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son, and S. Zollner, Computational Analysis of Critical Points in Temperature
Dependent and Time Resolved Ellipsometry Spectra of Ge Using Digital Filtering,
Virtual MRS Spring Meeting, April 17-23, 2021 (talk).

C. Emminger, F. Abadizaman, N. Samarasingha, J. Menéndez, S. Espinoza, S.
Richter, M. Rebarz, O. Herrfurth, M. Zahradńık, R. Schmidt-Grund, J. Andreas-
son, and S. Zollner, Analysis of critical points in temperature dependent and time
resolved ellipsometry spectra using digital filtering, Virtual APS March Meeting,
March 15-19, 2021 (talk).

C. Emminger, F. Abadizaman, N. Samarasingha, S. Espinoza, S. Richter, M.
Rebarz, O. Herrfurth, R. Schmidt-Grund, J. Andreasson, S. Zollner, Analysis of
Critical Points in Ellipsometry Spectra Using Digital Filtering, ELI Beamlines
User Conference (virtual), Oct. 13, 2020 (talk).

C. Emminger, F. Abadizaman, N. Samarasingha, S. Zollner, Accurate temperature-
dependent optical constants for germanium near the direct band gap, AFRL Work-
shop (virtual), Sept. 15, 2020. (talk).

F. Abadizaman, C. Emminger, S. Knight, M. Schubert, and S. Zollner, Optical
Hall Effect in the Multi-valley Semiconductor Te-doped GaSb, AVS 66th Interna-
tional Symposium & Exhibition, Columbus, Ohio, Oct. 20-25, 2019 (talk).

C. Emminger, N. Samarasingha, F. Abadizaman, and S. Zollner, Temperature
Dependence of the Critical Point Parameters of the Direct Band Gap of Ger-
manium, 8th International Conference on Spectroscopic Ellipsometry, Barcelona,
Spain, May 26-31, 2019 (talk).

vii



F. Abadizaman, C. Emminger, S. Knight, M. Schubert, and S. Zollner, Opti-
cal Hall Effect in Te-doped GaSb and undoped InAs, 8th International Conference
on Spectroscopic Ellipsometry, Barcelona, Spain, May 26-31, 2019 (poster).

C. Emminger, N. Samarasingha, F. Abadizaman, and S. Zollner, Investigation
of the Temperature Dependence of the Critical Points E0 and E0+∆0 of Bulk Ge,
DPG Spring Meeting, Regensburg, Germany, March 31 – April 5, 2019 (talk).

C. Emminger, N. Samarasingha, F. Abadizaman, and S. Zollner, Analysis of the
Critical Point Parameters of E0 and E0 + ∆0 of Bulk Ge, APS March Meeting,
Boston, Massachusetts, March 4-8, 2019 (talk).

R. A. Carrasco, C. Emminger, N. Samarasingha, F. Abadizaman, and S. Zoll-
ner, Temperature dependent dielectric function and critical point comparison of
bulk Ge and α-Sn on InSb, AVS 65th International Symposium and Exhibition,
Long Beach, California, Oct. 21-26, 2018 (talk).

C. Emminger, R. A. Carrasco, N. Samarasingha, F. Abadizaman, S. Zollner, Tem-
perature dependent dielectric function and critical points of bulk Ge compared to
α-Sn on InSb, IEEE Photonics Society 2018 Summer Topicals Meeting Series,
Waikoloa, Hawaii, July 9-11, 2018 (talk).

C. Emminger, N. Samarasingha, F. Abadizaman, and S. Zollner, Analysis of Crit-
ical Points in the Dielectric Function of Ge between 10 and 738 K, NMAVS Sym-
posium and Exhibition, Albuquerque, New Mexico, 22 May 2018 (talk).

C. Emminger, N. Samarasingha, F. Abadizaman, N. Fernando, and S. Zollner,
Temperature dependence of the dielectric function and analysis of critical point
parameters of bulk Ge, APS March Meeting, Los Angeles, California, March 5-9,
2018 (talk).

C. Emminger, N. Samarasingha, F. Abadizaman, N. Fernando, and S. Zollner,
Temperature dependence of the dielectric function and interband critical points of
bulk Ge, AVS 64th International Symposium & Exhibition, Tampa, Florida, Oct.
30 – Nov. 3, 2017 (talk).

C. Emminger, N. Samarasingha, F. Abadizaman, N. Fernando, and S. Zollner,
Temperature Dependence of the Dielectric Function of Bulk Ge, NMAVS Sympo-
sium and Exhibition, Albuquerque, New Mexico, 16 May 2017 (talk).
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ABSTRACT

ELLIPSOMETRY OF SEMICONDUCTORS UNDER THERMAL AND

LASER EXCITATION

BY

CAROLA EMMINGER, B.S., M.S.

Doctor of Philosophy

New Mexico State University

Las Cruces, New Mexico, 2021

Dr. Stefan Zollner, Chair

The temperature-dependent dielectric function of Ge from spectroscopic ellip-

sometry and the time-resolved pseudodielectric function of Ge and Si from fem-

tosecond pump-probe ellipsometry are quantitatively analyzed in order to study

how critical points are affected by temperature and ultrashort laser pulses. Using

digital linear filter and reciprocal space analysis techniques, the second derivatives

with respect to energy of the dielectric function are calculated and fitted with an-

alytical lineshapes. For the direct band gap E0 of Ge between 10 and 710 K,

x



the Hulthén-Tanguy theory is utilized in order to take into account excitonic ef-

fects. The agreement between the model and the data is remarkable, although the

only significant adjustable parameters are the band gap energy and broadening.

Using two- and zero-dimensional critical point lineshapes, the second derivatives

of the transient pseudodielectric functions of Ge and Si are fitted, and resulting

critical point parameters (threshold energy, lifetime broadening, excitonic phase

angle, and amplitude) are presented as functions of time delay. Coherent acous-

tic phonon oscillations with a period of 11 ps are observed in the critical point

parameters of Ge.
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1 INTRODUCTION

Germanium (Ge) and silicon (Si) are group IV semiconductors with an indirect

band gap of 0.66 eV [1] and 1.12 eV [2], respectively. Both semiconductors are im-

portant materials for optoelectronic devices and an in-depth understanding of the

optical properties of these materials is essential for simulations and developments

of mid-infrared devices, such as photodetectors and lasers [3].

One part of the present work is the investigation of the temperature-dependent

dielectric function at the direct band gap of Ge measured by spectroscopic ellip-

sometry. Excitonic effects at the direct band gap of Ge are not negligible [4–6]

and are taken into account by fitting a model based on the Tanguy solution of

the Hulthén potential [7] to the dielectric function and its second derivative with

respect to energy, from which the temperature dependence of the energy and life-

time broadening of the direct gap between 10 and 710 K is found. In principle,

this model can also be applied to other semiconductors with similar band struc-

tures, such as InSb, GaAs, or Ge1−xSnx alloys, if non-parabolicity, warping, and

screening are considered.

Pump-probe optical spectroscopy can provide insight into carrier dynamics

and many-body effects in semiconductors [8]. The pseudodielectric function of

Ge, Si, and InP has been measured with femtosecond pump-probe ellipsometry
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by Espinoza et al. [9] using pump-pulse wavelengths of 266, 400, and 800 nm. To

enhance the understanding of photoexcitation through the ultrafast laser pulse, a

qualitative analysis of the data is indispensable.

A common method to analyze spectroscopic ellipsometry data is to fit an an-

alytical lineshape to the second derivative of the dielectric function with respect

to energy to obtain parameters (threshold energy, broadening, amplitude, and

excitonic phase anlge) that characterize the critical points which should be in-

vestigated. In this work, the critical point parameters of E1 and E1 + ∆1 of Ge

and E1 of Si from Ref. 9 are found as functions of time delay (before, at, and

after the pump pulse). After a sharp increase or decrease of the critical point

parameters at and shortly after the pump pulse, the parameters start to recover.

In the case of Ge, coherent acoustic phonon (CAP) oscillations with a period of

about 11 ps are observed in the parameters of E1 and E1 + ∆1 within the first

30 ps. It is important to understand the properties of CAP oscillations in order

to distinguish them from other effects, such as band gap renormalization, Pauli

blocking, or heating through the laser. An explanation based on theory [10] is

attempted and is in reasonable agreement with the experimental results.

Structure of the thesis

The present thesis is organized in the following way. In chapter 2, the princi-

ple of spectroscopic ellipsometry is briefly explained, followed by a discussion of

2



experimental conditions and challenges, and a short introduction to femtosecond

pump-probe ellipsometry in section 2.2. Chapter 3 comprises the physical back-

ground relevant for this work. Chapters 4 and 5 constitute the major part of my

Ph.D. work. It should be noted that chapters 4 and 5 are the most recent versions

of manuscripts, which are planned to be submitted for publication in scientific

journals in the near future.

The second energy derivatives of the dielectric and pseudodielectric functions

are computed based on the linear filter method introduced by Le et al. [11], which

combines scale change, noise reduction, and derivatives. Details on the analysis

procedure and the code which I wrote to analyze the data and their derivatives

are provided in the appendix.
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2 EXPERIMENTAL METHODS

2.1 Spectroscopic ellipsometry

2.1.1 Principle

Spectroscopic ellipsometry (SE) is a contact-free optical measurement technique

which measures the change in the polarization of light reflected from the surface

of a sample [12]. Figure 2.1 schematically shows an ellipsometry setup consisting

of a light source, a polarizer, optional compensators, an analyzer, and a detector.

These optical components can change the polarization state of the light which

Figure 2.1: Schematic image of an ellipsometry setup. The initially unpolarized
light emitted from a white light source passes through a polarizer (and becomes
linearly polarized), gets reflected from the surface of a sample, passes through
an analyzer, and finally reaches a detector. Green arrows depict the polarization
state of the light.

passes through them. The polarization is defined by the ellipsometric angles ψ
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and ∆, which are defined by the ratio ρ of the Fresnel reflection coefficients rp

and rs [12]

ρ =
rp
rs

= tan (ψ) ei∆, (1)

where p stands for parallel to and s for perpendicular to the plane of incidence

(p-plane in Fig. 2.1). Expressed in terms of the incident (i) and reflected (r) p-

and s-polarized electric fields (Eip, Eis, Erp, and Ers), the Fresnel coefficients are

defined as

rp =
Erp

Eip

(2)

and

rs =
Ers

Eis

, (3)

which constitute the complex reflection coefficients of the sample for p-polarized

and s-polarized light, respectively. The angle ∆ is the phase difference between the

p- and s-polarized electric field components, and ψ (shown in the image illustrating

elliptically polarized light in Fig. 2.1) can be calculated as ψ = tan−1 (|rp| / |rs|)

[12]. Equations (2) and (3) are related to the reflectance Rp and RS which, for

reflection on the surface of a sample in air (the refractive index of air is equal to

one), are given by [12]

Rp = |rp|2 =

∣∣∣∣∣ ñ2 cos θ −
√
ñ2 − sin2 θ

ñ2 cos θ +
√
ñ2 − sin2 θ

∣∣∣∣∣
2

(4)

and

Rs = |rs|2 =

∣∣∣∣∣cos θ −
√
ñ2 − sin2 θ

cos θ +
√
ñ2 − sin2 θ

∣∣∣∣∣
2

, (5)
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where θ is the angle of incidence of the light, and ñ = n + iκ is the complex

refractive index. The latter is related to the complex dielectric function via

ñ = n+ iκ =
√
ϵ =

√
ϵ1 + iϵ2, (6)

from which follows

ϵ1 = n2 − κ2 (7)

and

ϵ2 = 2nκ, (8)

or

n =
1√
2

√
ϵ1 +

√
ϵ21 + ϵ22. (9)

The imaginary part κ of the refractive index is also called extinction coefficient

and can be calculated in a similar way

κ =
1√
2

√
−ϵ1 +

√
ϵ21 + ϵ22. (10)

The absorption coefficient α is proportional to κ and inversely proportional to the

wavelength λ of the light

α =
4πκ

λ
, (11)

and is usually given in units of cm−1. The intensity of the light inside a material

can be calculated from the absorption coefficient via Beer’s law

I(z) = I0e
−αz, (12)
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where I0 is the initial intensity and z is the direction of propagation of light. The

penetration depth is defined as

ζ =
1

α
, (13)

which gives the distance from the surface inside the material at which the intensity

has decreased to I0/e (e being Euler’s number). The above equations outline some

basic physics needed to understand ellipsometry. More details on the theoretical

background can be found in many textbooks, for example in Refs. 12 and 13, and

optical properties of solids are, for instance, described in [14].

2.1.2 Experimental challenges

The dielectric function of Ge at various temperatures, which is investigated in

this work (chapter 4), was measured using the J. A. Woollam V-VASE ellip-

someter [15] and the UHV crystat shown in Fig. 2.2. While taking an ellip-

sometry measurement in air at room temperature is relatively easy to perform

using a commercial ellipsometer (given that the sample quality and size are suit-

able), experiments below and above room temperature are more challenging. The

temperature-dependent experiments discussed in this work were carried out in

ultra-high vacuum (UHV) with the help of a Janis ST-400 UHV cryostat (see

Fig. 2.2) at temperatures between liquid helium (4.2 K) and liquid nitrogen (77 K)

temperature and up to 800 K. Depending on the sample material, the temperature

at the sample surface deviates more or less from the set temperature below and

7



Figure 2.2: Picture of the V-VASE ellipsometer and the Janis ST-400 UHV cryo-
stat used to measure the temperature-dependent dielectric function presented in
chapter 4. Source: ellipsometry.nmsu.edu [Accessed: 18 November 2021].
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above room temperature due to heat conduction. At the highest possible tem-

perature of 800 K of the cryostat, the sample temperature was measured to be

about 710-740 K for Ge (see chapter 4 and Refs. 6 and 16). In the case of single-

crystalline Ni(100), for instance, a temperature of 770 K could be achieved [17]

using the same instruments as shown in Fig. 2.2.

The surface of a bulk semiconductor oxidizes and forms an overlayer on top of

the bulk substrate. To accurately measure the dielectric function, the Ge sample

was cleaned with isopropanol alcohol in an ultrasonic bath for about 20 min to

reduce the oxide layer. However, the oxide cannot be removed completely and its

thickness increases over time when exposed to air. Details on the preparation of

the sample are given in Sec. 4.2. To obtain the dielectric function of a material, one

needs to take into account the native oxide layer which forms on the top of a bulk

substrate, since ψ and ∆ measured with SE give the dielectric function of material

system, i.e. the substrate plus its oxide overlayer. This dielectric function is known

as the pseudodielectric function and denoted as ⟨ϵ⟩ = ⟨ϵ1⟩ + i ⟨ϵ2⟩. Figure 2.3

depicts ⟨ϵ1⟩ and ⟨ϵ2⟩ of bulk Ge before (blue curves) and after the cleaning the

sample (red solid curves). Using the optical constant of GeO2 from Ref. 18 and

a parametric oscillator model [19], the pseudodielectric function can be corrected

for the oxide layer, which is described in Refs. 18 and 20. A model consisting

of two layers, a substrate and an overlayer, is fitted to the data. The thickness

of the GeO2-overlayer is fitted to the data below the direct band gap, while the
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parameters of the substrate layer (the parameteric oscillator model) are fitted

over the entire spectral range between 0.5 and 6.5 eV. The real and imaginary

parts of the resulting dielectric function ϵ = ϵ1+ iϵ2 are represented by the dashed

line in Fig. 2.3. The GeO2 layer thickness changes with temperature due to the

formation of ice at lower temperatures, and degassing and oxidation or an increase

in surface roughness at higher temperatures [6], as illustrated in Fig. 2.4. At liquid
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Figure 2.4: Change of the thickness of the native oxide layer on top of bulk Ge
with temperature. Figure reproduced from Ref. 6.

helium temperature, it was observed that the thickness grows over time by about

0.04 Å/h, which is shown in Fig. 2.5, probably as a result of oxygen or nitrogen

condensation [6].

The thickness at the highest temperatures is less reliable due to the shift of

the band gap to the lower (more noisy) spectral region, as mentioned in [6]. Noise
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also increases at higher temperatures due to black body radiation. This effect

becomes significant at temperatures above 500 K and energies below 1 eV, but

can be suppressed by installing an iris at the exit window of the cryostat [6].

Figure 2.6 demonstrates how the data at 583 K improve if an iris is used.

Figure 2.7 shows the imaginary part of the dielectric function at the direct

band gap of Ge at room temperature, measured with different step sizes and slit

widths [6, 16]. The spectral resolution of the monochromator depends on the

grating used in this energy range, which has a dispersion of 4.6 nm/mm, and is

calculated via γinst. = hc∆λ/λ2, where h is Planck’s constant, c is the speed of

light, λ is the wavelength of the light, and ∆λ is equal to the dispersion times the
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slit width. Using a slit width of 0.5 mm (1.9 mm) at room temperature, where

E0 = 0.8 eV or λ = 1550 nm, gives an instrumental resolution of about 1.2 meV

(4.5 meV).

As mentioned in section 4.5, spectral line peaks of the xenon light source

used for the measurements with the V-VASE ellipsometer, have an effect on the

dielectric function at the direct band gap at certain temperatures. The graph on

the top in Fig. 2.8 shows the light from the xenon lamp at an angle of incidence

of θ = 70◦ reflected from the bulk Ge sample (“baseline” measurement). The

peaks agree with the spectral lines characteristic for xenon. The graph on the

bottom in Fig. 2.8 shows the depolarization of the ellipsometry measurements

between 323 and 500 K (also at θ = 70◦) on the same sample inside the cryostat

(i.e. the same measurements which are studied in chapter 4). Although the

band gap lies between about 0.8 and 0.9 eV at room temperature and below, the

xenon lamp peaks do not seem to affect the analysis at these temperature. At

temperatures between 370 and 450 K, on the other hand, the xenon lamp peaks

affect the dielectric function and its second derivative, as discussed in section 4.5.

For example, the real part of the dielectric function measured at a temperature

of 391 K shows small distortions between 0.74 and 0.75 eV, as well as at about

0.77 eV, i.e. at the same energies as the xenon lamp peaks occur in the reflection

measurement.
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Figure 2.8: Top: Baseline measurement using a xenon light source at 70◦ angle of
incidence: Reflection off Ge sample in air (i.e. outside of the cryostat). Bottom:
Depolarization of high-resolution measurements (0.4 meV step size, 0.4-0.5 mm
slit width) on the same Ge sample inside the cryostat between 323 and 500 K.
Vertical lines mark the peaks of the xenon light source.
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2.2 Femtosecond pump-probe spectroscopic ellipsometry

The femtosecond pump-probe SE setup is shown in Fig. 2.9. Details on the ex-

Figure 2.9: Femtosecond pump-probe ellipsometry setup at ELI Beamlines, which
was used to measure the data analyzed in chapter 5. The notation is as follows:
beam splitter (BS), super-continuum generation (SCG), chopper (Ch), polarizer
(P), sample (S), lens (L), rotating compensator (CR), analyzer (A), second/third
harmonic generation (SHG/THG), delay line (DL), charge-coupled device detector
(CCD). Reproduced from Ref. 9 with the permission of AIP Publishing.

perimental setup and conditions are given in Ref. 9. In this section, only a brief

description of the experiment is provided.

A Ti:sapphire laser (Coherent Astrella) was used to produce 35 fs laser pump

pulses of a wavelength of λpump = 800 nm with a repetition rate of 1 kHz. Through

second- and third-harmonic generation (SHG and THG), the wavelength of the

laser pulse can be changed from 800 to 400 or 267 nm. The red line represents
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the laser beam, which is split into two parts by a beam splitter, such that a

fraction of the laser beam is used for white light generation (super-continuum

generation (SCG)) needed for the ellipsometry (probe) measurement. Following

the green line, one can see the ellipsometry setup consisting of a polarizer, a

rotating compensator, and an analyzer. The gray box illustrates the optical delay

line, which is required for introducing a time delay between the pump and probe

pulses [9].

The incident angles of the pump and probe beams were 45◦ and 60◦ (to the

surface normal), respectively. Figure 2.10 illustrates schematically how the pump

and probe pulses are reflected from the surface of a Ge sample, where the red

shaded area inside the material (gray box) depicts the volume photoexcited by

the 800 nm laser pulse (with a penetration depth of about ζ ≈ 200 nm). The

Figure 2.10: Schematic image of a pump-probe experiment on Ge. The red shaded
area depicts the volume excited by the 800 nm pump pulse and the green shaded
area shows the probed volume. The figure is not drawn to scale.

green shaded area, in turn, represents the probed volume. The penetration depth

18



in Ge for probe wavelengths between 540 and 590 nm (i.e. the range of the critical

points E1 and E1 +∆1) is much smaller than the one of the 800 nm pump pulse,

and hence, the carrier concentration initiated by the laser pulse is assumed to be

uniform throughout the probed volume in this particular case [9]. The situation

looks different for 267 and 400 nm pump pulses, and also depends on the material

(via the absorption coefficient defined in Eq. (11)), as shown in Fig. 5.7 for Ge

and Si.

While in the temperature-dependent SE experiments the entire sample has

a uniform temperature, the femtosecond laser pulse causes a localized increase

in temperature at the surface of the sample, which contributes to strain inside

the material [10]. Stress and strain with respect to their effect on the E1 and

E1 + ∆1 critical points will be discussed in section 3.3, and laser-pulse induced

strain as the source of coherent acoustic phonon oscillations is subject of the study

in chapter 5.
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3 THEORY

3.1 Interband transitions and critical points

A photon with an energy E = ℏω which is larger than the energy gap of a

material can excite an electron in the valence band so that it occupies a state in

the conduction band, leaving behind a hole in the valence band. Such a transition

between two bands is called an interband transition, and is related to so-called

critical points [21].

Critical points (CPs) occur as structures in the spectrum of the dielectric

function, where the joint density of states (JDOS) shows singularities, known as

Van Hove singularities [22]. The joint density of states is defined as [21]

Dj(ECV ) =
1

4π3

∫
dSk

|∆k(ECV )|
, (14)

where Sk is the constant energy surface and ECV = EC − EV is the difference

between conduction and valence band. Equation (14) shows a singularity if

|∆k(ECV )| = 0, which is the case for the direct transitions shown in the band

structure of Ge on the right-hand side of Fig. 3.1. The left-hand side of Fig. 3.1

depicts the pseudodielectric function ⟨ϵ⟩ = ⟨ϵ1⟩ + i ⟨ϵ2⟩ of bulk Ge measured [16]

with SE at a tempertaure of 10 K. The peaks shown in the spectra of ⟨ϵ1⟩ and

⟨ϵ2⟩ correspond to the critical points related to the interband transitions shown on

the right-hand side of the same figure. The critical points of interest in this work
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Figure 3.1: Left: Critical points in the spectrum of the pseudodielectric function
of bulk Ge measured at 10 K (data taken from [6]). Right: Band structure of
Ge showing interband transitions according to the critical points shown on the
left-hand side. Modified figure from Ref. 21, p. 268.

are the direct band gap E0 (interband transition at the zone center, where k = 0

(Γ-point)), and E1 and E1+∆1 (∆1 denotes the spin-orbit splitting) which result

from interband transitions along the Λ-direction (where the bands are parallel)

close to the L-point. It should be mentioned that instead of E ′
0 and E ′

0 + ∆′
0, a

single critical point Ē ′
0 is denoted since the two critical points cannot really be

distinguished [23].

The lineshape of CPs in the dielectric function ϵ(E) can be defined as [24,25]

ϵ(E) = B − Aeiϕ

(E − Eg + iΓ)µ
, (15)

where A is the amplitude, Eg is the threshold energy, Γ is the broadening, B is

a non-resonant background, and the phase angle ϕ accounts for excitonic effects

via mixing of lineshapes [21]. The exponent µ in Eq. (15) defines the dimen-

sion of a critical point in the following way: µ = 1 for a zero-dimensional (0D)
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(or excitonic) lineshape, µ = 0.5 for a one-dimensional (1D), µ = 0 for a two-

dimensional (2D), and µ = −0.5 for a three-dimensional (3D) lineshape [24, 25].

Critical points, and hence the parameters that describe their lineshape, depend

on temperature, doping, and pressure [21]. The temperature dependence of CPs

in many semiconductor materials is well known. In Ge, for example, the energies

redshift with increasing temperature, while the broadenings increase, the exci-

tonic phase angles decrease, and the amplitudes remain constant, i.e. they are

independent of temperature [23].

The imaginary part of the dielectric function is related to the absorption of the

material (via Eqs. (8) and (11)). Below the fundamental band gap, the absorp-

tion is zero. Ge is an indirect semiconductor, that means that the valence band

maximum and conduction band minimum are not at the same point in reciprocal

space. The maximum of the valence band is at the Γ-point, while the minimum

of the conduction band is located at L (see Fig. 3.1). In principle, the onset of

absorption shows a square-root like dependence on energy, i.e. α ∝ (E − Eg)
1/2,

or a 3D lineshape as defined in Eq. (15) for µ = −0.5 [21]. However, in the case

of Ge, excitonic effects at E0 are present and clearly impact the lineshape [6]. A

3D lineshape is compared to the real part of the dielectric function of Ge at E0 in

Fig. 2.7. Even at room temperature, where excitonic effects are small compared

to cryogenic temperatures, a 3D lineshape does not describe the data well. The

agreement between the data and a lineshape considering excitonic effects, such
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as the Hulthén-Tanguy model [7], is significantly better, which can be seen in

Fig. 4.3. The role of excitons will be further discussed in the next section and in

chapter 4.

3.2 Excitons

As mentioned above, when a photon is absorbed in a semiconductor or insulator,

an electron is excited to the conduction band and a hole is created in the valence

band. These two carriers are attracted by Coulomb interaction and form a bound

pair, which is called an exciton [21]. The binding energy of an exciton is given

by [14]

En = − µh

m0

1

ϵ2r

RH

n2
, (16)

where n is the principle quantum number (not to be confused with the refractive

index), RH = 13.6 eV is the Rydberg energy of the hydrogen atom, m0 is the

free electron mass, µh is the reduced mass of the electron and hole, and ϵr is the

dielectric constant. The orbital radius is proportional to the Bohr radius aH of

the hydrogen atom:

rn =
m0

µh

ϵrn
2aH . (17)

Bound excitons appear as sharp peaks in the absorption spectrum below the band

edge, and unbound excitons enhance the absorption above the band gap (exciton

continuum) [21]. Two basic types of excitons are distinguished: Wannier-Mott (or

free) excitons, and Frenkel (or tightly bound) excitons. The difference between
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these two types is defined by their binding energy and orbital radius. Wannier-

Mott excitons, which are mainly observed in semiconductors, have exciton binding

energies of about 0.01 eV, while Frenkel excitons have binding energy of about

0.1-1 eV [14]. In the case of Ge, the excitonic binding energy is on the order of

1-2 meV [26].

Excitonic effects are considered by the theory established by Elliott [27] and

Tanguy [7, 28]. The Tanguy model for a Hulthén potential takes into account

excitonic effects and screening and can, in principle, be applied to various ma-

terials. Figure 3.2 shows the model for InSb, InAs, InP, and GaAs compared to

data taken from data bases [29], and Ge measured as explained in chapter 4. The

data set of InSb represented by small dots was measured with an FTIR ellip-

someter [30]. The model is shown for different screening parameters: g = 0.001

(equivalent to g → 0, i.e. maximum screening), g = 0.5 (dotted), and g = 100

(equivalent to g → ∞, i.e. screening switched off) [7]. The agreement between

theory and experiment can probably be improved by considering non-parabolicity

and warping, and using suitable screening parameters, which should be addressed

in future work. In chapter 4, the model is applied to the temperature-dependent

band gap of Ge.
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Figure 3.2: Imaginary part of the dielectric function of several materials taken
from [29] (squares) at room temperature compared to the Hulthén-Tanguy model
[7] using different screening parameters: g = 0.001 (dashed), g = 0.5 (dotted),
and g = 100 (dash-dotted). The data represented by small dots were measured
at NMSU using an FTIR ellipsometer [30] (InSb) and a V-VASE ellipsometer [15]
(Ge, see section 4.2). The solid lines represent the fits explained in section 4.2.
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3.3 Strain-related energy shifts

An ultrafast laser pulse can induce strain in a material [10, 31], which in turn

affects the dielectric function since critical points depend on strain [20,32,33]. In

light of this, some equations and relations which can be used to estimate the E1

and E1 +∆1 CP energy shifts due to strain are summarized in this section.

Stress σ̂ and strain ϵ̂ are second-rank tensors and related to one another via

the elastic compliance Ŝ, which is a fourth-rank tensor [34]:

ϵij =
∑
kl

Sijklσkl. (18)

While second-rank tensors can be expressed as 3×3 matrices, a fourth-rank tensor

has 9× 9 = 81 components. However, the elastic compliance can be reduced to a

6× 6 matrix (this is explained, for example, in Sec. 3.4 of Ref. 35) and its form

depends on the space group of the material. For Ge and Si (Oh-group), the elastic

compliance is [35]

Ŝ =


S11 S12 S12 0 0 0
S21 S11 S12 0 0 0
S21 S21 S11 0 0 0
0 0 0 S44 0 0
0 0 0 0 S44 0
0 0 0 0 0 S44

 . (19)

Thomsen et al. [10] assume for their picosecond pump-probe experiments that

the stress only depends on z. Hence, the only non-zero component of the strain

tensor is ϵ33. In terms of the definition given by Eq. (18), this component can be
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expressed as

ϵ33 =
∑

kl S33klσkl = S3311σ11 + S3312σ12 + S3313σ13
+S3321σ21 + S3322σ22 + S3323σ23
+S3331σ31 + S3332σ32 + S3333σ33.

(20)

Using the convention in Tab. 3.6 in Ref. 35, one gets

ϵ3 =
∑

kl S3klσkl = S31σ1 + S36σ6 + S35σ5
+S36σ6 + S32σ2 + S34σ4
+S35σ5 + S34σ4 + S33σ3,

(21)

which can be reduced using Eq. (19) to

ϵ3 = S21(σ1 + σ2) + S11σ3. (22)

Setting σ1 = σ2 = σ3 = σ in Eq. (22) leads to

ϵ3 = (S11 + 2S12)σ. (23)

Stress is given in units of N/m2 and strain is unitless, so the components of Ŝ

must be in m2/N. Similar to Eq. (18), one can write

σij =
∑
kl

Cijklϵkl, (24)

where Cijkl = Ĉ is the fourth-rank stiffness tensor. Relations between the com-

ponents of the compliance and stiffness tensors are as follows [21]:

C44 =
1

S44

, (25)

C11 − C12 =
1

S11 − S12

, (26)

and

C11 + 2C12 =
1

S11 + 2S12

. (27)
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Stiffness constants are listed, for example, in Tab. 3.6a in Ref. 21 for several

materials. Using C11 = 1.285 × 107 N/cm2, C12 = 0.483 × 107 N/cm2, and

C44 = 0.680× 107 N/cm2 for Ge [21], one can calculate

S11 + 2S12 =
1

C11 + 2C12

= 0.444
cm2

N
. (28)

The shifts of the E1 and E1 +∆1 critical point energies due to strain are defined

in the following way [36]

E1 = E0
1 +

∆1

2
+ ∆EH −

√
(∆1)2

4
+ (∆ES)2 (29)

E1 +∆1 = E0
1 +

∆1

2
+ ∆EH +

√
(∆1)2

4
+ (∆ES)2, (30)

where E0
1 is the E1 energy of the unstrained material, and ∆EH and ∆ES are the

hydrostatic and shear shifts, respectively, given by [36]

∆EH =
√
3D1

1ϵH (31)

and

∆ES =
√
6D3

3ϵS. (32)

D1
1 and D

3
3 are the hydrostatic and shear deformation potentials. The hydrostatic

strain ϵH and shear strain ϵS depend on the in-plane (ϵ∥) and out-of-plane (ϵ⊥)

strain [36]:

ϵH =
ϵ⊥ + 2ϵ∥

3
(33)

and

ϵS =
ϵ⊥ − ϵ∥

3
. (34)
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These equations are used in chapter 5 to estimate the shifts ∆E1 and ∆(E1+∆1)

of Ge due to the strain caused by the femtosecond laser pulse in the time-resolved

SE experiments.
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Abstract

The temperature dependence of the complex dielectric function ϵ1+ iϵ2 of bulk Ge

near the direct band gap was measured with spectroscopic ellipsometry at tem-

peratures between 10 and 710 K. Second derivatives of the dielectric function with

respect to energy are obtained using a digital linear filter method. A model that

incorporates excitonic effects using the Tanguy model for the Hulthén potential

[C. Tanguy, Phys. Rev. B 60, 10660 (1999)] was used to fit the dielectric func-
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tion and its second derivatives simultaneously. Using k · p theory and literature

values for effective masses, remarkable agreement with experiment is obtained up

to room temperature using the direct band gap and its broadening as the only

adjustable parameters.

4.1 Introduction

Photo-excited electron-hole pairs in semiconductors form excitonic bound states,

because the negatively charged electron and the positively charged hole are at-

tracted to each other by the Coulomb force, similar to a hydrogen atom. The

Bohr model gives a reasonable description of excitonic effects in semiconductors,

as long as the effective masses of electrons and holes replace the masses of the

proton and free electron, respectively, and the electrostatic screening is taken into

account using the static dielectric constant. This electron-hole interaction not

only results in discrete excitonic peaks below the band gap. It also leads to the

so-called Sommerfeld enhancement of the absorption above the band gap [21].

While the physics of excitonic effects has been understood for decades [7, 27,

28], a quantitative comparison of these theories with experimental data for the

dielectric function of semiconductors near the direct band gap E0 has never been

attempted. The goal of this work is to fit the dielectric function (and its second

derivative) of Ge near E0 from 10 to 710 K with only two adjustable parameters,

the band gap energy and the broadening at each temperature. Our model will have
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important applications for optoelectronic devices such as detectors and lasers. It

can be applied not only to Ge, but also to other materials, such as GaAs, InSb,

or germanium-tin alloys.

In a recent publication [6], we presented results on the temperature depen-

dence of the direct band gap energy and broadening of bulk Ge, obtained from

spectroscopic ellipsometry (SE). The E0 energy was determined by a Fourier or

reciprocal space [42] (RS) analysis, without assuming a specific lineshape, as well

as by fitting a three-dimensional (3D) standard analytical lineshape [24,25] to the

numerically calculated [37] second derivatives (SD) with respect to energy, and

by applying a parametric semiconductor model [19]. However, the assumption of

a 3D lineshape does not deliver a satisfactory description of the absorption edge

of Ge due to the presence of excitonic effects [38,39]. An analytical expression for

optical absorption by excitons was published by Elliott [27] and the theory was

expanded to the complex dielectric function by Tanguy [28]. The bare excitonic

Coulomb interaction in semiconductor materials can be screened by mobile car-

riers, and this leads to a Yukawa-like potential for which there are no analytical

solutions to the excitonic problem. However, it has been shown that a remarkably

accurate substitution for the Yukawa interaction is the Hulthén potential [40],

for which Tanguy [7] has found analytical expressions for the complex dielectric

function. In the limit of negligible screening, applicable to intrinsic Ge at room

temperature and below, the dielectric function for the Hulthén potential becomes
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identical to the dielectric function found by Tanguy for the bare Coulomb po-

tential. At the highest temperatures in our experiments, however, the intrinsic

carrier concentration increases by several orders of magnitude to values compara-

ble to the critical Mott concentration [41] and therefore screening effects may be

substantial. Accordingly, we use the Tanguy solution for the Hulthén potential to

fit he dielectric function and its second derivative. The latter is obtained using a

digital linear filter method [11,43,44] based on extended Gauss functions [45,46].

The Hulthén-Tanguy model depends on the band gap energy, a Lorentzian

broadening parameter, the exciton binding energy, an amplitude, a momentum

matrix element, and a screening parameter. The amplitude, momentum matrix

element, and excitonic binding energy can be obtained from k · p theory and fit

to the band structure. The screening parameter is computed from a standard

expression for the Thomas-Fermi screening wave vectors, following a prescription

from Ref. 5. This leaves only two adjustable parameters for the Hulthén model:

energy and broadening of the direct gap. We add a Sellmeier term with two

additional adjustable parameters to consider contributions from critical points at

higher energies to the real part of the dielectric function. We simply combine

the heavy-hole (hh) and light-hole (lh) excitonic dielectric functions as if they

were additive. This is not strictly correct but it has been shown to be a good

approximation [5, 47].

Recent work [5] on phonon-assisted indirect absorption in Ge shows that this
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absorption is strongly resonant at the direct band gap. A satisfactory theory for

photon energies above the direct gap is not available at this time, and one cannot

rule out a significant contribution in a range that was traditionally believed to

be accounted mainly by direct transitions. Unfortunately, previous fits of the

dielectric function in this range relied on adjustable amplitude parameters that

are not well described by theory and on the introduction of phase factors that

account for excitonic effects very indirectly. Due to the ad-hoc character of the

parameters, the issue of whether the above gap absorption is truly dominated by

direct transitions could not be addressed. The new model that we present in this

paper treats excitonic effects explicitly and relies on known material parameters

to calculate those “amplitudes”. The only significant adjustable parameters are

the band gap energy and its broadening, and therefore any deviations between

our fits and the experimental data might be related to the possible contribution

of phonon-assisted processes.

4.2 Experiment

The dielectric function in the region of the direct band gap of a commercially

obtained undoped bulk Ge sample with (100) surface orientation was measured

between 80 and 710 K using a J. A. Woollam VASE ellipsometer [15] with a xenon

light source (190 nm - 2 µm) and a Janis ST-400 UHV cryostat. The Ge wafer

was undoped with a resistivity higher than 50 Ωcm, which indicates an electron
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or hole concentration no higher than 1014 cm−3 [48].

We used liquid nitrogen to cool the system for the measurements between

80 K and room temperature. The sample was cleaned in an ultrasonic bath in

isopropanol for 20 min, followed by an ultrasonic bath in ultrapure water for

another 20 min, which reduced the native oxide layer thickness from 4 nm to

about 1 nm. After the clean, the sample was immediately mounted into the

UHV cryostat and heated up to 635 K for about eight hours for degassing and to

stabilize the native oxide layer. At temperatures T ≥ 391 K, we installed an iris

at the exit window of the cryostat to suppress effects due to black body radiation,

as illustrated in Fig. S4 in Ref. 6. To resolve the narrow structure of the excitonic

peak, we used smaller step sizes (0.2-0.4 meV) than in our previous work [6]. A

slit width between 300 and 1700 µm was chosen for our J. A. Woollam Co. HS-190

monochromator in order to achieve an instrumental resolution of about 1-2.5 meV

and a satisfactory signal-to-noise ratio at each temperature.

Experimental parameters at the various temperatures are listed in Tab. 4.1.

We also analyze the data set from Ref. 6 measured at 10 K with a step size of

0.5 meV and slit width of 500 µm.

A two-layer model (substrate+native oxide layer) was used to perform an oxide

correction of the pseudodielectric function and to extract the dielectric function, as

explained elsewhere [18,20]. The thickness of the native oxide layer varied between

12-13 Å at and below room temperature and 7-11 Å at higher temperatures.
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Table 4.1: Experimental parameters: Slit width (s), step size (∆E ′), and native
oxide layer thickness (d). An iris was installed at the exit window of the cryostat
for measurements above 400 K. ∆E is the width of the linear filter used to calculate
the second energy derivatives (see Sec. 4.4).

Temperature s (µm) ∆E ′ (meV) d (Å) Iris ∆E (meV)

10 Ka 500 0.5 11 No 1.0

80-300 K 400 0.4 12-13 No 0.9-1.6

323-391 K 400 0.4 9-11 No 1.8-4.0

412-436 K 500 0.4 9 Yes 3.5

458-479 K 900 0.4 8 Yes 3.5-4.0

500-542 K 1000 0.4 8 Yes 4.0-4.5

559 K 800 0.4 8 Yes 5.0

578-676 K 1500 0.4 8 Yes 5.0-7.0

690-710 K 1700 0.4 7-8 Yes 8.0

aRef. 6

4.3 Hulthén-Tanguy model

To describe excitonic effects at the direct band gap of Ge, we use the expression

for the complex dielectric function given by the Tanguy model for the Hulthén

potential [7]

ϵ(E) =
A
√
R

(E + iγ)2
×

[g̃ (ξ(E + iγ)) + g̃ (ξ(−E − iγ))− 2g̃ (ξ(0))] (35)
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with

ξ(z) =
2(

E0−z
R

)1/2
+
(

E0−z
R

+ 4
g

)1/2 , (36)

and

g̃(ξ) = −2ψ

(
g

ξ

)
− ξ

g
− 2ψ(1− ξ)− 1

ξ
, (37)

where ψ(z) is the digamma function, A is the amplitude, R is the excitonic binding

energy, γ is the broadening, and E0 is the direct band gap energy. The Hulthén

screening parameter g depends on the carrier concentration and is set to g = 35

for undoped Ge, according to Fig. 5 in Ref. 47. However, g is not indepen-

dent of temperature due to the temperature-dependent carrier concentration (see

Figs. 4.10 and 4.11 in the supplementary material). The four terms in Eq. (37)

define the lineshape of the direct band gap, which is illustrated in Fig. 4.1. We

define ϵ(E) = ϵ1(E) + iϵ2(E) =
∑4

j=1 fj with

f1 = −2β

[
ψ

(
g

ξ(z1)

)
+ ψ

(
g

ξ(z2)

)
+ ψ

(
g

ξ(0)

)]
, (38)

f2 = −β
g
[ξ(z1) + ξ(z2) + ξ(0)] , (39)

f3 = −2β [ψ(1− ξ(z1)) + ψ(1− ξ(z2)) + ψ(1− ξ(0))] , (40)

and

f4 = − β

ξ(z1)
− β

ξ(z2)
− β

ξ(0)
, (41)

where β = A
√
R(E + iγ)−2, z1 = E + iγ, and z2 = −E − iγ. The first term, f1,

describes the enhancement due to the exciton continuum (unbound excitons), f3

37



Figure 4.1: Real and imaginary parts of the terms in Eq. (35), defined in Eqs.
(38)-(41), with E0 = 0.889 eV (marked by the vertical line), γ = 1 meV, R =
1.5 meV, A = 1.0 eV−3/2, and g = 35. The solid line represents the dielectric
function as defined in Eq. (35), which is equivalent to the sum of the four terms
f1-f4 in Eqs. (38)-(41). For large g, f2=0.
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describes the peak of the bound exciton, and f4 is equal to a three-dimensional

critical point lineshape, that describes the absorption edge without excitonic ef-

fects. For large screening parameters, i.e. g >> 1, f2 vanishes.

The Hulthén-Tanguy model assumes spherical parabolic bands [7, 27], as well

as one conduction and one valence band, but since two degenerate valence bands

(hh and lh) are present at the Γ-point of Ge, one would have to solve a compli-

cated three-body problem [47]. However, the error made by adding separate hh-

and lh-excitons is small, as discussed in Refs. 47 and 5, and therefore we use

separate terms for the hh and lh. To take into account contributions from the

E1 critical point to the real part of the dielectric function, we add a single term

from the Sellmeier dispersion formula, i.e. 1+A1/(1−B′2
1 E

2), where we treat the

parameters A1 and B′
1 = B1/(2πcℏ) as adjustables. Values for A1 and B1 for Ge

can be found in Ref. 49 (A1 ≈ 14.76, B′
1 ≈ 0.35 eV−1). Since the split-off band

contribution E0 +∆0 is small and only affects the real part of the dielectric func-

tion, which can be compensated by adapting the Sellmeier parameters, we do not

include an additional term for the split-off band. Following these considerations,

the expression that we use for the fits is

ϵ(E) = 1 +
A1

1−B′2
1 E

2

+
Ahh

√
Rhh

(E + iγhh)2
[g̃ (ξ(E + iγhh)) + g̃ (ξ(−E − iγhh))− 2g̃ (ξ(0))]

+
Alh

√
Rlh

(E + iγlh)2
[g̃ (ξ(E + iγlh)) + g̃ (ξ(−E − iγlh))− 2g̃ (ξ(0))] , (42)
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where γhh and γlh are the hh- and lh-broadening parameters, respectively. The

excitonic amplitude is given by [21]

Ah =
e2
√
m0√

2πϵ0ℏ
µ
3/2
h

EP

3
, (43)

where h = hh, lh, e is the electron charge, m0 is the free electron mass, ϵ0 is

the vacuum permittivity, µh is the reduced mass calculated from the effective

mass of the hh or lh and the effective mass of the electron in the Γ-valley, and

EP = 2P 2/m0 with P being the k ·p momentum matrix element corresponding to

interband transitions between the Γ′
25 valence band and the Γ′

2 conduction band.

From the reduced mass µh = mhmeΓ/(mh +meΓ) and the Rydberg energy of the

hydrogen atom Ry = 13.6 eV, the exitonic binding energy is calculated

Rh =
µh

m0ϵ2st
Ry, (44)

where ϵst is the static dielectric constant. The effective mass meΓ of the electron

in the Γ-valley is related to EP and E0: [50–52]

m0

meΓ

= 1 +
EP

3

[
2

E0

+
1

E0 +∆0

]
, (45)

where ∆0 = 0.29 eV [6,53] is the temperature independent spin-orbit splitting at

the Γ-point. The hh and lh effective masses are given by [54]

m0

mhh

=
1

ℏ2
[
−A+

√
B2 + C2/5

]
(46)

and

m0

mlh

=
1

ℏ2
[
−A−

√
B2 + C2/5

]
, (47)
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where A, B, and C are parameters introduced by Dresselhaus, Kip, and Kittel [55]

(DKK), which are defined as [52,55]

A =
1

3
[F + 2G+ 2M ] + 1, (48)

B =
1

3
[F + 2G−M ] , (49)

C2 =
1

3

[
(F −G+M)2 − (F + 2G−M)2

]
. (50)

The DKK parameters A, B, and C2 depend on temperature via [21]

F (T ) = −EP (T )/E0(T ), (51)

M(T ) = −EQ(T )/E
′
0(T ), (52)

G(T ) = G(4.2 K)
a20(4.2 K)

a20(T )
. (53)

The temperature dependence of E ′
0 is taken from Ref. 20:

E ′
0(T ) = (3.18 eV)− (0.05 eV)

(
1 +

2

e
313 K

T − 1

)
. (54)

In Eq. (52), EQ = 2Q2/m0, and Q is the non-zero matrix element corresponding

to interband transitions between the Γ′
25 valence band and the Γ′

15 conduction

band [21,52]. Thermal expansion causes a temperature dependence of the matrix

elements M = P,Q given by [5]

EM(T ) = EM(4.2 K)× a20(4.2 K)

a20(T )
, (55)

via the temperature-dependent lattice constant

a0(T ) = (5.6516 Å) +
β

exp(T0/T )− 1
, (56)
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Table 4.2: Parameters at 4.2 K, determined as explained in the text. Effective
and reduced masses are given in units of m0.

meΓ mhh mlh µhh µlh Ahh Alh Rhh (meV) Rlh (meV)

0.036 0.33 0.042 0.032 0.019 0.74 0.35 1.8 1.1

where β = 1.315×10−2 Å and T0 = 355.14 K are parameters describing thermal ex-

pansion of the Ge lattice [5]. The change of the matrix elements with temperature

is small (less than 1% between 0 and 800 K). Therefore, the major contribution

to the temperature dependence of the DKK parameters and consequently of the

effective masses stems from the energy gaps.

Equation 53 specifies the contribution related to the matrix element R between

Γ′
25 and Γ′

12 [21, 52]. Since the temperature dependence of this gap is not known,

we use A = −13.34, B = −8.48, and |C| = 13.14 at 4.2 K from Ref. 5 in order

to find exact low-temperature solutions. Using E0(4.2 K) = 0.889 eV [56],we

obtain EP (4.2 K) = 26.0 eV (which is close to the value of 26.3 eV reported

by Lawaetz [57]), EQ(4.2 K) = 18.5 eV, and G(4.2 K) = −1.04. Table 4.2

lists the resulting effective and reduced masses, amplitudes, and excitonic binding

energies at liquid He temperature. The conduction band effective massmeΓ agrees

well with meΓ = 0.037 m0 reported by Roth et al. [58] and meΓ = 0.038 m0 by

Lawaetz [57], and the calculated hh and lh masses are in reasonable agreement

with the values found by Lawaetz [57] (mhh = 0.35 m0 and mlh = 0.043 m0).
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4.4 Second derivatives through linear filtering

To obtain the second energy derivatives, we apply the linear filter method using

Gaussian kernels by Le et al. [11], which is based on a direct space convolution

f̄(E) =

∫ ∞

−∞
dE ′f(E ′)bM(E − E ′) (57)

with extended Gauss (EG) [11,45,46] filters

bm(x) =

(
1− a

1!

d

da
+ · · · (−1)m

am

m!

dm

dam

)
a−

1
2 e−

x2

4a , (58)

where a = ∆E2 and m = 1, . . . ,M . This technique allows for simultaneous noise

reduction, interpolation, calculation of derivatives, and scale change [11]. The

latter is not needed for our data which were measured with equidistant energy

steps.

We choose M = 4 following the discussions in Refs. 11 and 44, and since we

do not see a significant advantage in using M of higher-order. Substituting Eq.

(A2) into Eq. (A1) and approximating the integral as a sum over the data points

f(Ej) = ϵj, in accordance with Eq. (21c) in Ref. 11 for wavelength-to-energy

conversion, we can write the dielectric function for M = 4 and equidistant energy

steps ∆E ′ as

ϵ̄4 (E) ≈
π− 1

2∆E ′

12288∆E3

∞∑
j=−∞

[
ϵje

−
(E−Ej)

2

4∆E2

(
15120− 10080 (E − Ej)

2

∆E2

+
1512 (E − Ej)

4

∆E4
− 72 (E − Ej)

6

∆E6
+

(E − Ej)
8

∆E8

)]
(59)
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from which we calculate the second derivative

d2ϵ̄4 (E)

dE2
≈ π− 1

2∆E ′

49152∆E

∞∑
j=−∞

[
ϵje

−
(E−Ej)

2

4∆E2

×

(
− 110880 +

188496 (E − Ej)
2

∆E2
− 45936 (E − Ej)

4

∆E4

+
3608 (E − Ej)

6

∆E6
− 106 (E − Ej)

8

∆E8
+

(E − Ej)
10

∆E10

)]
. (60)

Equation (59) can be used to obtain a continuous function of the dielectric function

with noise reduction depending on the filter width ∆E, which is chosen according

to the white noise onset of the Fourier coefficients obtained from a discrete Fourier

transform of the data [11,44] and is illustrated in Fig. 4.2. The Fourier coefficients
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Figure 4.2: Natural logarithm of the Fourier coefficient amplitude Cn of the real
(ϵ1) and imaginary (ϵ2) part of the dielectric function of Ge at 80 K, obtained as
explained in the text. Symbols represent the Fourier transform of the EG filters
forM = 4 and different ∆E. The vertical lines mark the onset of white noise for ϵ1
(solid) and ϵ2 (dashed), respectively. ∆E = 0.85 meV for ϵ1 and ∆E = 0.95 meV
for ϵ2 are the best choices for this case.
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Cn of the real (ϵ1) and imaginary (ϵ2) part of the dielectric function are obtained

from a discrete Fourier transform along with removal of endpoint discontinuities,

as described in Ref. 42. Comparing the Fourier transform B4(n) of the EG filter

(symbols in Fig. 4.2) with ln(Cn), it becomes obvious why the right choice of ∆E is

crucial to efficiently suppress noise while at the same time preserving information

about the lineshape contained in the lower order Fourier coefficiens [11, 44].In

other words, if ∆E takes on a value that is too small, noise is enhanced and

distorts the lineshape, while a rather large ∆E broadens the lineshape. For most

data sets, the filter widths of ϵ1 and ϵ2 are chosen to have the same value, but for

some cases (such as the one shown in Fig. 4.2), ϵ2 requires slightly more filtering.

We reach the best compromise between noise reduction and broadening of the

lineshape due to the filter for a drop of B4 by approximately 40-50% at the onset

of white noise (similar to Fig. 5 in Ref. 11 and Fig. 2 in Ref. 44). For the data

shown in Fig. 4.2, this corresponds to a filter width of ∆E = 0.85 meV for ϵ1 and

∆E = 0.95 meV for ϵ2, which is about twice the step size (∆E ′ = 0.4 meV) and

about the same as the instrumental broadening for E0 at 80 K.

Determining the filter widths from the Fourier coefficients provides a tangible

method to set the amount of smoothing for each data set in the same way. For the

calculation of the second derivatives of our data, smoothing works slightly better

using the EG filter method compared to the commonly used Savitzky-Golay [37]

technique. This is illustrated in Figs. 4.16 and 4.17 in the supplementary material.
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In more recent publications, the authors of Ref. 11 point out that the EG filter can

be outperformed by either using different filters [59] or by exploiting a maximum-

entropy method [60] to extend the Fourier coefficients beyond the white-noise

onset to reconstruct data and generate derivatives that are effectively noise-free.

For the purpose of our investigations, we achieve satisfactory results utilizing the

EG filters.

4.5 Fitting

The fits are performed using a standard Levenberg-Marquardt algorithm [61],

modified for the possibility of a simultaneous fit of the real and imaginary parts

of the dielectric function and their second energy derivatives by calculating a

weighted χ2. Parts (a) and (b) of Fig. 4.3 show ϵ1 and ϵ2 (dotted lines), respec-

tively, determined through independent fits at each wavelength (point-by-point

fits) and corrected for the native oxide layer at various temperatures. Dotted lines

in (c) and (d) represent the second derivatives calculated via Eq. (70) and solid

lines in (a)-(d) show the fits with Eq. (42). The energy and broadening parameters

are fitted to ϵ1 and ϵ2 and their second energy derivatives, d2ϵ1/dE
2 and d2ϵ2/dE

2,

while the Sellmeier parameters are fitted to the real part only. Since the hh and

lh excitonic peaks cannot be distinguished in our data, we set γ = γhh = γlh.

The agreement between the model and the data right at the band gap (i.e. in the

range of E0±40 meV) at room temperature and below is remarkable, particularly
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in view of the fact that amplitudes are not fitted, as in traditional ellipsometry

work. At the lowest temperatures (10-110 K), however, while the model provides

a good description of the exciton continuum, the excitonic peak, which depends on

the broadening, the amount of screening, and the excitonic binding energy, is not

described well by the model. The reason for this discrepancy is unclear, but might

partly be related to the broadening and to limitations of our additive model for

the excitonic contributions of light- and heavy-holes. Above room temperature,
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Figure 4.3: Real (a) and imaginary (b) parts of the dielectric function and the
corresponding second derivatives with respect to energy, (c) and (d), respectively,
calculated from Eq. (70) at various temperatures. Solid lines represent the best
fits to the data.

we observe distortions at about 0.74, 0.77, and 0.8 eV due to xenon lamp spectral

line peaks. These distortions seem to affect the second derivatives and the broad-
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ening between 370 and 450 K. It may be possible to avoid this problem by taking

measurements with a quartz tungsten halogen lamp, which does not have discrete

spectral lines. Furthermore, the agreement between the model and the imaginary

part ϵ2 worsens with increasing temperature. This can be explained only to some

extent by the uncertainty caused by the native oxide layer correction. Changing

the oxide layer thickness by 1 Å results in a change in the ϵ2 magnitude of about

6%, while the deviation between model and data at T > 500 K is on the order of

10-25%. This is illustrated in part (b) of Fig. 4.4, which shows the fit results of

the 690 K measurement. Although it appears that the band gap energy is off by

a few meV and shifting the fit to the left (dashed curve) improves the agreement

of the model and ϵ2, it worsens the real part and the second derivatives. Hence,

we conclude that the problem lies with the amplitude rather than the direct band

gap energy.

We have extended the model to include non-parabolicity and the energy de-

pendence of the momentum matrix element, but we find that the overall effect is

negligible for the spectral range of our fits, and therefore use the simpler formula-

tion for parabolic bands. The discrepancies due to non-parabolicity are small for

E − E0 < 40 meV and only become important for E − E0 > 100 meV.

Due to the issue with the magnitude it was necessary for the high-temperature

data sets to fit the energies and, in some cases also the broadenings, to the second

derivatives only. At the highest temperature (710 K), the energy and broadening
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Figure 4.4: Like Fig. 4.3 for a temperatures of 690 K, where the solid line repre-
sents the best fit to the data and the dashed line shows the fit shifted by 8 meV
towards lower energies.

were fitted to the second derivative of ϵ2 only, since d2ϵ1/dE
2 is too distorted as

a results of noise. Figure 4.9 shows the fit results at 598, 639, 676, and 710 K.

4.6 Temperature dependence

Figure 4.5 shows the temperature dependence of the direct band gap energy ob-

tained from the Tanguy fits compared to results from Refs. 6 and 56. The tem-

perature dependence of the broadening parameters obtained from the Hulthén-

Tanguy fits is shown in Fig. 4.6 along with experimental results by McLean and

Paige [62,63] and Aspnes [26], and the broadening calculated according to Eq. (38)

in Ref. 47 for ϵ = 0. For the latter, only contributions corresponding to scattering
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Figure 4.5: Temperature dependence of the direct band gap energy obtained from
the fits with Eq. (42) (□), compared to the results by a reciprocal space analysis [6]
(△) and the results from Macfarlane et al. [56] (×). Lines represent fits with Eq.
(61).

of electrons with LA and LO phonons are taken into account (for further expla-

nations see Sec. 4.8.2 in the supplementary material). Temperature-dependent

phonon energies from Ref. 64 are considered in the calculation, as well as the

temperature dependence of the transverse mass using Eqs. (B4) and (B5) in Ref.

5. The deformation potentials (taken from Ref. 47) and the longitudinal mass

are assumed to be independent of temperature. For better comparison with the

theory, the instrumental resolution is added to the calculated broadening. We

note that the agreement between the experimental and predicted broadenings is

reasonable up to room temperature. Theory and experiment begin to diverge at

the temperatures when the lineshape fits begin to worsen. Taking into account
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the temperature dependence of the screening parameter g reduces the broadening

at the highest temperatures by about 10% (see Sec. 4.8.3 in the supplementary

material), as shown in Fig. 4.12.
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Figure 4.6: Temperature dependence of the broadening obtained from the fits
(△), best fit to the data with Eq. (62) (dashed), filter widths used for the real
part (▽) and imaginary part (□), the instrumental resolution (γinst.), calculated
width as explained in the text (◦), and values from McLean and Paige [62,63] (×)
and Aspnes [26] (+). The hh and lh broadening parameters are forced to have
the same value.

To fit the temperature dependence due to electron-phonon interactions, we use

the Bose-Einstein model for the energies [23]

E(T ) = Ea − Eb

[
1 + 2/

(
eEph/(kBT ) − 1

)]
, (61)

where Ea is the unrenormalized transition energy, Eb is the electron-phonon cou-

pling strength, kB is the Boltzmann constant, and Eph = kBΘph is the effective
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phonon energy. A similar expression describes the broadening as function of tem-

perature [23]

γ(T ) = γ1 + γ0
[
1 + 2/

(
eEph/(kBT ) − 1

)]
. (62)

Equation (62) is an attempt to capture the complex physics of the electron-phonon

self energies in a simple expression that uses an effective phonon frequency. It is

helpful as a compact parametrization of the experimental data. The fits with the

above equations are shown by the various lines in Figs. 4.5 and 4.6, and the fit

parameters in Eqs. (61) and (62) are listed in Tabs. 4.3 and 4.4.

Table 4.3: Parameters Ea, Eb, and the effective phonon energy Eph obtained from
fitting Eq. (61) to the temperature dependent energy E0 of the direct band gap
for different analysis methods and models.

Ea (eV) Eb (eV) Eph (meV)

This work 0.958± 0.002 0.071± 0.003 25± 1

RS (Ref. 6) 0.953± 0.003 0.070± 0.004 25± 1

SD, 3D (Ref. 6) 0.947± 0.004 0.061± 0.005 22± 2

We find E0 = 888.8 ± 0.5 meV at 10 K and E0 = 882.4 ± 0.5 meV at 80 K,

which compare well to the energies reported by Nishino et al. [66] (889.0 meV at

24 K and 881.4 meV at 83 K) and Macfarlane et al. [56] (889.2 meV at 20 K and

883.2 eV at 77 K). Aspnes [26] found E0 = 887.2 meV and the excitonic energy

Eex = 885.8± 0.5 meV, as well as a broadening of 1.8± 0.3 meV at 10 K.

The decrease in the effective masses between 10 and 710 K is 29% for meΓ
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Table 4.4: Parameters obtained by fitting Eq. (62) to the temperature dependent
broadening, where γ0 = 0, and the effective phonon energy was fixed to the value
obtained from fitting the energy (see Tab. 4.3). Calculated values from Ref. 65
are listed for comparison.

γ1 (meV) Eph (meV)

This work 2.21± 0.06 25(f)

Theory (Ref. 65) 1.459± 0.001 27.6± 0.2

and mlh, and 9% for mhh according to Eqs. (45), (46), and (47). The major

contribution to the temperature dependence of the effective masses stems from

the energies E0 (Fig. 4.5) and E ′
0 via the DKK parameters defined in Eqs. (48)-

(50), since the changes due to thermal expansion of the matrix elements are small.

This temperature dependence of the effective masses also leads to a temperature-

dependent excitonic binding energy. According to Ref. 67, the excitonic binding

energy is proportional to the direct band gap energy, Rh ∝ E0, illustrated by the

dotted line in Fig. 4.7. Our results do not satisfy this relation. Instead, we find

Rhh(E0) = 2.158(5) · E1.549(8)
0

and

Rlh(E0) = 1.302(3) · E1.598(8)
0 .

Only two parameters affect the binding excitonic energy: the reduced mass

and the static dielectric constant ϵst. We obtain ϵst, which is equal to the high-

frequency dielectric constant ϵ∞ in the case of Ge, from our data by extrapolating
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the fit of the dielectric function with a parametric oscillator model [19] to very

low energies. Figure 4.8 shows how ϵ∞ increases with temperature, mostly due to

the decrease of the Penn gap EPenn via [21]

ϵ∞(T ) = 1 +

(
Eu

EPenn(T )

)2

. (63)

We use Eu = ℏωu = 15.6 eV for Ge, which is calculated from the plasma frequency
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Figure 4.8: Temperature dependence of the high-frequency dielectric constant ϵ∞
of Ge obtained from the experimental data (symbols) compared with ϵ∞ calculated
from Eq. (63) (line) using the literature value [69] ϵ∞(T = 300 K) = 16.2.

ωu, and assume that EPenn and E2 have the same temperature dependence [68].

Taking the latter from Ref. 20 and ϵ∞ = 16.2 at room temperature from the

literature [69], we can write the temperature dependence of the Penn gap as

EPenn(T ) = 4.146 eV− 0.05 eV

(
2

e
217K
T − 1

+ 1

)
. (64)
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We find a reasonable agreement between the high-frequency dielectric constant

calculated from Eq. (63) (line in Fig. 4.8) and the values we obtain from the

extrapolation of our data (symbols in Fig. 4.8) up to room temperature. The

deviation at higher temperatures might explain the deviation of Rh from Rh ∝ E0.

Using Eq. (63) to calculate Rhh and Rlh results in

Rhh(E0) = 2.14(2) · E1.13(3)
0

and

Rlh(E0) = 1.29(1) · E1.18(3)
0 .

The effective masses used to compute Rhh and Rlh depend on the fit parameter

E0 as outlined in Sec. 4.3

4.7 Conclusion

Several assumptions and simplifications were made to the theory. Firstly, we

simply added two Hulthén-Tanguy terms, one for the hh and one for the lh, instead

of solving a complicated three-body problem. Secondly, the contribution of the

split-off band was ignored since it only affects the real part of the dielectric function

and the small effect can be compensated by adjusting the Sellmeier parameters.

Thirdly, we did not consider warping and non-parabolicity. The latter results in

a deviation between the model and the data starting at about 100 meV above the

band gap. Furthermore, we ignore the indirect band gap which affects E0 due to
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the resonant character of the direct and indirect band gaps [5]. An experimental

and theoretical study thereof is given in Ref. 5. This effect might be important

for Ge because the indirect band gap lies only about 0.15 eV below the direct

gap [4, 53]. Finally, we only fit the band gap energy and broadening, but no

adjustable parameter that would affect the magnitude of the imaginary part. In

principle, this theory can also be applied to other semiconductors with similar

band structures such as GaAs, InSb, or germanium-tin alloys.

In summary, we fitted the Hulthén-Tanguy model to the dielectric function

and its second derivatives and find the model to be in good agreement with our

data up to room temperature. Discrepancies at higher temperatures might be

partly due to the above-mentioned simplifications of the theory and partly due

to the challenging experimental conditions at high temperatures. Improvements

to the model and investigations of electron-phonon scattering processes will be

addressed in future work.

Supplementary material

In the supplementary material, we discuss the broadening of the direct band gap

and the limitations due to instrumental resolution, noise, and the digital linear

filter. Furthermore, a brief discussion of the second derivatives obtained from the

EG filter method and Savitzky-Golay coefficients, and fit results at some selected

high temperatures are provided.
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4.8 Supplementary material

4.8.1 Fit results at higher temperatures

As an addition to the discussion in the main part of the manuscript regarding

the discrepancies above 500 K, we show the fit results at some selected temper-

atures (598, 639, 676, and 710 K) in Fig. 4.9. Despite using an iris at the exit

window of the cryostat to suppress black body radiation at high temperatures

(as demonstrated in Fig. S4 in Ref. 6), the noise below about 0.6 eV is signif-

icant. At 710 K, it is not possible to obtain reasonable parameters from fitting

the second derivative of the real part of the dielectric function (d2ϵ1/dE
2) and

hence the energy and broadening was obtained from fitting d2ϵ2/dE
2 only. At all

other temperatures, both d2ϵ1/dE
2 and d2ϵ2/dE

2 could be fitted with the second

derivative of the Hulthén-Tanguy model.

4.8.2 Broadening of the direct band gap

4.8.2.1 Theory

Intervalley scattering of electrons by longitudinal acoustic (LA) phonons between

the high symmetry Γ- and L-points is allowed, while longitudinal optical (LO) and

transverse acoustic (TA) phonon scattering is forbidden [47]. However, to calculate

the lifetime of the states at Γ that form the direct gap, transitions to points near

but not necessarily coincident with L must be included. For this Γ → “around
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Figure 4.9: Like Fig. 4.3 for temperatures of 598, 639, 676, and 710 K.

L” processes, transitions induced by TA and LO phonons become allowed due to

the lower symmetry. Of these, ab initio calculations [70, 71] show that the TA

contribution is negligible. A simple expression that captures this phenomenology

is Eq. (38) in Ref. 47, which for ϵ = 0 (the parameter ϵ represents the energy

above the conduction band edge at Γ) corresponds to the broadening of the direct

gap if the broadening of the hole states is neglected. The expression contains a

term corresponding to LA phonons and a term corresponding to LO phonons.

The LA contribution the scattering rate is equivalent to Conwell’s expression [72]

τ−1
ΓL =

NVD
2
ΓLm

3/2
eff√

2πℏ2ρEph

×[
Nph

√
∆E + Eph + (Nph + 1)

√
∆E − Eph

]
, (65)
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where Nph is the Bose-Einstein phonon occupation factor defined as

Nph =
1

eEph/(kBT ) − 1
. (66)

DΓL in Eq. (65) is the intervalley deformation potential for Γ to L scattering,

NV = 4 (four equivalent valleys at the L-point), ρ is the mass density, ∆E is the

difference between the Γ-valley and L-valley minima, Eph = Eph,LA is the LA-

phonon energy at the L-point, and meff is the effective electron mass for the final

state in a single valley calculated from the transverse and longitudinal effective

masses at the L-point, meff = (m∥m
2
⊥)

1/3. The LO scattering contribution is given

by the second term in Eq. (38) in Ref. 47. Note also that a term representing

scattering to the higher ∆-minimum vanishes due to energy conservation.

To assess the validity of the neglect of a hole contribution in the theoretical

estimate of the broadening using Eq. (38) in Ref. 47, we explicitly estimate this

contribution. Intravalley scattering of holes with optical phonons at the Γ-point

is estimated by setting ϵ = 0 in Eq. (4.42) in Ref. 73, which leads to

τ−1
op,h =

m
3/2
h D2

o√
2πρℏ2

√
Eph,op

Nph,op , (67)

where Eph,op is the optical phonon energy at the Γ-point, Do = do/a is the optical

deformation potential in units of eV/Å, a is the lattice constant, Nph,op is the

phonon occupation factor of optical phonons, and mh is the hh or lh effective

mass.
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To estimate the broadening related to intravalley deformation potential scat-

tering of electrons with acoustic phonons, we use the expression for LA phonon

intravalley scattering at the Γ-point in Ref. 73, which reads

τ−1
ac (ϵ) =

√
2E2

1m
3/2
eΓ kBT

πρℏ4v2s

√
ϵ, (68)

where E1 is the acoustic deformation potential in units of eV and vs = vlo is

the longitudinal sound velocity. Exactly at the Γ-point, Eq. (68) is zero. We set

ϵ = 10 meV to take into account a small region around the zone center to estimate

if this type of scattering possibly becomes important away from Γ.

Table 4.5 lists the parameters defined above and which are used to calculate the

scattering times and lifetime broadenings listed in Tabs. 4.6 and 4.7, respectively.

Table 4.5: Parameters in Eqs. (65)-(68) for Ge.

ρ vlo E1 do DΓL a Eph,op Eph,LA

(g/cm3) (105 cm/s) (eV) (eV) (eV/Å) (Å) (meV) (meV)

5.32 5.4a 11.4b 37c 2.8d 5.66 37e 28e

a Ref. 74

b Ref. 75

c Ref. 76

d Ref. 77

e Ref. 78

According to these calculations, it appears that the intravalley deformation
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Table 4.6: Estimated relaxation times in fs from Eqs. (65)-(68) for the direct band
gap of Ge at 10, 80, 300, and 710 K.

Temperature τac τop,hh τop,lh τΓL

10 K 4.3× 105 3.4× 1021 1.0× 1023 1050

80 K 5.4× 104 1.7× 105 4.9× 106 550

300 K 1.4× 104 2600 8.2× 104 110

710 K 6000 740 3.1× 104 53

Table 4.7: Estimated lifetime broadenings in meV at 10, 80, 300, and 710 K
obtained from the relaxation times in Tab. 4.6.

Temperature γac γop,hh γop,lh γΓL

10 K 7.7× 10−4 9.5× 10−20 3.3× 10−21 0.31

80 K 6.1× 10−3 2.0× 10−3 6.8× 10−5 0.59

300 K 0.023 0.13 4.0× 10−3 3.0

710 K 0.055 0.44 0.011 6.2
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potential scattering does not constitute an important contribution to the broad-

ening, consistent with our initial assumptions. Notice that in our calculations

we allowed small deviations from the exact maximum of the valence band. If we

allow for a similar small energy shift from the minimum of the conduction band,

TA-induced transitions from such “near-Γ” states to the L-point also become al-

lowed and have been shown to play a role in indirect absorption [47]. However,

the contribution of such terms in our broadening expressions is also very small.

Although, as indicated above, ab initio calculations imply that TA phonons

are unimportant at room temperature, we cannot state with certainty that they do

not play a role at higher temperatures due to possible temperature-dependent de-

formation potentials (as for example in the case of GaAs, see Ref. 79) An increase

in the deformation potential with temperature might improve the discrepancies

between the experimental and predicted widths shown in Fig. 4.6 above 300 K.

However, resolving the question of the importance of transverse phonon scatter-

ing requires more calculations of the intervalley scattering present in Ge, which

is beyond the scope of this work. In the case of DΓL in Eq. (65), we estimate

DΓL = 3 eV/Å for T = 10 K, DΓL = 4 eV/Å for T = 80 K, and DΓL = 6.5 eV/Å

at room temperature and above to take into account a temperature-dependent

deformation potential similar to the one in GaAs [79]. When adding the instru-

mental resolution of about 2 meV to the broadening at the highest temperatures,

γΓL ≈ 8 meV which is still about 40% smaller than the width obtained from the
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Hulthén-Tanguy fit.

4.8.3 Screening parameter

As mentioned in Sec. 4.6, the screening parameter g depends on temperature

through the temperature-dependent carrier density N , which is calculated based

on the model as in Eqs. (9)-(12) in Ref. 47. Figure 4.10 shows how the carrier

density of intrinsic Ge increases from N ≈ 2 × 1013 cm−3 at 300 K to N ≈

6× 1013 cm−3 at 700 K. The screening parameters calculated from Eqs. (13) and
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Figure 4.10: Carrier density of intrinsic Ge as a function of temperature.

(44) in Ref. 47 is plotted in Fig. 4.11. The temperature dependence of g has

no significant impact on the results of the E0 energies, but it starts affecting the

broadening at T > 500 K, which is illustrated in Fig. 4.12. Using g = 0.28 at

700 K instead of g = 35 results in a decrease in broadening of about 10% at the
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highest temperatures. The effect of using the temperature-dependent g on the
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Figure 4.11: Screening parameter g of intrinsic Ge as a function of temperature,
calculated from the carrier density shown in Fig. 4.10.

agreement between fit and data is small, as shown in Fig. 4.13 for the dielectric

function and its second derivative at 710 K.

4.8.4 Experiment

Determining accurate information regarding the lifetime broadening of the direct

band gap is challenging because of the limitation due to instrumental resolution

and noise. The latter increases with temperature as a result of black body ra-

diation and the simultaneous shift of the band gap to lower energies. Attempts

to overcome the instrumental resolution by decreasing the width of the filter to

the smallest possible value (0.6 meV, which is slightly larger than the step size),
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result in a broadening of 1.3 meV, which is still twice as large as γth = 0.77 meV

calculated from theory without adding the instrumental resolution. Below a filter

width of 0.6 meV, noise becomes dominant and the derivatives cannot be used

for analysis. Further reducing the instrumental resolution by using slit widths

< 400 µm does not show any advantages since it worsens the signal-to-noise ratio,

which is also reflected in the second derivatives. Figure 4.14 depicts the model

calculated from Eq. (42) for a temperature of 10 K and the parameters listed in

Tab. 4.2 for γhh = γlh = 0.77 meV and γhh = γlh = 1.53 meV. On the one hand,

using the predicted width of 0.77 meV increases the agreement between model

and data for the excitonic peak, on the other hand, the theory does not describe

the tail of the imaginary part ϵ2 below the gap. For the data between 80 and

710 K, the tail in ϵ2 is described well by the model.

Apart from restrictions due to resolution and noise, the nature of the Lorentzian

broadening is questionable. It is pointed out in Ref. 5 that at room temperature

a Gaussian broadening yields a much better agreement with experiment than a

Lorentzian one, which is illustrated in Fig. 7 in Ref. 5. The tail of the Lorentzian

broadening expands to the region of the indirect band gap, where it results in an

absorption coefficient which is larger than the one of the indirect absorption it-

self. Furthermore, at higher temperatures, the exciton lineshape will be Gaussian

rather than Lorentzian [80] and the temperature dependence of the broadening is

proportional to T 2 [62]. Nevertheless, we fit the broadening parameters obtained
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from the fits to the Bose-Einstein model (Eq. (62)) in order to find an estimate

of the effective phonon energy related to electron-phonon interaction. Due to the
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Figure 4.15: Like Fig. 4.6 showing the low temperature range. The dashed line
represents the fit with Eq. (62) to the broadening between 10 and 300 K. Fit
parameters are given in Tab. 4.8.

uncertainties at higher temperatures, we consider the low-temperature data only,

see Fig. 4.15. The lines in Fig. 4.15 represent the best fit to the data using Eq.

(62), where γ0 was set to zero (fitting γ0 leads to negative values for the zero-

temperature broadening, which is unphysical). The fit parameters are listed in

Tab. 4.8. Although the broadenings are probably enhanced due to the limitations

discussed above, the phonon energies found from the fits are within a reasonable

range (the energy of LA phonons at the L-point is 28 meV and the energy of

optical phonons at the Γ-point is about 37 meV) [78].
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Table 4.8: Parameters describing the temperature dependence of the broadening
obtained by fitting Eq. (62) to the broadening between 10 and 300 K, where
γ0 = 0 was fixed, compared to values from the literature.

γ1 (meV) Eph (meV)

10-300 K (this work) 1.9± 0.1 36± 4

20-291 K (Ref. 62) 0.8 26

4.8.5 Second derivatives

Figures 4.16 and 4.17 show the second derivatives of the real and imaginary parts

of the dielectric function, respectively, at a temperature of 10 K taken from Ref. 6.

The derivatives calculated from Eq. (70) for a filter width of 1 meV (solid line) are

compared to the derivatives obtained from the Savitzky-Golay (SG) algorithm [37]

using a polynomial of third degree over N = 10 (squares) and N = 11 data points

(circles). The amount of smoothing is comparable, however, the EG derivatives

have the advantage of being a continuous function and hence having as many

points available as needed for the analysis.
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Figure 4.16: Second derivatives of the real part of the dielectric function of Ge at
10 K (data from Ref. 6) obtained from the Savitzky-Golay (SG) method using a
polynomial of third degree over N = 10 and N = 11 data points compared with
the second derivatives from the EG filter method explained in Sec. 4.4, using a
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Figure 4.17: Same as Fig. 4.16 for the imaginary part of the dielectric function.

72



5 TRANSIENT CRITICAL POINT PARAMETERS OF GE AND SI

FROM FEMTOSECOND PUMP-PROBE ELLIPSOMETRY

The present chapter is a manuscript in progress.

Carola Emminger,1,2 Shirly Espinoza,3 Steffen Richter,3,4 Mateusz Rebarz,3

Oliver Herrfurth,5,6 Martin Zahradńık,3 Rüdiger Schmidt-Grund,5,7 Jakob
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Abstract

The complex pseudodielectric function of Ge and Si from femtosecond pump-probe

spectroscopic ellipsometry with 267, 400, and 800 nm pump pulse wavelengths

is analyzed by fitting an analytical lineshape to the second derivatives of the
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pseudodielectric function with respect to energy. This yields the critical point

parameters (threshold energy, lifetime broadening, amplitude, and excitonic phase

angle) of E1 and E1 +∆1 in Ge and E1 in Si as functions of time delay. Coherent

longitudinal acoustic phonon oscillations with a period of about 11 ps are observed

in the transient critical point parameters of Ge. Reasonable agreement of the

strain estimated from the amplitudes of the coherent phonon oscillations and the

strain calculated from theory is found for Ge measured with the 800 nm pump

pulse.

5.1 Introduction

In a recent publication [9], the transient pseudodielectric function of Ge, Si, and

InP obtained from femtosecond pump-probe spectroscopic ellipsometry (SE) be-

tween 1.7 and 3.5 eV using pump wavelengths of 267, 400, and 800 nm has been

presented. Details on the experimental setup and the measurement results have

been given in Ref. 9 (the instrumental setup is also described in Ref. 81), however,

a quantitative analysis of the data has not been included. Therefore, the goal of

this work is to quantitatively investigate the time-resolved critical points (CPs)

E1 and E1 + ∆1 in Ge and E1 in Si from the data provided in Ref. 9. For this

purpose, a standard CP lineshape [24,25] is fitted to the second energy derivatives

of the pseudodielectric function of both materials to obtain the CP parameters

(threshold energy, lifetime broadening, excitonic phase angle, and amplitude) as
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a function of time delay.

In the temporal evolution of the CP parameters of Ge, oscillations are observed

within the first 30 ps, which are identified as coherent longitudinal acoustic phonon

(CAP) oscillations. The origin of such osillations is a laser-pulse induced strain

pulse, which travels through the material [31]. CAP oscillations have been de-

scribed in the literature [10, 31, 82] and have been measured in many different

materials [83–94]. Although in general hard to detect in bulk semiconductors due

to the large penetration depth [84], CAP oscillations have been observed, for ex-

ample, in the pump-probe reflectivity spectra of GaP and Si by Ishioka et al. [84],

in GaAs by Vinod et al. [85] and Han et al. [86], and in GaN by Wu et al. [87].

In the present study, it is shown that CAP oscillations can also be found in

the transient CP parameters of bulk Ge measured by femtosecond pump-probe

SE. The analysis method is outlined in Sec. 5.2 and the results are discussed in

Sec. 5.3.

5.2 Critical point analysis

The second derivatives of the pseudodielectric function with respect to energy are

calculated applying a linear filter method [11, 43, 44, 59] using extended Gauss

(EG) functions [45,46] which are defined as [11]

bm(x) =

(
1− a

1!

d

da
+ · · · (−1)m

am

m!

dm

dam

)
a−

1
2 e−

x2

4a , (69)
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where m = 1, . . . ,M and
√
a = ∆E is the width of the filter. Similar to the

example given in Eq. (21c) in Ref. 11, one can define an expression using b4(x)

and calculate the second derivatives with respect to energy. The pseudodielectric

function is not given in equidistant energy or wavelength steps. Therefore, instead

of converting from wavelength to energy, we calculate an average step size ∆E ′
j =

(Ej+1 − Ej−1)/2 at each data point j. The second energy derivative of the data ϵj,

where ϵj can be either the real or imaginary part of the pseudodielectric function

⟨ϵ⟩ = ⟨ϵ1⟩+ i ⟨ϵ2⟩, is then given by

d2ϵ̄4 (E)

dE2
≈ 1

49152
√
π∆E3

j2∑
j=j1

[
Ej+1 − Ej−1

2
ϵje

−
(E−Ej)

2

4∆E2

×

(
− 110880 +

188496 (E − Ej)
2

∆E2
− 45936 (E − Ej)

4

∆E4

+
3608 (E − Ej)

6

∆E6
− 106 (E − Ej)

8

∆E8
+

(E − Ej)
10

∆E10

)]
. (70)

For J data points, j1 = 2 and j2 = J − 1. The width ∆E of the filter is chosen

according to the white noise onset of the Fourier coefficients obtained from a

discrete Fourier transform as explained in Ref. 11. To compute the Fourier

transform and remove discontinuities at endpoints of the data set we use the

method in Ref. 42. The amount of noise in the data determines the white noise

region and therefore the filter width. In principle, one would have to determine

the filter width for each data set seperately. However, since the number of data

sets for each material and pump pulse wavelength is > 200, we determine ∆E at
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some selected time delays before, at, and after the pump pulse and choose the

filter width that works best for all selected data sets. Table 5.5 lists the chosen

filter widths, the range of the step size, the spectral energy range, the energy

range used for the fit, and the time range (before to after the pump pulse) for

both materials measured with various pump pulse wavelengths.

To fit the analytical lineshapes to the second energy derivatives of ⟨ϵ1⟩ and

⟨ϵ2⟩ using Eq. (70), a Levenberg-Marquardt algorithm as explained in Chap.

15.5 in Ref. 61 was implemented in C++. Starting parameters for the eight

fit parameters (amplitude, energy, broadening, and phase angle for both E1 and

E1 +∆1) are taken based on values found in the literature [20,23]. At each delay

time, all eight parameters are fitted to both d2 ⟨ϵ1⟩ /dE2 and d2 ⟨ϵ2⟩ /dE2, by

minimizing the sum of the χ2 merit functions of d2 ⟨ϵ1⟩ /dE2 and of d2 ⟨ϵ2⟩ /dE2.

The code automatically fits the data sets at all time delays using the same starting

parameters for each case.

Figure 5.1 shows the second derivatives at E1 and E1 + ∆1 in Ge measured

with an 800 nm pump pulse, calculated from Eq. (70) before (t = −5 ps), at

(t = 0), and at t = 100 ps after the pump pulse. Solid lines show the fits with the

second derivative of a two-dimensional CP lineshape, which best represents the

E1 and E1 +∆1 CPs [23], given by

d2ϵ(E)

dE2
=

AE1e
iϕE1

(E − E1 + iΓE1)
2
+

AE1+∆1e
iϕE1+∆1

(E − (E1 +∆1) + iΓE1+∆1)
2
. (71)

77



-1000

0

1000

1.8 2.0 2.2 2.4 2.6
-2000

-1000

0

1000

d2
e 1
/d
E

 EG, t = -5 ps
 Fit, t = -5 ps
 EG, t = 0 s
 Fit, t = 0 s
 EG, t = 100 ps
 Fit, t = 100 ps

Ge 800 nm pump
d2

e 2
/d
E

Energy (eV)

 EG, t = -5 ps
 Fit, t = -5 ps
 EG, t = 0 s
 Fit, t = 0 s
 EG, t = 100 ps
 Fit, t = 100 ps

Figure 5.1: Second derivatives with respect to energy of the dielectric function
in the region of E1 and E1 +∆1 of Ge measured with an 800 nm pump pulse at
different time delays before (-5 ps), at, and 100 ps after the pump pulse. Dashed
lines represent the derivatives obtained as explained in the text. Solid lines rep-
resent the fits using two-dimensional lineshapes for E1 and E1 +∆1.
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The fit parameters in Eq. (71) are the amplitudes AE1 and AE1+∆1 , the excitonic

phase angles ϕE1 and ϕE1+∆1 , the CP energies E1 and E1+∆1, and the broadenings

ΓE1 and ΓE1+∆1 . In the case of Si, a zero-dimensional (excitonic) lineshape best

describes E1 [95]. Its second energy derivative is given by

d2ϵ(E)

dE2
=

−2AE1e
iϕE1

(E − E1 + iΓE1)
3
. (72)

The agreement between the fit and the second derivatives calculated from the

EG filters deteriorates between 2.3 and 3.5 eV. A possible explanation might be

a structure that arises due to phase-filling effects [96] slightly above E1 + ∆1.

This has been simulated in Ref. 96 for doped Ge with a carrier concentration of

1019 cm−3 at 77 K. Since the data we investigate in this work were measured at

room temperature, we expect the structures shown in Fig. 2 of Ref. 96 to feature

a larger spectral broadening for 300 K. Therefore, the extra feature might be the

reason of the deviations between the fits and the second derivatives above 2.3 eV

in Fig. 5.1, because the extra feature is not taken into account using the standard

two-dimensional CP lineshape.

5.3 Results and discussion

Figures 5.2 and 5.3 depict the CP parameters as a function of delay time of Ge

and Si, respectively. The vertical line marks the time t = 0 of the pump pulse.

It should be noted that the time delay steps were not chosen to be constant. For
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Ge measured with the 800 nm pump pulse, for instance, the time delay steps were

10-50 fs between t = −0.3 and 1 ps, 100-250 fs between t = 1 and 10 ps, 1-2 ps

between t = 11 to 30 ps, and 5-100 ps (t > 30 ps).

We make several observations in the CP parameters of Ge. The E1 and E1+∆1

energies redshift after the pump pulse (except E1 measured with λpump = 400 nm)

and start to recover after about 4 ps. The redshift of the energies might be partly

explained by a temperature increase due to laser heating, where the expected

temperature increase is ∆T ≈ 25 K for the λpump = 800 nm data [9].

The amplitudes of both E1 and E1 + ∆1 increase, while the phase angles

and broadenings show opposite behavior for the two CPs. The E1 broadening

increases, while the E1+∆1 broadening decreases after the pump pulse. In general,

it seems that some parameters recover faster than others (for example, the E1+∆1

amplitude measured with λpump = 400 nm). The data set measured with a pump

wavlength of 400 nm shows an artifact at about 1.8 eV which might affect the CP

parameters.

In the case of Si, we observe a redshift of E1 and an increase in broadening,

which might be explained by laser heating. A redshift of 6 meV corresponds to

a temperature rise of about 20 K, and an increase in broadening of about 7 meV

corresponds to ∆T ≈ 30 K [95]. The amplitudes return to the values before the

pump pulse after only 1-2 ps, while the recovery of the other parameters takes

much longer (> 100 ps). A decrease of the phase angles might be explained by a
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decrease of excitonic effects due to screening by the laser induced increased carrier

concentration.

Within the first 30 ps, CAP oscillations with a period of about 11 ps are

observed in the CP parameters of Ge. The period of CAP osillations is given

by [82]

T =
λ

2nvs cos θ
, (73)

where λ is the wavelength of the probe beam, n is the refractive index inside the

material at λ, vs is the sound velocity (given in Tab. 5.1), and θ is the angle of

refraction. Due to the large refractive index, the angle inside the material is small

Table 5.1: Material parameters of Ge and Si at room temperature.

Parameter Ge Si Ref.

B (N/cm2) 7.5×106 9.8×106 97

β (1/K) 5.9×10−6 2.6×10−6 98,99

C (J/(cm3·K)) 1.68 1.68 100

∂Eg

∂P
(eV/Pa) 5.0× 10−11 −1.5× 10−11 101

D1
1 (eV) −8.1 32

D3
3 (eV) 5.9 32

vs (cm/s) 4.87× 105 8.43× 105 102

according to Snell’s law and we can approximate

T ≈ λ

2nvs
. (74)
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Table 5.2: Wavelength λ and refractive index n at the E1 and E1 + ∆1 critical
points of Ge and E1 of Si, along with the period T of coherent longitudinal acoustic
phonon oscillations calculated from Eq. (74) and the penetration depth ζ.

λ (nm) n T (ps) ζ (nm)

E1 in Ge 586.5a 5.68b 10.6 28

E1 +∆1 in Ge 536.7a 5.01b 11.0 18

E1 in Si 365.3c 6.53b 3.32 11

aRef. 20

bRef. 103

cRef. 95

Table 5.2 lists the probe wavelengths and corresponding refractive indices at E1

and E1 +∆1 of Ge and E1 of Si, as well as the period calculated from Eq. (74).

The energy shifts shown in Fig. 5.2 can be fitted with the sum of a damped

oscillator (similar to Ref. 84) and an exponential decay

∆E(t) = −∆Ea cos

(
2πt

T
− δ

)
e−

t
τa −∆Ebe

− t
τb . (75)

Figures 5.4 and 5.5 show the fit to the energy shifts ∆E1 and ∆(E1+∆1) obtained

from fitting the 800 nm-pump data with Eq. (75). The fits were performed

between 1 and 30 ps, i.e. ignoring the strong increase and decrease within the

first picosecond since the CAP oscillations take time to build up, as has been

shown for GaP and Si by Ishioka et al. [84], for instance. The fit parameters are

listed in Tab. 5.3. The period of the oscillatory term of Eq. (75), which is
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Figure 5.4: Shift ∆E1 (change of the E1 energies) with time delay of Ge measured
with the 800 nm pump pulse. The solid line represents a fit with Eq. (75). The
first (∆Ea(t)) and second (∆Eb(t)) terms in Eq. (75) are represented by the
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Table 5.3: Parameters obtained from fitting Eq. (75) to the E1 and E1+∆1 shifts
of Ge measured with the 800 nm pump pulse between 1 and 30 ps (Figs. 5.4 and
5.5).

∆(E1) ∆(E1 +∆1)

∆Ea (meV) 4.2± 0.4 4.7± 0.8

∆Eb (meV) 8.7± 0.3 23.3± 0.5

T (ps) 11.0± 0.2 11.4± 0.4

δ 2.58± 0.06 2.6± 0.1

τa (ps) 20± 4 18± 7

τb (ps) 23± 2 42± 3

represented by the dashed lines in Figs. 5.4 and 5.5, agrees very well with the

calculated CAP periods given in Tab. 5.2. While the shift of E1 + ∆1 is about

twice as strong as ∆E1, the amplitude ∆Ea of the oscillatory term is about the

same for both CPs. Adding and subtracting the two amplitudes ∆Ea can be used

to estimate the strain inside the material due to the strain dependence of the E1

and E1 +∆1 CPs via [36]

∆E1 =
∆1

2
+ ∆EH −

√
(∆1)2

4
+ (∆ES)2 (76)

and

∆(E1 +∆1) = −∆1

2
+ ∆EH +

√
(∆1)2

4
+ (∆ES)2 , (77)
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where ∆EH is the hydrostatic shift and ∆ES is the shear splitting given by [36]

∆EH =
√
3D1

1ϵH (78)

and

∆ES =
√
6D3

3ϵS. (79)

The hydrostatic strain ϵH and shear strain ϵS depend on the in-plane (ϵ∥) and

out-of-plane (ϵ⊥) strains in the following way [36]

ϵH =
ϵ⊥ + 2ϵ∥

3
, (80)

ϵS =
ϵ⊥ − ϵ∥

3
. (81)

Assuming that the film is elastically isotropic and the stress only depends on z,

the only nonzero component of the elastic strain tensor is ϵ33 [10], which can be

set equal to the out-of-plane strain ϵ33 = ϵ⊥, while ϵ∥ is assumed to be zero.

Adding Eqs. (76) and (77) and setting it equal to the sum of the two amplitudes

∆Ea given in Tab. 5.3, results in ∆EH = 4.5 meV. The hydrostatic strain can

then be calculated using D1
1 listed in Tab. 5.1, ϵH = −3.2 × 10−4, which gives

ϵ⊥ ≈ −1.0× 10−3. Similarly, subtracting (77) from (76) gives

∆1 − 2

√
(∆1)2

4
+ (∆ES)2 = −0.5 meV, (82)

which is used to estimate the shear shift |∆ES| = 7.0 meV and the out-of-plane

strain ϵ⊥ ≈ −1.5× 10−3.
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To compare these results with the strain expected from theory, the expression

for the electron-hole and phonon contributions to the stress σij given in Eqs. (17)

and (18) in Ref. 10 are used, which are

σe
ij = −B∂Eg

∂P
δijN (83)

and

σp
ij = −3Bβ

C
(E − Eg)δijN, (84)

where B is the bulk modulus, ∂Eg/∂P is the pressure dependence of the indirect

band gap Eg, β is thermal expansion coefficient, N is the number of photoexcited

electron-hole pairs per unit volume, C is the specific heat in units of J/(cm3·K),

and E is the photon energy of the pump beam. The ratio of electronic and phonon

contributions

σe
ii

σp
ii

= − C

3β

∂Eg

∂P

1

(E − Eg)
(85)

to the stress for different pump wavelenghts is given in Tab. 5.4. For the 800 nm

Table 5.4: Ratio σe
ii/σ

p
ii of the electron and phonon contributions to stress.

Pump wavelength Ge Si

800 nm 5.3 -7.5

400 nm 2.0 -1.6

267 nm 1.2 -0.9

pump pulse, the electron-hole contribution is much larger, while for the 267 nm
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pulse, the two contributions are about the same. The relation between the strain

and the stress tensor components, ϵ33 and σ11 = σ22 = σ33 = σ, is given by the

compliance tensor components for diamond symmtry (Oh space group) [34,35]

ϵ33 = (S11 + 2S12)σ. (86)

The compliance tensor components can be calculated from S11+2S12 = (C11+

2C12)
−1 [21], where C11 and C12 are components of the stiffness tensor, which are

C11 = 1.285 × 107 N/cm2 and C12 = 0.483 × 107 N/cm2 for Ge (see Tab. 3.6a in

Ref. 21). This gives for Ge measured with the 800 nm pump pulse

ϵel = (S11 + 2S12)

(
−B∂Eg

∂P
N

)
≈ −6.4× 10−4 (87)

and

ϵph = (S11 + 2S12)

(
−3Bβ

C
(E − Eg)

)
≈ −1.2× 10−4. (88)

The total strain ϵ33 = ϵel + ϵph = −7.6× 10−4 compares reasonably well to the

out-of-plane strain of ϵ⊥ ≈ −1.0× 10−3 and ϵ⊥ ≈ −1.5× 10−3 estimated from the

energy shift amplitudes ∆Ea. Using Eqs. (76) and (77), the calculated energy

shifts are ∆E1 = −3.6 meV and ∆(E1 +∆1) = −3.5 meV.

In the case of Si, the calculated strain is on the order of 7× 10−6 for the 267

and 800 nm pump pulse data sets, and 2 × 10−5 for the data measured with the

400 nm pump pulse. Due to the negative pressure dependence of the indirect gap,

which is ∂Eg/∂P = ∂EΓX/∂P = −1.5 eV/Pa [101], the electron-hole and phonon
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contributions do not add up as in the case of Ge, but partly cancel one another.

Another explanation for the absence of CAP oscillations in Si might be the larger

velocity of sound, which causes the strain pulse to leave the probed volume faster

than for Ge.

5.4 Summary

The pseudodielectric function of Ge and Si measured with pump-probe spectro-

scopic ellipsometry is analyzed by fitting analytical critical point lineshapes to

the second derivatives with respect to energy of the data. Energies, broadenings,

excitonic phase angles, and amplitudes of the E1 and E1 + ∆1 critical points in

Ge and E1 in Si are shown as functions of time delay. In the temporal evolution

of E1 and E1 + ∆1 in Ge, coherent longitudinal acoustic phonon oscillations are

observed. The measured period of 11 ps compares very well with the expected

value. The out-of-plane strain estimated from the amplitude of the oscillations in

the energy shifts is in reasonable agreement with the strain calculated from theory.

Coherent phonon oscillations are not detected in the case of Si, probably due to

the shorter wavelength of E1 and larger velocity of sound compared to Ge, which is

related to the decay of the oscillations. Future work will address effects related to

the laser-induced carrier density by considering band gap renormalization, band

filling, and Burstein-Moss shifts.
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Supplementary material

The supplementarty material includes further considerations regarding the ab-

sence of coherent acoustic phonon oscillations in Si and optical phonon oscillations

in Ge.
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5.5 Supplementary material

5.5.1 Notes on experiment and data analysis

Experimental parameters and chosen filter widths used for the computation of the

second energy derivatives as discussed in Sec. 5.2 are given in Tab. 5.2. Figure 5.6

depicts the real and imaginary parts of the pseudo-DF of Ge measured with an

800 nm pump pulse. While the CAP oscillations are present in the pseudo-DF

at a probe energy of E = 2.06 eV, they are barely observable at E = 2.27 eV,

i.e. at E1 +∆1. In the CP energies obtained from the second derivative analysis,

on the other hand, the oscillations are more pronounced than in the pseudo-DF,

especially after about 20 ps, and are even found in the case of E1 +∆1.

5.5.2 Coherent phonon oscillations

Coherent acoustic phonon oscillations arise from intereference of the probe beam

reflected from the surface and upon the strain pulse, which moves through the

material [84]. We expect to see oscillations related to the time it takes for the

strain pulse to leave the probed volume, τ = ζ/vs, i.e. we assume a damping of

e−vst/ζ , where ζ is the penetration depth. Figure 5.7 depicts the intensity decay

inside the material according to Beer’s law, I(z) = I0e
−αz (α is the absorption

coefficient), for the different probe and pump wavelengths. The horizontal line

marks the intensity I(ζ) = I0/e, which is the intensity at the penetration depth
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Figure 5.6: Real (squares) and imaginary (dots) parts of the pseudielectric func-
tion of Ge measured with an 800 nm pump pulse at probe energies of 2.06 eV
(top) and 2.27 eV (bottom) close to E1 and E1 + ∆1 as functions of delay time
along with the E1 and E1 + ∆1 critical point energies obtained from the second
derivative analysis explained in the text.
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ζ = 1/α. Figure 5.8 shows the damped oscillator cos(2πft)e−t/τ calculated with

τ = ζ/vs and f = 1/T given in Tab. 5.2 for the E1 and E1 + ∆1 critical points

in Ge and E1 in Si. For a probe wavelength of λ = 587 nm (E1 in Ge), two

minima within the first 20 ps are present, while we find three minima within

30 ps for E1 and E1 + ∆1 in Ge (see Fig. 5.6). In the case of Si, the damped

oscillator has only one distinct minimum for τ = ζ/vs, which could explain why

no phonon oscillations in the critical point parameters of Si can be identified, since

the first few picoseconds are dominated by noise (as can be seen in Fig. 5.3), in

particular for the data measured with pump pulse wavelengths of 267 and 400 nm.

A comparison of the damped oscillator and the E1 energy as a function of time

delay of Si is provided in Fig. 5.9.

Coherent optical phonon oscillations have been reported in (001)-oriented Ge

[104], GaP and Si [84], single crystal Sb [105], graphite [106], and single crystal

Zn [107]. Pfeifer et al. [104] find a frequency of 9.086± 0.001 THz, which matches

the optical phonon modes [78] at k = 0. In the case of Ge measured with an

800 nm pump pulse, we observe oscillations within the first 500 fs, as illustrated

in Fig. 5.10, with a period between 100 and 150 fs, i.e. a frequency of 7-10 THz.

However, this is the only data set of the ones investigated which shows oscillations

with a frequency close to optical phonon frequencies in this time interval, and

further measurements are required to investigate if optical phonon oscillations can

be detected for Ge, or if the origin of these oscillations is of a different (maybe
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instrumental) nature.
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6 CONCLUSION

The major part of the present work has been the quantitative analysis of the

dielectric function of semiconductors obtained from spectroscopic ellispometry and

time-resolved femtosecond pump-probe ellipsometry in order to study how critical

points are affected by temperature, as well as photoexciation by an ultrashort laser

pulse.

Excitonic effects at the direct band gap of Ge have been modelled using the

Hulthén-Tanguy theory, which has resulted in very good agreement between the

fit and the data. These results are remarkable in respect of several simplifications

applied to the theory, as well as the fact the amplitude was not treated as an

adjustable parameter, but instead calculated based on k · p theory and material

parameters from the literature. Considering non-parabolicity and warping will

make it possible to apply the model to other semiconductors as well and will be

addressed in future work.

The linear filter technique defined in Ref. 11 has shown to be a practical

method to calculate second energy derivatives by providing a tangible way of

choosing a suitable amount of smoothing. It is in particular convenient to be

applied to the data measured with femtosecond pump-probe ellipsometry, since

they are not given in equidistant energy or wavelength steps. Investigating the

second derivatives makes it possible to draw more reliable conclusions on how the
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energies, broadenings, phase angles, and amplitudes of the transient critical points

change with time delay. The second-derivative analysis of the time-resolved data

of Ge and Si from [9] has shown that all critical point parameters are affected by

photoexcitation with an ultrafast laser pulse, and that coherent acoustic phonon

oscillations play a role in the case of Ge. Future work will include the study

of other materials, e.g. GaSb, InP, or germanium-tin alloys, measured with the

pump-probe setup at ELI Beamlines, and will also address other effects, such as

band gap renormalization and band filling effects.
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APPENDIX

A.1 Digital linear filters

In this section, a few more comments on the data analysis are provided. Let’s

first repeat the definition of the direct space convolution [11]

f̄(E) =

∫ ∞

−∞
dE ′f(E ′)bM(E − E ′) (A1)

with the EG-filters [11]

bM(x) =

(
1− a

1!

d

da
+
a2

2!

d2

da2
− . . .+ (−1)M

aM

M !

dM

daM

)
a−

1
2 e−

x2

4a (A2)

where a = 1/∆k2. Wavelength-to-energy conversion can be achieved by substi-

tuting Eq. (A2) into Eq. (A1) and approximating the integral as a sum over the

data points f(λj), where ∆k = 1/∆E [11]

f̄ (E) =

∫ ∞

−∞
dE ′f (E ′) bM (E − E ′) = hc

∫ ∞

−∞

dλ

λ2
f (λ) bM

(
E − hc

λ

)
, (A3)

which can be written as

f̄ (E) ≈ hc (∆λ)
∞∑

j=−∞

1

λ2j
f (λj) bM

(
E − hc

λ

)
. (A4)
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Using Eq. (A4), a data set given in equidistant wavelength steps can be converted

to a data set equidistant in energy and noise can be effectively suppressed at the

same time [11], which is illustrated in Fig. A.1 for a model data set (“false” data)

with random numbers added to simulate noise. It can be seen in Fig. A.1 that the
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Figure A.1: Wavelength-to-energy conversion using Eq. (A4) for various M =
0, . . . , 4 (lines) of model data with noise (open circles). Solid circles represent the
model data without noise.

agreement between Eq. (A4) and the data increases for higher M . As pointed out

by Le et al. [11], M = 4 sufficiently suppresses noise and reconstructs the original

function. In principle, the agreement should increase further for larger values of

M . However, for the data sets investigated in this work, no real improvement

could be obtained by using M > 4.
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A.1.1 Second energy derivatives

Savitzky-Golay [37] (SG) coefficients can be used to numerically calculate second

derivatives of the dielectric function with respect to energy. Figure A.2 and A.3

show the second derivatives of the dielectric function of Ge measured at 500 K [16]

calculated using SG coefficients and fitted with a 0D, 1D, and 2D lineshape for

comparison. The best agreement is given for a 2D-lineshape, in agreement with

Ref. 23.

1.6 1.8 2.0 2.2 2.4 2.6

-800

-400

0

400

 Fit 0D
 Fit 1D
 Fit 2D
 SG, N = 10

d2
e 1
/d
E2

Energy (eV)

Figure A.2: Second derivative with respect to energy of the real part of the dielec-
tric function of Ge measured at 500 K from Ref. 16 in the range of E1 and E1+∆1

(symbols). The second derivatives were obtained using Savitzky-Golay [37] (SG)
coefficients using a polynomial of third degree over N = 10 data points. Lines
represent the best fit to the data points using the second derivative of a 0D (dot-
ted), 1D (dash-dotted), and 2D (solid) CP lineshape (Eq. (15)).

As mentioned in the main part of the present work, there are several advantages
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Figure A.3: Same as Fig. A.2 but for the imaginary part of the dielectric function
of Ge measured at 500 K from Ref. 16.

of using the linear filter method introduced by Le et al. [11]. Figures A.4 and A.5

show the second derivatives of the dielectric function of Ge measured at 500 K [16]

calculated using the SG (symbols) and EG (dotted line) methods. It should be

noted that the amount of smoothing for these two cases is relatively large.

In order to determine the width of the EG linear filter, I applied the method

by Yoo and Aspnes [42] for the computation of the discrete Fourier transform

including the removal of discontinuities at the endpoint of the segment of interest

to the various data sets using Mathematica.
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Figure A.4: Second derivative with respect to energy of the real part of the di-
electric function of Ge measured at 500 K from Ref. 16 in the range of E1 and
E1 + ∆1. The second derivatives were obtained using Savitzky-Golay [37] (SG)
coefficients using a polynomial of third degree over N = 14 data points (symbols)
and the EG-filers defined in Eq. 70 (dotted line). Dashed and solid lines represent
the best fit to the SG and EG derivatives using the second derivative of a 2D CP
linsehape.
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Figure A.5: Same as Fig. A.2 but for the imaginary part of the dielectric function
of Ge measured at 500 K from Ref. 16.

A.2 Code

Equation (70) can easily be converted into C++:

vector<double> EG( int rows , double lower , double upper ,
double DeltaE , double step , vector<double> energy ,
vector<double> eps )
{

int N, index = 0 ;
N = fabs ( upper = lower ) / s tep + 1 ;
double sum = 0 . ;
vector<double> f ba r (N) ;
double constant = (1 / (12288 . * s q r t ( p i ) * DeltaE ) ) ;

i f ( energy [ 6 ] < energy [ 5 ] ) {
for ( int i = N = 1 ; i >= 0 ; i==) {

sum = 0 . ;
for ( int k = rows = 2 ; k > 0 ; k==) {
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sum = sum + constant
* f abs ( energy [ k + 1 ] = energy [ k = 1 ] ) / 2 .
* ( eps [ k ] * pow(DeltaE , =8.))
* exp(=( lower + i * s tep = energy [ k ] )
* ( lower + i * s tep = energy [ k ] )
/ (4 * DeltaE * DeltaE ) )
* (pow( energy [ k ] = ( lower + i * s tep ) , 8 . )
= 72 .
* pow( energy [ k ] = ( lower + i * s tep ) , 6 . )
* pow(DeltaE , 2 . )
+ 1512 .
* pow( energy [ k ] = ( lower + i * s tep ) , 4 . )
* pow(DeltaE , 4 . )
= 10080 .
* pow( energy [ k ] = ( lower + i * s tep ) , 2 . )
* pow(DeltaE , 6 . )
+ 15120 . * pow(DeltaE , 8 . ) ) ;

}
f ba r [ index ] = sum ;
index++;

}
}
else
{

for ( int i = N = 1 ; i >= 0 ; i==) {
sum = 0 . ;
for ( int k = 1 ; k <= rows = 2 ; k++) {

sum = sum + constant
* f abs ( energy [ k + 1 ] = energy [ k = 1 ] ) / 2 .
* ( eps [ k ] * pow(DeltaE , =8.))
* exp(=( lower + i * s tep = energy [ k ] )
* ( lower + i * s tep = energy [ k ] )
/ (4 * DeltaE * DeltaE ) )
* (pow( energy [ k ] = ( lower + i * s tep ) , 8 . )
= 72 .
* pow( energy [ k ] = ( lower + i * s tep ) , 6 . )
* pow(DeltaE , 2 . )
+ 1512 .
* pow( energy [ k ] = ( lower + i * s tep ) , 4 . )
* pow(DeltaE , 4 . )
= 10080 .
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* pow( energy [ k ] = ( lower + i * s tep ) , 2 . )
* pow(DeltaE , 6 . )
+ 15120 . * pow(DeltaE , 8 . ) ) ;

}
f ba r [ index ] = sum ;
index++;

}
}
return f ba r ;

}

A.3 Fitting of the dielectric function with the Hulthén-Tanguy model

Fitting the dielectric function and its second derivatives with the Hulthén-Tanguy

model using Mathematica showed to be extremely time-consuming. Therefore, I

implemented a Levenberg-Marquardt algorithm as defined in chapter 15.5 of Ref.

61 in C++. The Levenberg-Marquardt algorithm was modified, such that it is

possible to fit the real and imaginary parts of the dielectric function and their

second energy derivatives simultaneously by minimizing a “weighted” χ2:

χ2(a) =
N∑
j=1

[
ϵ1,j − ϵ1,model(Ej, a)

σ

]2
+

N∑
j=1

[
d2ϵ1,j
dE2 − d2ϵ1,model(Ej ,a)

dE2

cσ

]2

+
N∑
j=1

[
ϵ2,j − ϵ2,model(Ej, a)

σ

]2
+

N∑
j=1

[
d2ϵ2,j
dE2 − d2ϵ2,model(Ej ,a)

dE2

cσ

]2
, (A5)

where a is an array containing all fit parameters, N is the number of data points,

ϵ1(2),j are the data points (i.e. the real(imaginary) part of the dielectric function),

ϵ1(2),model(Ej, a) is the real(imaginary) part of the dielectric function defined in

Eq. 42 (i.e. the Hulthén-Tanguy model), σ is the standard deviation, and c is
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a factor used to “weigh” χ2 of the second derivatives, which otherwise would be

orders of magnitudes larger than χ2 of the dielectric function.

To fit a data set, several steps are required:

1. Perform a discrete Fourier transform along with removal of endpoint discon-

tinuities of the real and imaginary parts.

2. Define the filter width ∆E according to the white noise onset of the Fourier

coefficients.

3. Calculate the second derivatives with respect to energy using the EG filters.

4. Fit the Sellmeier coefficients (A1 and B′
1) to the real part of the dielectric

function.

5. Fit the energy and hh-broadening.

6. Set the lh-broadening equal to the hh-broadening.

7. Repeat steps 4, 5, and 6 until best fit parameters are found.

The Levenberg-Marquardt algorithm requires the derivatives with respect to

the fit parameters of the function that should be fitted to the data, i.e.

dϵ(E)

dE0

, (A6)

dϵ(E)

dγhh
, (A7)
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d

dE0

d2ϵ(E)

dE2
, (A8)

and

d

dγhh

d2ϵ(E)

dE2
(A9)

In Eq. (42), g̃(ξ) depends on the digamma function ψ(z). Since both ϵ(E) and

d2ϵ(E)/dE2 are fitted to the dielectric function and its second energy derivative,

respectively, the first, second, and third derivatives of ψ(z) need to be computed.

An algorithm to calculate the polygamma function is provided in section 3.3.4

in Ref. 108, along with a code, which I converted to C++ and extended to include

the above-mentioned derivatives (dnψ(z)/dzn where n = 0, 1, 2, 3) using Eq. 3.3.14

in Ref. 108. The Bernoulli numbers needed for the calculation of dnψ(z)/dzn are

taken from section 1.1 in Ref. 108. In the following, the code based on section

3.3.4 in Ref. 108 to calculate dnψ(z)/dzn, where n = 1, 2, 3 is given:

complex<double> PolyGamma( int der iv , complex<double> c ) {
/*
Notes :
d e r i v = 1 ,2 ,3 d e f i n e s the ‘ ‘ der iv=th ’ ’ d e r i v a t i v e
o f the digamma func t i on
c i s the complex argument
*/

complex<double> temp = c ;
complex<double> r e s ;
double re = r e a l ( c ) ;
double im = imag ( c ) ;

int n ;
double x0 , x1 = 1 . 0 , y1 , psr , ps i , th ;
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double z0 , z2 , rr , r i , tn , tm , ct2 , r e s u l t = 0 . ;
th = arg ( temp ) ;

i f ( im == 0.0 && re == ( int ) re && re <= 0 . 0 ) {
psr = 1 .0 e300 ;
p s i = 0 . 0 ;

}
else {

i f ( re < 0 . 0 ) {
x1 = re ;
y1 = im ;
re = =re ;
im = =im ;

}

x0 = re ;

i f ( re < 8 . 0 ) {
n = 8 = ( int ) re ;
x0 = re + n ;

}

i f ( x0 == 0 . 0 )
i f ( im != 0 . 0 )

th = 0 .5 * pi ;
else

th = 0 . 0 ;
else

th = atan ( im / x0 ) ;

z2 = x0 * x0 + im * im ;
z0 = sq r t ( z2 ) ;

i f ( de r i v == 1) {
double ar r [ 9 ] = {

0.16666666666666667 e0 ,
=0.3333333333333e=1,
0.23809523809523808 e=1,
=0.3333333333333e=1,
0.75757575757575758 e=1,
=0.2531135531135531 e0 ,
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1.16666666666666667 e0 ,
=7.092156862745098 e0 ,
54.971177944862156 } ;

psr = ( x0*x0 = im*im) / ( 2 .* z2* z2 ) + x0/z2 ;
p s i = =x0*im / ( z2* z2 ) = im/z2 ;

for ( int k = 1 ; k < 8 ; k++) {
psr += arr [ k ]*pow( z0 ,=(2 .*k+1.))

* cos ( ( 2 . * k+1.)* th ) ;
p s i == arr [ k ]*pow( z0 ,=(2 .*k+1.))

* s i n ( ( 2 . * k+1.)* th ) ;
}

i f ( re < 8 . 0 ) {
r r = 0 . 0 ;
r i = 0 . 0 ;
for ( int k = 1 ; k <= n ; k++) {

r r += ( ( x0=k )* ( x0=k ) = im*im)
/ ( ( ( x0=k )* ( x0=k)=im*im)
* ( ( x0=k )* ( x0=k)=im*im)
+ 4 .* ( x0=k )* ( x0=k )* im*im ) ;

r i += 2 .* ( x0=k )* im
/ ( ( ( x0=k )* ( x0=k)=im*im)
* ( ( x0=k )* ( x0=k)=im*im)
+4.*(x0=k )* ( x0=k )* im*im ) ;

}
psr += r r ;
p s i == r i ;

}

i f ( x1 < 0 . 0 ) {
ct2 = ( cos ( 2 .* pi * re )=cosh ( 2 .* pi *im ) )

*( cos ( 2 .* pi * re )=cosh ( 2 .* pi *im ) ) ;
psr += ( im*im=re * re ) / ( ( im*im+re * re )

*( im*im+re * re ) )
=4.* pi * pi *( s i n ( p i * re )
* s i n ( p i * re )* cosh ( p i *im)* cosh ( p i *im)
=cos ( p i * re )* cos ( p i * re )
* s inh ( p i *im)* s inh ( p i *im ) )/ ct2 ;

p s i += 2 .* re *im
/( ( im*im+re * re )* ( im*im+re * re ) )
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+8.* pi * pi * s i n ( p i * re )* cos ( p i * re )
* s inh ( p i *im)* cosh ( p i *im)/ ct2 ;

psr *= =1;
p s i *= =1;
re = x1 ;
im = y1 ;

}
complex<double> r e s u l t 1 ( psr , p s i ) ;
r e s = r e s u l t 1 ;

}
else i f ( de r i v == 2) {

double ar r [ 9 ] = {
=0.5e0 ,
0.16666666666666667 e0 ,
=0.16666666666666667 e0 ,
0 . 3 e0 ,
=0.8333333333333333333 e0 ,
3.2904761904761903 e0 ,
=17.5e0 ,
120.56666666666666 e0 ,
=1044.452380952381 e0 } ;

psr = (3 .* im*im*x0=pow(x0 , 3 ) )
/pow( z2 ,3)+( im*im=x0*x0 )/ ( z2* z2 ) ;

p s i = (=pow( im ,3)+3.* im*x0*x0 )
/pow( z2 ,3)+2.* im*x0 /( z2* z2 ) ;

for ( int k = 1 ; k < 9 ; k++) {
psr += arr [ k ]*pow( z0 ,=(2 .*k+2.))

* cos ( ( 2 . * k+2.)* th ) ;
p s i == arr [ k ]*pow( z0 ,=(2 .*k+2.))

* s i n ( ( 2 . * k+2.)* th ) ;
}

complex<double> temp , I ( 0 . , 1 . ) , cp i ( pi , 0 . ) ;

i f ( re < 8 . 0 ) {
r r = 0 . 0 ;
r i = 0 . 0 ;
for ( int k = 1 ; k <= n ; k++) {

temp = =2.* I /pow(x0=k+I *im , 3 ) ;
r r += r e a l ( temp ) ;
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r i += imag ( temp ) ;
}
psr += r r ;
p s i += r i ;

}
i f ( x1 < 0 . 0 ) {

temp = 2 .* I /(pow( re+im* I , 3 ) )
+2.* I *pow( cpi , 3 )
/( tan ( cp i *( re+im* I ) )

* s i n ( cp i *( re+im* I ) )
* s i n ( cp i *( re+im* I ) ) ) ;

psr += r e a l ( temp ) ;
p s i += imag ( temp ) ;
re = x1 ;
im = y1 ;

}
complex<double> r e s u l t 2 ( psr , p s i ) ;
r e s = r e s u l t 2 ;

}
else i f ( de r i v == 3) {

double ar r [ 9 ] = {
2 .0 e0 ,
=1.0e0 ,
1.333333333333333333 e0 ,
=3.0e0 ,
1 . 0 e1 ,
=46.066666666666667 e0 ,
2 .80 e2 ,
=2.1702e3 ,
2 .0889 e4 } ;

psr = (3 .*pow( im , 4)=18.*pow( x0*im , 2)
+3.*pow(x0 , 4 ) )
/pow( z2 ,4 )+(2 .*pow(x0 , 3)=6.* im*im*x0 )
/pow( z2 , 3 ) ;

p s i = 12 .* ( pow( im , 3)*x0=im*pow(x0 , 3 ) )
/pow( z2 ,4 )+(2 .*pow( im , 3)=6.* im*x0*x0 )
/pow( z2 , 3 ) ;

for ( int k = 1 ; k < 9 ; k++) {
psr += arr [ k ]*pow( z0 ,=(2 .*k+3.0))

* cos ( ( 2 . * k+3.)* th ) ;
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p s i == arr [ k ]*pow( z0 ,=(2 .*k+3.0))
* s i n ( ( 2 . * k+3.)* th ) ;

}

complex<double> temp , I ( 0 . , 1 . ) , cp i ( pi , 0 . ) ;

i f ( re < 8 . ) {
r r = 0 . 0 ;
r i = 0 . 0 ;
for ( int k = 1 ; k <= n ; k++) {

temp = 6 .* I /pow(x0=k+I *im , 4 ) ;
r r += r e a l ( temp ) ;
r i += imag ( temp ) ;

}
psr += r r ;
p s i += r i ;

}

i f ( x1 < 0 . 0 ) {
temp = = 6 .* I / (pow( re+im* I , 4 ) )

=2.* I *pow( cpi , 4)
* ( 2 .* I /pow( tan ( cp i *( re+im* I ) )
* s i n ( cp i *( re+im* I ) ) , 2)
=pow( s i n ( cp i *( re+im* I ) ) , =4));

psr += r e a l ( temp ) ;
p s i += imag ( temp ) ;
psr *= =1;
p s i *= =1;
re = x1 ;
im = y1 ;

}
complex<double> r e s u l t 3 ( psr , p s i ) ;
r e s = r e s u l t 3 ;

}
}
return r e s ;

}

The Mathematica command CForm[ ] converts Mathematica code into C++
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language. This makes it possible to simply convert the various derivatives com-

puted with the help of Mathematica and include it into the C++ program (and

avoid typing thousands of lines of code by hand).
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