

Investments in space

- In 2020 and 2021 alone, 2823 satellites have been launched into space, that's 24% of the 11858 satellites ever launched since 1957
- Declining launch and technology costs \rightarrow LEO satellite mega constellation
 - > Missile warning, satellite-satellite communication, real-time warfighter communication
- Mid-wave infrared sensor technology is a long-standing need for missile warning

Optical inter-satellite links concept Spacenews June 8 2020

Investments in space

- AFRL
- In 2020 and 2021 alone, 2823 satellites have been launched into space, that's 24% of the 11858 satellites ever launched since 1957

10¹¹

0.5 1.0

5.0

Wavelength (µm)

Diverse Spectral Signatures

10.0

- Declining launch and technology costs \rightarrow LEO satellite mega constellation
 - > Missile warning, satellite-satellite communication, real-time warfighter communication
- Mid-wave infrared sensor technology is a long-standing need for missile warning
- Low-cost, high yield material solutions needed to satisfy satellite-based sensing

0 K

Photon Wavelength (µm)

10

AllnSb

GalnSb

InAsSb

0.62

InSb

0.64

Optical inter-satellite links concept Spacenews June 8 2020

0.56

0.58

Solar Illumination

Lattice Constant (nm)

0.60

<u>A III-V superlattice solution</u> to mid-wave infrared sensing

- In(Ga)As/InAsSb superlattice for mid-wave detection
- Sample growth and characterization methods
 - Molecular beam epitaxy of superlattices
 - Steady-state photoluminescence and time-resolved photoluminescence for optical performance characterization
 - Dark-current and quantum efficiency for device performance
- Results
 - Recombination rate analysis and radiation hardness of InGaAs/InAsSb superlattices
- A bulk III-V solution to mid-wave infrared sensing

<u>A group IV solution to mid-wave sensing</u>

Beyond mid-wave materials and toward topological quantum materials

InAs/InAsSb

 $d_{InAs} = 3 \times d_{InAsSb}$

•

A III-V superlattice solution

- Strain-balancing InAs/InAsSb type-II superlattices allows for bandgap engineering in a high optoelectronic quality material system
 - Strain-balancing leads to asymmetric layer thickness
- Incorporation of Ga in In(Ga)As/InAsSb type-II superlattices provides a new design parameter to optimize wavefunction overlap

Compare thicknesses

InAs/InAsSb

 $d_{lnAs} = 3 \times d_{lnAsSb}$

InAs

(+0.6% Strain)

A III-V superlattice solution

- Strain-balancing InAs/InAsSb type-II superlattices allows for bandgap engineering in a high optoelectronic quality material system
 - Strain-balancing leads to asymmetric layer thickness
- Incorporation of Ga in In(Ga)As/InAsSb type-II superlattices provides a new design parameter to optimize wavefunction overlap
 - Allows for symmetric layer thickness
 - How do you grow a superlattice?

In_{0.80}Ga_{0.20}As

(+1.9% Strain)

InAs_{0.65}Sb_{0.35}

(-1.8% Strain)

A 🐱 Ausse Sample growth: molecular beam epitaxy (MBE)

- Ultra-high purity materials are heated to vapor phase to impinge substrate
 Solid-source MBE
- Source shutters and valves allow for sub-nanometer tunability

Image: Model and Model an

- Solid-source MBE
- Source shutters and valves allow for sub-nanometer tunability
 - Engineer superlattices, quantum wells

PREPARATION CHAMBER

Wafer Transfe

R. F. C. Farrow, Molecular Beam epitaxy: Applications to Key Materials

Image: Model Model

- Solid-source MBE
- Source shutters and valves allow for sub-nanometer tunability
 - Engineer superlattices, quantum wells

Auss Sample growth: molecular beam epitaxy (MBE) AFRL Outgas stage Sample rotation Ultra-high purity materials are heated to vapor phase to impinge substrate Solid-source MBE Source shutters and valves allow for sub-nanometer tunability Engineer superlattices, quantum wells Chamber under ultra-high vacuum (UHV) conditions ($\leq 5 \times 10^{-10} torr$) > ~100x pressure in space $(1 \times 10^{-12} torr)$ \blacktriangleright 1 atm = 760 torr Growth Chamber After growth, optical characterization required InAs/InAsSb InGaAs/InAsSb In Ga As GROWTH CHAMBER Substrate Sb Outgassing Time Fast Entry Shutter "closed" Shutter "open"

InAs/InAsSb

 $d_{lnAs} = 3 \times d_{lnAsSb}$

InGaAs/InAsSb

 $d_{InGaAs} = 0.9 \times d_{InAsSb}$

R. F. C. Farrow, Molecular Beam epitaxy: Applications to Key Materials

Wafer

Transfe

PREPARATION

Characterization: steady-state photoluminescence

• Excite material with light $(h\nu_L > h\nu_g)$

M. Fox Optical Properties of Solids

Characterization: steady-state photoluminescence

- Excite material with light $(hv_L > hv_g)$
- Collect photoluminescence spectrum of excited sample $h\nu$
- Extract bandgap of spectrum by taking the first-derivative maximum of signal
- Perform as a function of temperature to determine temperature-dependent bandgap $E_q(T)$
- How long do we have photoluminescence?

Time-resolved photoluminescence to measure lifetime

The minority carrier lifetime is a statistical measure of how long photogenerated carriers excited in a photodetector exist before returning to the ground state

The lifetime can be measured by time-resolved photoluminescence

$$\frac{1}{\tau_{\text{total}}} = \frac{1}{\phi \tau_{\text{rad}}} + \frac{1}{\tau_{\text{SRH}}} + \frac{1}{\tau_{\text{Auger}}}$$

The various recombination mechanisms have unique temperature dependences, allowing fundamental material parameters to be extracted from the recombination rate analysis

TRPL optical block diagram

Our InAs/InAsSb superlattice (open circles) is optimized for maximum wavefunction overlap at 5 µm wavelength

USSF

- Exhibits Shockley-Read-Hall limited lifetime of 2.3 µs
- Serves as our system's InAsSb quality benchmark

The InGaAs/InAsSb superlattice (filled circles) is similarly optimized for wavefunction overlap at 5 µm wavelength

Lifetime is comparable at 1.4 µs, Shockley-Read-Hall limited

Our InAs/InAsSb superlattice (open circles) is optimized for maximum wavefunction overlap at 5 µm wavelength

USSF

- Exhibits Shockley-Read-Hall limited lifetime of 2.3 µs
- Serves as our system's InAsSb quality benchmark

The InGaAs/InAsSb superlattice (filled circles) is similarly optimized for wavefunction overlap at 5 µm wavelength

Lifetime is comparable at 1.4 µs, Shockley-Read-Hall limited

A recombination rate analysis can provide information on the defects in the Shockley-Read-Hall regime and background carrier concentrations in the radiative and Auger terms

$$\frac{1}{\tau_{\text{total}}} = \frac{1}{\phi \tau_{\text{rad}}} + \frac{1}{\tau_{\text{SRH}}} + \frac{1}{\tau_{\text{Auger}}}$$

🙀 🖗 🔊 🖉 Radiative, Shockley-Read-Hall, and Auger recombination

$$E_{c} \qquad \tau_{rad} = \frac{n_{i}^{2}}{G_{r}(n_{0} + p_{0})}$$

$$n_{i}^{2} = 32\pi^{3} \left(\frac{kT}{h^{2}}\right)^{3} (m_{e}^{*}m_{v}^{*})^{3/2} exp(-E_{g}/kT)$$

$$P_{v} \qquad \sigma_{\tau_{Rad}} \qquad G_{r} = \frac{8\pi\epsilon_{\infty}}{h^{3}c^{2}} \int_{E_{g}}^{\infty} \frac{\alpha(hv)(hv)^{2}d(hv)}{exp(hv/k_{B}T)}$$

Image modeled after: D. K. Schroder, IEEE Trans Electron Devices **29**, 1336 (1982)

$$\frac{1}{\tau_{\text{total}}} = \frac{1}{\phi \tau_{\text{rad}}}$$

M 🐓 Auss Radiative, Shockley-Read-Hall, and Auger recombination

Image modeled after: D. K. Schroder, IEEE Trans Electron Devices 29, 1336 (1982)

Radiative, Shockley-Read-Hall, and Auger recombination

Image modeled after: D. K. Schroder, IEEE Trans Electron Devices **29**, 1336 (1982)

$$\frac{1}{\tau_{\text{total}}} = \frac{1}{\phi \tau_{\text{rad}}} + \frac{1}{\tau_{\text{SRH}}} + \frac{1}{\tau_{\text{Auger}}}$$

$$\tau_{\text{Auger}} = \frac{2n_i^2}{n_0^2 + n_0 p_0} \times \tau_{\text{A1}}$$

$$\tau_{\text{A1}} = \frac{3.8 \times 10^{-18} \epsilon_{\infty}^2 (1+\mu)^{1/2} (1+2\mu)}{(m_e^*/m_0) |F_1 F_2|^2} \times \left(\frac{E_g}{k_B T}\right)^{3/2} \exp\left(\frac{1+2\mu}{1+\mu} \frac{E_g}{k_B T}\right)$$

Radiative, Shockley-Read-Hall, and Auger recombination

Image modeled after: D. K. Schroder, IEEE Trans Electron Devices 29, 1336 (1982)

Auss Radiative, Shockley-Read-Hall, and Auger recombination

10³

102

Minority Carrier Lifetime (µs)

Image modeled after: D. K. Schroder, IEEE Trans Electron Devices 29, 1336 (1982)

300

Radiative, Shockley-Read-Hall, and Auger recombination

Image modeled after: D. K. Schroder, IEEE Trans Electron Devices 29, 1336 (1982)

Carrier concentration & defect properties in InGaAs/InAsSb

Sample ID	Туре	Majority Carrier	$E_c - E_t$	σN_t			
		Concentration (×10 ¹⁵ cm ⁻³)	(meV)	(10 ⁻² cm ⁻¹)			
Α	<i>n-</i> type	0.122	99.42	3.82			
В	<i>n</i> -type	0.029	105.0	7.39			
С	<i>n</i> -type	3.65	118.3	18.42			
D	<i>p</i> -type	7.79	55.22	4.214			

The background *n*-type carrier concentration is comparable for both samples, typical of high quality InAsSb alloys (>1 μ s)

Carrier concentrations in doped samples C and D consistent with the calibrated doping densities

Carrier concentration & defect properties in InGaAs/InAsSb

Sample ID	Туре	Majority Carrier	$E_c - E_t$	σN_t
		Concentration (×10 ¹⁵ cm ⁻³)	(meV)	(10 ⁻² cm ⁻¹)
Α	<i>n</i> -type	0.122	99.42	3.82
В	<i>n</i> -type	0.029	105.0	7.39
С	<i>n-</i> type	3.65	118.3	18.42
D	<i>p</i> -type	7.79	55.22	4.214

The background *n*-type carrier concentration is comparable for both samples, typical of high quality InAsSb alloys (>1 μ s)

• Carrier concentrations in doped samples C and D consistent with the calibrated doping densities

Defect levels also appear to be comparable

Carrier concentration & defect properties in InGaAs/InAsSb

Sample ID	Туре	Majority Carrier	$E_c - E_t$	σN_t	
		Concentration (×10 ¹⁵ cm ⁻³)	(meV)	(10 ⁻² cm ⁻¹)	
Α	<i>n</i> -type	0.122	99.42	3.82	
В	<i>n-</i> type	0.029	105.0	7.39	
С	<i>n-</i> type	3.65	118.3	18.42	
D	<i>p-</i> type	7.79	55.22	4.214	

The background *n*-type carrier concentration is comparable for both samples, typical of high quality InAsSb alloys (>1 μ s)

• Carrier concentrations in doped samples C and D consistent with the calibrated doping densities

Defect levels also appear to be comparable

Defect concentration ~60% higher in InGaAs/InAsSb superlattice, consistent observed decrease in lifetime of the material

USSF

How would these devices fare in space?

Radiation sources in space: cosmic rays, high energy protons in Van Allen belts, solar flares

• Detector performance degrades in space over time

Installing test devices on a satellite to test their performance in space is expensive!

Different satellite orbits Logan *et al.*, J. Mater. Chem. C, **7** 8905 (2019).

How would these devices fare in space?

Radiation sources in space: cosmic rays, high energy protons in Van Allen belts, solar flares

• Detector performance degrades in space over time

Installing test devices on a satellite to test their performance in space is expensive!

Instead take devices to proton source to simulate radiation damage over time, measure performance metrics

Different satellite orbits Logan *et al.*, J. Mater. Chem. C, **7** 8905 (2019).

UC Davis Beamline port

InGaAs/InAsSb superlattice *pBpn* detector

Lifetime relationships with device performance

Lifetime relationships with device performance

Lifetime relationships with device performance

Proton irradiation effects on quantum efficiency

USSF

Proton irradiation effects on quantum efficiency

USSF

Proton irradiation effects on dark current

Minority carrier lifetime damage factor

Irradiation-induced incorporation of donors

AFRL	

	Irradiation Condition	σN_t (10 ⁻² cm ⁻¹)	Doping (×10 ¹⁵ cm ⁻³)
Г	Pre-Rad	4.21	7.8
<i>p</i> -InGaAs/InAsSb	Post-Rad	15.9	3.2
	Post-Anneal	10.4	3.9

Inf. Phys. Technol. **97**, 448 (2019) Appl. Phys. Lett. **108**, 263504 (2016)

USSF

USSF

300

⁴³ Approved for public release: Distribution unlimited

Overall impact of proton irradiation damage

Carrasco *et al.*, J. Appl. Phys. **130**, 114501 (2021)

Irradiation Condition	Doping (×10 ¹⁵ cm ⁻³)
<i>p</i> -InGaAs/InAsSb (PreRad)	7.8
<i>p</i> -InGaAs/InAsSb (Post-Anneal)	3.9
<i>n</i> -InGaAs/InAsSb (PreRad)	3.6
<i>n</i> -InGaAs/InAsSb (Post-Anneal)	3.9

Permanent decrease in p-side acceptor concentration N_A leads to larger depletion in *p*-side absorber ($W'_p > W_p$)

- Full recovery in quantum efficiency post-anneal due to reduction in thickness of the quasi-neutral p-region $(d'_p < d_p)$
- Negligible recovery in dark current post-anneal due to increase in acceptor concentration N_A

 $J_{diffusion} =$

45

- Complete recovery of irradiation-induced QE degradation after anneal (~50% typical in *nBn*)
- Dark current and dark current damage factor typical of *nBn*'s; but negligible recovery in dark-current
- Materials-level characterization and application of fundamental physics led to the discovery of irradiation-induced doping and asymmetric recovery with anneal, explaining the anomalously high device performance

Low-cost, high yield material solutions needed to satisfy satellite-based sensing

<u>A III-V superlattice solution</u> to mid-wave infrared sensing

- <u>A bulk III-V solution to mid-wave infrared sensing</u>
 - Quinary GaInAsSbBi alloys
- Results
 - Photoluminescence and minority carrier lifetime of quinary GaInAsSbBi
- <u>A group IV solution</u> to mid-wave infrared sensing

Beyond mid-wave materials and toward topological quantum materials

A bulk III-V alloy solution to mid-wave sensing

• 5 μ m cutoff photodetectors \rightarrow heat tracking and space detection

Nitroger 14.007

Phosphor 30.974

15

Р

33

As

51

Sb

83

Bi

Antimo 121.76

Bismuth

208.98

Arseni 74.922

Surface and crystal quality of GalnAsSbBi

- Droplet free quinary evidenced by smooth Normarski
- Increased strain state tunability of alloy with inclusion of Ga
- Rutherford backscattering data shows successful inclusion of 0.13% Bi

Incorporating Bi redshifts the band gap of the quaternary

USSF

•

- > Incorporation at higher growth temperatures shows benefit of adding Ga
- Increase in photoluminescence width due to Bi alloy disorder

Lifetime improvement due to Bi incorporation

- Incorporating Bi introduces alloy disorder that could cause n-doping
- Bi as a surfactant may have caused improvement in minority carrier lifetime

THE AIR FORCE RESEARCH LABORATORY -----

USSF

Carrasco et al., J. Appl. Phys. 129, 184501 (2021); Carrasco et al., Appl. Phys. Lett. (in progress)

- Quinary GalnAsSbBi was grown at 400 C by MBE for the first time
- Higher growth temperature allows for better optical quality of III-V bismide
- Incorporating Ga allows for easier Bi incorporation

Low-cost, high yield material solutions needed to satisfy satellite-based sensing

<u>A III-V superlattice solution</u> to mid-wave infrared sensing

<u>A bulk III-V solution to mid-wave infrared sensing</u>

<u>A group IV solution to mid-wave infrared sensing</u>

- → GeSn alloys with Sn contents $\leq 27\%$
- Methods
 - Spectroscopic ellipsometry
- Results
 - Dielectric function and critical points of GeSn alloys

Beyond mid-wave materials and toward topological quantum materials

Spectroscopic ellipsometry

- **Results:**
 - $\tilde{\epsilon}(\omega) = \epsilon_1(\omega) + i\epsilon_2(\omega)$ •
 - Band gaps
 - Interband transitions

Spectroscopic ellipsometry

- Measures:
 - 0.50 6.5 eV in 0.01 eV steps (2.4 µm - 191 nm)
- Results:

٠

- $\tilde{\epsilon}(\omega) = \epsilon_1(\omega) + i\epsilon_2(\omega)$
- Band gaps
- Interband transitions

Measures:

•

- 0.03 0.70 eV
 (40 1.8 μm)
- Results:
 - $\tilde{\epsilon}(\omega) = \epsilon_1(\omega) + i\epsilon_2(\omega)$
 - IR phonon vibrations
 - Narrow band gaps
 - Free-carrier absorption

Spectroscopic ellipsometry

•

AFRI

- Measures:
 - 0.50 6.5 eV in 0.01 eV steps (2.4 µm - 191 nm)
- Results:
 - $\tilde{\epsilon}(\omega) = \epsilon_1(\omega) + i\epsilon_2(\omega)$
 - Band gaps
 - Interband transitions

- Measures:
 - 0.03 0.70 eV
 (40 1.8 μm)
- Results:
 - $\tilde{\epsilon}(\omega) = \epsilon_1(\omega) + i\epsilon_2(\omega)$
 - IR phonon vibrations
 - Narrow band gaps
 - Free-carrier absorption

- Measure $\rho = \tan(\psi) \exp(i\Delta) = r_p/r_s$
- Data modeling required to extract dielectric function $\tilde{\epsilon} = \epsilon_1 + i\epsilon_2$
- With the extracted dielectric function, absorption coefficient *α* and refractive index *n* can be calculated
 - > Absorption is important for determining quantum efficiency η

$$\gamma = \left(\frac{\alpha^2 L_D^2}{1 - \alpha^2 L_D^2}\right) \left\{ e^{-\alpha L_A} - \frac{1}{\cosh(L_A/L_D)} + \frac{e^{-\alpha L_A} \tanh(L_A/L_D)}{\alpha L_D} \right\}$$

AFRL

Spectroscopic ellipsometry of relaxed films

USSF

Fernando et al., J. Vac. Sci. Technol. B. 36, 021202 (2018)

Fernando et al., J. Vac. Sci. Technol. B. 36, 021202 (2018)

Imbrenda *et al.*, Appl. Phys. Lett. **113**, 122104 (2018)

THE AIR FORCE RESEARCH LABORATORY

Imbrenda et al., Appl. Phys. Lett. 113, 122104 (2018); Imbrenda et al., Appl. Phys. Lett. 119, 162102 (2021)

Imbrenda et al., Appl. Phys. Lett. 113, 122104 (2018); Imbrenda et al., Appl. Phys. Lett. 119, 162102 (2021)

NM STATE

Critical point trends

 Accounting for strain, E₁ and E₁ + Δ₁ critical points red shift toward longer wavelengths, consistent with predictions

- MBE grown GeSn alloys at ~100 °C
- Absorption observed beyond 6 μm
- E_1 and $E_1 + \Delta_1$ critical points red shift toward longer wavelengths, consistent with predictions

Imbrenda et al., Appl. Phys. Lett. 113, 122104 (2018); Imbrenda et al., Appl. Phys. Lett. 119, 162102 (2021);

Low-cost, high yield material solutions needed to satisfy satellite-based sensing

<u>A III-V superlattice solution</u> to mid-wave infrared sensing

<u>A bulk III-V solution to mid-wave infrared sensing</u>

<u>A group IV solution to mid-wave infrared sensing</u>

Beyond mid-wave materials and toward topological quantum materials

 $\geq \alpha$ -Sn and Sn-rich GeSn alloys with Ge contents $\leq 6\%$

Results

> Dielectric function and band structure critical points of α -Sn and Sn-rich GeSn alloys

Conclusions and Future work

- SiGeSn alloys are of great interest for IR detector applications.
 - Group IV alloys are compatible with Si-CMOS processing.
- Studying the endpoint constituent, α -Sn allows for exploration of the full range of the alloys.
- What's different in a topological insulator?

USSF

Band structure of Ge versus α-Sn

P. Y. Yu, M. Cardona: Fundamentals of Semiconductors. Springer (2010)

Band structure of Ge versus α-Sn

- Critical point line shapes with energies $\geq 1 \text{ eV}$ are identical in both α -Sn and Ge
 - $\rightarrow \epsilon(\underline{\omega}) = B A(\omega E i\Gamma)^{-\mu} e^{i\varphi}$ (consistent with historical results)
- But \overline{E}_0 in α -Sn has a completely different line shape in comparison to E_0 in Ge

Viña *et al.*, Phys. Rev. B **31**, 958 (1985) Viña *et al.*, Phys. Rev. B **30**, 1979 (1984) Carrasco *et al.*, Appl. Phys. Lett. **113**, 232104 (2018)

Direct bandgap of Ge versus α-Sn

α-Sn band diagram

Ge E₀ temperature dependence

Ge E₀ energy red shifts with increasing temperature.

USSF

- Energies extracted by reciprocal space analysis.
- Can be described by Bose-Einstein factor.

$$E(T) = a - b \left[\frac{2}{\frac{\theta_B}{e^T - 1}} + 1 \right]$$

- a unrenormalized transition energy
- b electron-phonon coupling strength
- $k\theta_B$ effective phonon energy

Fitting parameters	a (meV)	<mark>b</mark> (meV)	θ _B (K)
Parametric Oscillator fit	945 ± 3	65 ± 5	280 ± 20
Reciprocal space analysis	945 ± 3	65 ± 4	280 ± 20
Second derivative analysis	937 ± 5	47 ± 9	210 ± 40

α -Sn \overline{E}_0 temperature dependence

- Temperature *independent* energy
- Temperature *independent* amplitude
- Suggesting p-doping from substrate

α -Sn \overline{E}_0 temperature dependence

- Temperature *independent* energy
- Temperature *independent* amplitude
- Suggesting p-doping from substrate

- Temperature independent energy
- Temperature dependent amplitude
- Suggesting hole carriers from thermal excitations

Optical constants of Sn_{1-x}Ge_x alloys

- E_1 and $E_1 + \Delta_1$ red shift with increasing Ge content
 - Expected from deformation potential theory
 - \bar{E}_0 blue shifts with increasing Ge content

E_1 and $E_1 + \Delta_1$ transitions in $Sn_{1-x}Ge_x$ alloys

USSF

\bar{E}_0 transitions in $Sn_{1-x}Ge_x$ alloys

- What is the dimensionality of \bar{E}_0 transitions?
- Why is \overline{E}_0 nearly independent of Ge content?
 - Need theory that considers band warping and non-parabolicity

USSF

- α-Sn has similar dielectric function to Ge in UV-VIS.
- However, in IR, α-Sn has a **negative** band gap at 0.41 eV.
- Need comprehensive theory including quantum statistics, non-parabolicity, and band warping due to strain to describe \bar{E}_0 peak.

Grand canonical conclusion

Low-cost, high yield material solutions needed to satisfy satellite-based sensing

- A III-V superlattice solution to mid-wave infrared sensing
 - Mature and developed solution to mid-wave sensing
 - > Wavefunction overlap is a concern

- <u>A bulk III-V solution</u> to mid-wave infrared sensing
 - Bulk III-V alloys is less developed but provides promise of satisfying mid-wave sensing without concern for wavefunction overlap

<u>A group IV solution to mid-wave sensing</u>

> Absorption beyond 6 μm observed, requires investigation and discovery of higherlevel material performance

Beyond mid-wave materials and toward topological quantum materials

Strong absorption observed, requires discovery of fundamental band structure behavior

Future work

- Group III-V superlattices front
 Explore doping profiles to lower tunnelling dark current and improve InGaAs/InAsSb superlattice device performance
- Group III-V quinary front

Explore absorption of the alloy

- Group IV GeSn mid-wave front
 - Determine minority carrier lifetime and create relations between growth parameters and optical performance
- Group IV α -Sn front

- \succ Perform a doping study of α -Sn and determine \overline{E}_0 dependence on doping
 - > Perform $\vec{k} \cdot \vec{p}$ band structure calculations that take into account band nonparabolicity to accurately model \vec{E}_0 peak

Many thanks to:

- Dr. Preston T. Webster, Dr. Perry C. Grant, Dr. Christian P. Morath, and RVSU AEOSS team at KAFB
- Dr. Arnold M. Kiefer, and RYDH team at Wright-Patterson AFB
- Dr. Kolodzey, Dominic Imbrenda, University of Delaware team
- Dr. Stefan Zollner, Cesy Zamarripa, Carola Emminger, Farzin Abadizaman, Nuwanjula Samarasingha, and Pablo Paradis
- Dr. Vassili Papavassiliou, Dr. Igor Vasiliev, and Dr. David Voelz

Ellipsometry group with Dr. John Woollam at 2017 AVS 64th International Symposium and Exhibition, Tampa, Florida

Superlattices

ex: InAs/GaSb

Kronig penney model

- Imagine an electron in a one-dimensional periodic square-well potential with wells and barriers with widths a and b, barrier height V₀, transcendental equations:
- $\cos(kd) = \cos(k_1a)\cos(k_2b) \frac{k_1 + k_2^2}{2k_1k_2}\sin(k_1a)\sin(k_2b)$ for $E > V_0$

•
$$\cos(kd) = \cos(k_1a)\cosh(\kappa b) - \frac{k_1^2 - \kappa^2}{2k_1\kappa}\sin(k_1a)\sinh(\kappa b)$$
 for $\mathsf{E} < V_0$

•
$$E = \frac{\hbar^2 k_1^2}{2m_A^*}$$

- $E V_0 = \hbar^2 k_2^2 / (2m_A^*)$ for $E > V_0$
- $V_0 E = \hbar^2 \kappa^2 / (2m_A^*)$ for $E < V_0$

- 1. Calibrate In, Ga growth rates
- 2. Calibrate InAs RHEED to As/In = 1
- 3. Lattice matched InAsSb @ 440C

As-rich

As-lean

Calibrations necessary for quinary growth

AFRL

Run number	Sample	In growth rate (μm/hr)	Ga growth rate (µm/hr)	As/III	Sb/III	Bi/III	XRD strain (arcseconds)
1	InAsSb	1.008	0.0	0.953	0.110	0.0	-462

- 1. Calibrate In, Ga growth rates
- 2. Calibrate InAs RHEED to As/In = 1
- 3. Lattice matched InAsSb @ 440C
- 4. Compressive InAsSb @ 400 C (unity As flux ratio)

As-rich

▲ Calibrations necessary for quinary growth

Run number	Sample	In growth rate (μm/hr)	Ga growth rate (µm/hr)	As/III	Sb/III	Bi/III	XRD strain (arcseconds)
1	InAsSb	1.008	0.0	0.953	0.110	0.0	-462
2	GaInAsSb	0.969	0.029	0.963	0.112	0.0	-43

- 1. Calibrate In, Ga growth rates
- 2. Calibrate InAs RHEED to As/In = 1
- 3. Lattice matched InAsSb @ 440C
- 4. Compressive InAsSb @ 400 C (unity As flux ratio)
- 5. Lattice matched GaInAsSb on GaSb @ 400 C

Same Azimuth

AFRI

As-rich

▲usse Calibrations necessary for quinary growth

Run number	Sample	In growth rate (µm/hr)	Ga growth rate (µm/hr)	As/III	Sb/III	Bi/III	XRD strain (arcseconds)
1	InAsSb	1.008	0.0	0.953	0.110	0.0	-462
2	GaInAsSb	0.969	0.029	0.963	0.112	0.0	-43
3	GalnAsSbBi	0.985	0.029	0.966	0.108	≈0.02	-55

- 1. Calibrate In, Ga growth rates
- 2. Calibrate InAs RHEED to As/In = 1
- 3. Lattice matched InAsSb @ 440C
- 4. Compressive InAsSb @ 400 C (unity As flux ratio)
- 5. Lattice matched GaInAsSb on GaSb @ 400 C
- 6. Using same conditions as 2), grow GalnAsSbBi @ 400 C

Same Azimuth

AFRI

As-rich

Calibrations necessary for quinary growth

Run number	Sample	In growth rate (μm/hr)	Ga growth rate (µm/hr)	As/III	Sb/III	Bi/III	XRD strain (arcseconds)
1	InAsSb	1.008	0.0	0.953	0.110	0.0	-462
2	GaInAsSb	0.969	0.029	0.963	0.112	0.0	-43
3	GalnAsSbBi	0.985	0.029	0.966	0.108	≈0.02	-55

- 1. Calibrate In, Ga growth rates
- 2. Calibrate InAs RHEED to As/In = 1
- 3. Lattice matched InAsSb @ 440C
- 4. Compressive InAsSb @ 400 C (unity As flux ratio)
- 5. Lattice matched GaInAsSb on GaSb @ 400 C
- 6. Using same conditions as 2), grow GaInAsSbBi @ 400 C
- Keep V/III flux ratios consistent
- Keep total group III growth rate consistent
- Any changes will be due to Bi incorporation

Same Azimuth

As-rich

Physics behind PL and dielectric function

 Electric transition probability R for photon absorption per unit time (Cardona eq 6.43b) (Fermi's golden rule for electron transition rate)

•
$$R = \frac{2\pi}{\hbar} \left(\frac{e}{m\omega}\right)^2 \left|\frac{E(\omega)}{2}\right|^2 \sum_k |P_{cv}|^2 \delta\left(E_c\left(\vec{k}\right) - E_v\left(\vec{k}\right) - \hbar\omega\right)$$

• Power loss per unit volume

USSF

power loss =
$$R\hbar\omega$$

 $-\frac{dI}{dt} = \frac{c}{n}\alpha I = \frac{\epsilon_2\omega I}{n^2}$
 $-\frac{dI}{dt} = R\hbar\omega$
 $I = \frac{n^2}{8\pi} |E(\omega)|^2 - Intensity$

• Photoluminescence is $PL = \frac{8\pi\epsilon_{\infty}}{h^{3}c^{2}} \frac{\alpha(h\nu)(h\nu)^{2}d(h\nu)}{exp(h\nu/k_{B}T)} - Spontaneous \ emission \ transition \ rate \ per \ unit \ volume$

$$\epsilon_{1}(\omega) - 1 = \frac{2}{\pi} \mathcal{P} \int_{0}^{\infty} \frac{\omega' \epsilon_{2}(\omega') d\omega'}{\omega'^{2} - \omega^{2}} - kramers - kronig \ relations$$

Biasing a device

 Reverse biasing a device acts to increase size of depletion region

pn-reverse bias

pBpn-reverse bias

Free Carrier Response

α-Sn optical constants expressed as a sum of electronic transitions and free carriers

 α -Sn optical constants expressed as a sum of electronic transitions and free carriers

THE AIR FORCE RESEARCH LABORATORY

 α -Sn optical constants expressed as a sum of electronic transitions and free carriers

Substrate doping has a small effect on carrier densities @ 300 K

95

 α -Sn optical constants expressed as a sum of electronic transitions and free carriers

Substrate doping has a small effect on carrier densities @ 300 K