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ABSTRACT

OPTICAL CHARACTERIZATION OF COMPOUND SEMICONDUCTOR

MATERIALS

USING SPECTROSCOPIC ELLIPSOMETRY

BY

NUWANJULA SAMARASINGHA, B.S., M.S.

Doctor of Philosophy

New Mexico State University

Las Cruces, New Mexico, 2021

Dr. Stefan Zollner, Chair

In this thesis, I present the thickness dependent optical properties of Zinc Ox-

ide (ZnO) thin layers on Si and quartz (SiO2) substrates and the temperature de-

pendence of the optical phonon reflection band in bulk Gallium Phosphide (GaP)

using J. A. Woollam FTIR-VASE and UV-VASE instruments. The FTIR-VASE

instrument was used to measure in the mid-and near-infrared spectral regions

from 0.03 to 0.60 eV and the UV-VASE instrument provides data from 0.5 to 6.5

eV (near-infrared to deep ultraviolet). All ZnO measurements were performed

xvii



in air at 300 K at three angles of incidence (60◦, 65◦, and 70◦). My main focus

has been on the thickness dependence of the infrared lattice absorption and the

excitonic absorption (near the bandgap) in ZnO thin films. Also, I focused on

the effect of temperature on the frequency and linewidth of zone-center transverse

(TO) and longitudinal (LO) optical phonons in bulk GaP from 80 to 720 K. The

GaP temperature dependence measurements were performed inside the Janis ST-

400 ultrahigh vacuum (UHV) cryostat at 70◦ angle of incidence. Powder X-ray

diffraction (XRD), X-ray reflectivity (XRR), and atomic force microscopy (AFM)

were used to characterize the structural and surface properties of thin films.

The conventional approach to describe the dielectric function (ε) as a sum of oscil-

lators (Drude, phonons, interband transitions) sometimes fails because each term

only has a single broadening parameter. Instead, we find it more convenient to

describe ε over a broad range from the mid-infrared to the vacuum ultraviolet as

a product of Drude, TO/LO phonon, and electronic interband transitions. This

comprehensive factorized description of ε was applied to a few doped and undoped

semiconductors and insulators. These results are reported in chapter 3.

ε of bulk and ZnO thin films was defined over a broad range from the mid-infrared

to the vacuum ultraviolet as a product of TO/LO phonon and oscillator functions

for the infrared lattice response and electronic interband transitions respectively.

Both real (ε1) and imaginary (ε2) parts of ε in thin ZnO films on Si are much

smaller than in bulk ZnO and show significant variations with thickness over

xviii



the complete spectral range. The excitonic enhancement decreases monotonically

with decreasing ZnO film thickness on Si. Due to quantum confinement, a small

blueshift of the bandgap was observed with decreasing thickness. A similar be-

havior was observed for ZnO films on SiO2 as a function of thickness.

To determine the energy and linewidth of GaP optical phonons, the ellipsomet-

ric angles (Ψ and ∆) were fitted with the Lowndes–Gervais model. We found a

significant variation of the optical phonon energy and the broadening with tem-

perature. These temperature-dependent phonon features were explicitly described

in chapter 5.
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1 INTRODUCTION

ZnO is a direct wide band gap (Eg ≈ 3.37 eV at room temperature) [116]

II-VI compound semiconductor material. It crystallizes in the wurtzite structure.

This is the most stable crystalline state of ZnO under ambient conditions [1]. Due

to its unique properties, this thermally and chemically stable material has a large

number of applications in optoelectronics and photonics industry. Owing to its

large excitonic binding energy (60 meV) ZnO has been identified as a potential

candidate for short-wavelength optoelectronic devices, such as UV light-emitting

diodes and laser diodes [106]. ZnO has also been seen as an ideal semiconduc-

tor material for thin film transistors, solar cells, gas sensors, high power, high

temperature electronics [106]. Therefore, it is very important to have a universal

description and better understanding of the optical properties of this semiconduc-

tor. In this thesis, I have explicitly described how the optical properties of bulk

and ZnO thin films change with the film thickness and the substrate material.

In this work, I also investigated the temperature dependence optical phonon bands

in GaP. This is another fascinating III-V indirect bandgap (Eg ≈ 2.25 eV at

room temperature) [26, 27] semiconductor material which crystallizes in the zinc

blende structure. Like ZnO, this thermally stable wide bandgap material is an

excellent semiconductor material for optoelectronics and photonics applications,

especially in light-emitting diodes (LEDs) [31], detectors, solar cells, and high-
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temperature transistors [27]. Therefore, studying the temperature dependence of

optical phonon energies and linewidths of GaP is valuable for its application in

optoelectronic and photonic devices to achieve their best performance.
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2 Experimental and theoretical methods

2.1 Variable Angle Spectroscopic Ellipsometry (VASE)

Spectroscopic Ellipsometry or simply “SE” is the most commonly used inline pro-

cess control tool in the semiconductor industry. SE is a fast and accurate optical

technique for studying the dielectric properties of materials, specially for thin film

and multi layered materials. This technique is mainly used to measure optical

constants (refractive index (n), extinction coefficient (k), or complex dielectric

constants ε1, ε2) and film thickness. It is also used to describe surface roughness,

doping concentration, electrical conductivity, material composition [2], etc. It is

a very flexible optical tool and can be used to determine the optical properties of

all types of materials, such as semiconductors, dielectrics, metals, polymers, etc.

2.1.1 How spectroscopic ellipsometry (SE) works

The basic principle of SE is to measure the change of the polarization state of

the light beam as it reflects or transmits from a sample surface. As shown in

Figure 2.1, the polarization state of the incoming beam is linear with both s and

p components (s component: electric field of the light waves oscillates perpendic-

ular to the plane of incidence and p component: electric field of the light waves

oscillates parallel to the plane of incidence). This linearly polarized light beam

interacts with the sample surface and then it will reflect. The reflected light beam

3



Figure 2.1: The working principle of spectroscopic ellipsometry [3].

is elliptically polarized.

This interaction between the material surface and the light beam induces a

phase difference and an amplitude difference between the p and s polarized light.

SE measures this amplitude ratio and phase difference between the p and s po-

larized light waves as ellipsometric angles Ψ and ∆, respectively. The amplitude

of the reflected p and s components are represented as rp and rs. The Fresnel’s

equations describe the rp and rs (Fresnel reflection coefficients) [46],

rp =
Erp
Eip

=
ntcosθi − nicosθt
ntcosθi + nicosθt

, (1)

rs =
Ers
Eis

=
nicosθi − ntcosθt
nicosθi + ntcosθt

. (2)
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The subscripts i, r, and t denote incident, reflected, and transmitted light

respectively. Ep is the amplitude of the electric field which is vibrating parallel

to the plane of incidence and Es is the amplitude of the electric field which is

vibrating perpendicular to the plane of incidence. n is the refractive index. θi and

θt represent the angle of incidence and angle of transmission respectively. The

ellipsometric angles Ψ and ∆ are related to the Fresnel reflection coefficients as,

ρ = tanΨ ∗ ei∆ =
rp
rs

(3)

Ellipsometric angle ∆

The ellipsometric angle ∆ is the change of the phase difference between the p

and s polarized light waves. If we define the phase difference between the p and

s polarized light waves before the reflection as δI and after the reflection as δF.

Then we can define ∆ as,

∆ = δF − δI (4)

Ellipsometric angles Ψ

Figure 2.2 shows how the ellipsometric angle Ψ is related to the Fresnel reflec-

tion coefficients rp and rs. The amplitude ratio tanΨ of rp and rs is a real number

and the ellipsometric angle Ψ can change from 0 to 90◦.
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Figure 2.2: Ellipsometric angle Ψ [4].

2.1.2 Pseudodielectric function

In the case of bulk isotropic materials with no surface layer (ex: surface roughness,

a native oxide layer, etc.) we can directly convert the measured ellipsometric

angles Ψ and ∆ into the pseudodielectric function (〈ε1〉) as [45],

〈ε1〉 = 〈N2〉 = sin2θi

[
1 + tan2θi

(
1− ρ
1 + ρ

)]
, (5)

where θi is the angle of incidence. In general, material surfaces are not perfectly

flat. Sometimes these surfaces are rough or sometimes there is a surface oxide

layer. To obtain the thickness and the actual optical constants, we must construct

a model to describe the sample. Here we mainly study the dielectric constants (ε1,

ε2) of materials. These real (ε1) and imaginary (ε2) parts of the complex dielectric

function (ε (ω)) are related to energy stored and lost (absorption) in the material.
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ε(ω) = ε1(ω) + iε2(ω) (6)

This complex dielectric function is related to the refractive index N (this is

also a complex function) as [122],

N =
√
ε (7)

where N=n+ik [122]

From Eqs. (6) and (7),

ε1 = n2 − k2, (8)

ε2 = 2nk, (9)

where k is the extinction coefficient which is related to the absorption coefficient

through [122],

α =
4πk

λ
, (10)

where λ is the wavelength of the light.

2.1.3 SE and thin films

Eqs. (1) and (2) describe the amount of light reflected at an interface between

materials. In the case of a thin film (Figure 2.3) and multi-layered materials (more
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Figure 2.3: Schematic of light reflection and transmission for a thin film on a

substrate [5].

than one reflection), the p and s Fresnel reflection coefficients should be modified

as below [45],

rp =
rp,12 + rp,23e

−i2β

1 + rp,12rp,23e−i2β
, (11)

rs =
rs,12 + rs,23e

−i2β

1 + rs,12rs,23e−i2β
, (12)

β = 2π
d

λ
ncosθ0, (13)

where d and n are the thickness and refractive index of the thin film respectively.
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2.1.4 Data acquisition and basic optical components used in UV and

IR spectroscopic ellipsometry: UVVASE & FTIR

A) UVVASE Figure 2.4 shows the J.A. Woollam variable angle spectro-

scopic ellipsometer. This allows to measure the ellipsometric angles Ψ and ∆

from 0.5 to 6.5 eV (near-infrared to deep ultraviolet) at different angles of inci-

dence. The choice of the angle of incidence is very important. In order to get

more accurate results with the least errors, the angle of incidence is chosen around

an angle called Brewster angle which depends on the refractive index of the two

media. At this Brewster angle, the reflected light is completely s polarized and

the p polarized component of the reflected light is equal to zero (rp=0). This dif-

ference between rp and rs increases the sensitivity of the results. So the variation

of the ellipsometic angles is larger near the Brewster angle [45].

A.1) Light source: A Xenon (Xe) lamp is used in our ellipsometer. It

covers the wavelength ranging from the near infrared to the deep ultraviolet (0.5

to 6.5 eV). Unlike conventional lamps with a filament, Xe lamps are more stable

and long lasting.

A.2) Monochromator: A Monochromator is a high precision wavelength

selection optical device. For the VASE we use a HS-190 high throughput monochro-

mator (Figure 2.6) which is placed before the sample. This black box contains
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Figure 2.4: (a) A picture of J.A Woollam UV variable angle spectroscopic ellip-

someter (UVVASE), (b) Schematic diagram of the UVVASE.
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Figure 2.5: A picture of a Xe lamp.

turrets with gratings, slits, choppers, filter wheels, etc. This optical device is

placed with the Xe light source and it optimizes the accuracy of the wavelength.

A.3) Optical Fiber: The unpolarized light coming from the Xe lamp first

passes through the optical elements of the monochromator. Then this modulated

beam couples with the input unit of the ellipsometer via a fiber optic cable.

A.4) Polarizer: The light beam entering the input unit of the ellipsometer

through the fiber optic cable is randomly polarized (unpolarized). This unpo-

larized light beam passes through the polarizer and is converted into linearly

polarized light.
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Figure 2.6: A picture of the HS-190 monochromator.

A.5) Alignment detector: An alignment detector is a four-quadrant silicon

detector that is used to align the sample to the beam. This detector is removable

and placed after the polarizer. If the sample is perfectly aligned (perpendicular to

the beam), the signal from each of the four quadrant displayed in the alignment

screen should be equal.

A.6) Sample stage: The J.A. Woollam Vase is designed with a vertical

sample stage which has small vacuum holes in it. These vacuum holes hold the

sample during data acquisition. This design allows a variety of data acquisition

geometries such as transmission, reflection, etc.

A.7) Analyzer: The analyzer is another important optic used in the VASE.

This is similar to the polarizer in the input unit. Both the polarizer and the

12



analyzer change the polarization state of the light beam. However, the polarizer

is fixed, and the analyzer rotates during the data acquisition. This design enhances

the sensitivity and accuracy of the data.

A.8) Detector: Our ellipsometer has two types of photodiode detectors.

One is a Si photodiode detector, and the other detector is made from InGaAs.

Depending on the wavelength range, these two detectors are switched. The Si

detector is sensitive in the visible and ultraviolet wavelength range (1.1-6.5 eV)

and the InGaAs detector is used at low energies.

B) Fourier Transform Infrared Spectroscopic Ellipsometer (FTIR

SE) Figure 2.7 shows the J. A Woollam IR-VASE Mark II ellipsometer. Similar

to the UVVASE, the IR-VASE also has a wide range of optical characterization

capabilities. In this work, we used the FTIR ellipsometer to study phonon ab-

sorption. The FTIR measures the ellipsometric angles Ψ and ∆ from 0.03 to 0.8

eV at different angles of incidence.

As shown in Figure 2.7, the FTIR ellipsometer includes a light source, moving

and fixed mirrors, a beam splitter, polarizers, a sample stage, a rotating compen-

sator, and a detector.

B.1) Source: A hot piece of Silicon carbide (SiC), simply known as a globar,

is used in the J.A Woollam IR-VASE Mark II ellipsometer as the IR light source.
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Figure 2.7: (a) A picture of the J.A Woollam IR-VASE Mark II ellipsometer

(FTIR), (b) Schematic diagram of the FTIR [2].

14



This is a U-shaped rod and produces IR radiation when it is hot. This globar is

normally operated at 1300 K and is expected to last about a year.

B.2) Beam splitter and mirrors: The IR radiation coming from the glo-

rbar strikes the beam splitter and then it is divided into two beams. These two

beams reach the fixed and moving mirrors which are made of highly reflective ma-

terials and then reflect back to the beam splitter. This produces an interference

pattern.

B.3) Wide-grid polarizer As mentioned earlier the polarizer changes the

polarization state of the light beam.

B.4) Rotating compensator A compensator is another optical element

used in the FTIR ellipsometer. During the data acquisition, the compensator is

rotated overa 360◦ range to provide accurate results of the ellipsometric angles Ψ

and ∆.

B.5) Detector A deuterated triglycine sulfate (DTGS) thermal detector

is used in the IR-VASE Mark II ellipsometer. This is a low sensitivity room

temperature detector.
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2.1.5 Temperature dependent ellipsometry

The temperature dependent measurements were performed inside a Janis ST-400

ultrahigh vacuum (UHV) cryostat at 70◦ angle of incidence. In order to achieve a

sufficiently low base pressure of 10−9 to 10−8 Torr for the temperature scans, an

Agilent dry scroll roughing pump and a turbo pump were used. A second rough-

ing pump was attached to the cryogen space for high temperature measurements

(above room temperature) to protect the cryogen space from corrosion. Based on

the experimental requirement we use two types of windows. Diamond windows

are used for the low energy range measurements (transparent range: 0.01-5.4

eV). The other type of window we use is ZnSe (transparent range: 0.06-1.7 eV).

Figure 2.8 shows the FTIR ellipsometer with the ST-400 cryostat installed at

the position of the sample stage. The ST-400 UHV cryostat is designed for low

and high temperature measurements. This system allows us to measure samples

from 4 K (liquid helium) to 800 K. A Lakeshore 335 temperature controller was

used to control the temperature. The temperature was measured with two type-

E (nickel-chromium/constantan) thermocouples. One thermocouple located near

the cryogen reservoir was used to control the temperature with the Lakeshore tem-

perature controller. The second thermocouple was directly attached to the surface

of the sample and measured the temperature of the sample surface. The differ-

ence between both thermocouple readings depends on the sample and increases
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with increasing temperature. A detailed explanation of the data acquisition steps

and the experimental procedure are explained in the experimental methods and

models section (section II) in chapter 5.

2.1.6 SE data modeling

We use WVASE32 software for the ellipsometric data analysis. This is a very fast,

accurate, and powerful software package.

Oscillator Models The oscillator model is the most common ellipsometry

data modeling method for bulk materials or simple multilayered systems. There

are different types of oscillator functions that can describe the frequency depen-

dent complex dielectric function. The selection of the oscillator type depends on

the material (metal, insulator, etc) and the type of charges present in the ma-

terials. The key point of this oscillator model is the direct connection between

the real and imaginary parts of the complex dielectric function which is known as

Kramers-Kronig consistent (KK consistent).

A) Gaussian Oscillator: This oscillator describes the imaginary part of

the complex dielectric function (ε2: Im[G(ω)]) with three main parameters [6],

Im[G(ω)] = Ae−
(
ω−E
σ

)2
− Ae−

(
ω+E
σ

)2
(14)
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Figure 2.8: Janis ST-400 ultrahigh vacuum (UHV) cryostat mounted on the J. A

Woollam IR-VASE Mark II ellipsometer.
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where A is the dimensionless amplitude, E the center energy (resonance fre-

quency), and the full width at half maximum (FWHM broadening) Γ is defined

as

Γ = 2σ
√

(ln2), (15)

where σ is the standard deviation.

The real part is calculated from the KK relation. Mostly this oscillator function

is used to define the UV and IR absorptions in amorphous materials.

B) Lorentz model [46] The dispersion due to damped vibrations of molecules

in a solid under the influence of an electromagnetic wave can be described by a

Lorentz oscillator. The shape of the Lorentz oscillator is similar to the Gaussian

oscillator. However, the Gaussian oscillator reaches zero faster than the Lorentz

oscillator. Figure 2.9 compares the ε1 and ε2 of the Lorentzian and the Gaussian

oscillators.

This Lorentz model is a pure classical model. If we consider a bound electron

with charge q in an electric field (E(t)=E0e−iωt), the equation of motion of can be

written as,

qE − kx− bv = ma, (16)

where E0 is the amplitude of the electric field, m is the mass of the charge, b is
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Figure 2.9: Comparison of the dielectric functions of the Lorentzian and the Gaus-

sian oscillators [6].

the damping constant (b=γm), and k is the strength of the restoring force. We

can define k as,

k = mω2
0, (17)

where ω0 is the resonance frequency (natural angular frequency) of the charge.

By substituting x(t) = x0e−iωt we can rewrite the Eq.( 16) as

qE0 − kx0 + ibωx0 = −mω2x0. (18)

We can define the polarization

P (t) = qnx(t) = ε0χ(ω)E(t), (19)

where n is the charge density per unit volume which is related to the plasma

frequency ωp as
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ωp =

√
nq2

mε0
. (20)

From Eqs. 18 and 19, the dielectric susceptibility can be interpreted as,

χ(ω) =
−q2n

ε0(mω2 + ibω − k)
(21)

Finally, the Lorentz model defines the complex dielectric function as

ε(ω) = 1 + χ(ω) = 1 +
ω2
p

ω2
0 − ω2 + iγω

(22)

C) Drude model The Drude model is used to describe free carrier ab-

sorptions in metals, conductive dielectrics, and doped semiconductors. For free

carriers, there is no restoring force. Therefore, we can get the Drude model by

substituting k=0 (ω0=0) into the Lorentz dielectric function,

ε(ω) = 1−
ω2
p

ω2 − iγω
. (23)

D) Tauc–Lorentz oscillator As we discuss in this section, different oscil-

lators are used for different types of absorption. The Tauc-Lorentz oscillator is

one of the common oscillators used to describe the electronic transitions of semi-

conductor materials. This oscillator is primarily used for amorphous semiconduc-

tor materials. Unlike the Gaussian and Lorentz oscillators which are symmetric
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around the resonance frequency, the Tauc-Lorentz oscillator is capable to define

the asymmetric shapes in ε2 with an additional band gap (Eg) parameter.

If (E>Eg) [106]

ε2(ω) =
AE0C(E − Eg)2

(E2 − E2
0)2 + C2E2

.
1

E
(24)

ε2(ω)=0, if (E≤Eg).

The real part of the complex dielectric function (ε1) can be extracted from the

KK relation [106].

ε1(ω) = ε∞ +
2P

π

∮
ζε2(ζ)

ζ2 − E2
dζ (25)

A is the amplitude of the oscillator, C is the broadening and E0 is the energy

of the peak.

2.1.7 Excitons

As shown in Figure 2.10 the absorption of a photon with energy ~ω can excite an

electron from the valence band into the conduction band. This transition creates

a hole in the valence band and an electron in the conduction band. This positively

charged hole and the negatively charged electron attract each other through the

Coulomb interaction and create an electron-hole pair. The bound state of the

electron-hole pair is known as an exciton.

Among the two main types of excitons (Wannier-Mott and Frenkel excitons)

I studied the absorption of Wannier-Mott excitons also called free excitons from
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Figure 2.10: Schematic diagram of interband optical absorption and formation of

an exciton [122].

the dielectric function as explained in chapter 4.

If the excitonic binding energy (Eq. 26) [122] is greater than kBT (average

energy of a thermally excited phonon at temperature T), free excitonic absorption

is visible in the dielectric function which is obtained through the spectroscopic

ellipsometer. We observe a series of bound states with energies

En = Eg −
RX

n2
, (26)

where the excitonic binding energy RX is given by [122]

RX =

(
µ

m0ε2r

)
RH , (27)

where Eg is the band gap, RH is the Rydberg energy of the hydrogen atom (13.6

eV), µ is the excitonic reduced mass of the electron and hole, m0 is the free electron
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mass and εr is the relative dielectric constant.

2.1.8 Quantum Confinement

The change of electronic and optical properties of a material with size is a conse-

quence of quantum confinement. This effect is observed only in very small crystals

(the size of the particle is very small). According to the Heisenberg uncertainty

principle, the uncertainly in the position ∆x (confine a particle in ∆x) introduces

an uncertainly in the momentum ∆p [122]

∆px ≈
~

∆x
. (28)

This momentum uncertainty leads to an additional kinetic energy (confinement

energy) as expressed in Eq. 29 [122].

Econfinement ≈
~2

2m(∆x)2
(29)

This phenomenon is briefly described in the chapter 4 for thin films. As we

change the thickness of the thin films the band gap changes. The confinement

model for thin films can be expressed as [122]

Eg(t) = Eg,∞ +
F

t2
−∆E, (30)

where Eg is the band gap of the bulk material, t is the layer thickness, F is
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the confinement factor (equal to ~2π2/2µeh for infinitely high barriers, where µeh

is the electron-hole reduced effective mass), and ∆E is a thickness-independent

difference between the bulk and layer band gap.

According to the Eq. 30, the band gap can be controlled by the thickness of

the thin film. This concept is very important for practical applications.

2.1.9 Optical phonons

Phonons are vibrations of the atoms in a solid about the equilibrium position. If we

consider a unit cell which contains more than one atom, then the crystal contains

two types of phonons. One is the low energy vibrations (translation) or simply

known as acoustic phonons and the other type is the higher energy vibrations or

simply optical phonons. In this thesis, I mainly focus on phonon modes that inter-

act directly with light which are known as infrared active optical phonons. These

phonons absorb light at their resonance frequency which occurs in the infrared

spectral region. Depending on the direction of the displacement, these optical

phonon modes are divided into transverse optical (TO-displacement perpendic-

ular to the direction of propagation) and longitudinal optical (LO-displacement

parallel to the direction of propagation) phonon modes. As shown in Figure 2.11

a TO phonon appears as a strong peak in the imaginary part of the complex

dielectric function (ε2) and an LO phonon appears as a strong peak in the loss

function.
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Figure 2.11: Imaginary (ε2: right axis) part of the complex dielectric function and

pseudo-loss function (right axis) of bulk GaP at 300 K versus photon energy.

Lowndes–Gervais model The Lorentzian (section 2.1.6) or Lowndes–Gervais

models can be used to extract the optical phonon parameters (amplitude A, TO

and LO phonon energies ωTO and ωLO, and corresponding broadenings γTO and

γLO) and the static and high-frequency dielectric constants εs and ε∞. As ex-

plained, the Lorentz model has only one broadening parameter, while the Lowndes-

Gervais model assigns two different broadening parameters γTO and γLO to the two

phonons. the Lowndes–Gervais model describes the complex dielectric function

as [14,18]

ε(ω) = ε∞
ω2
LO − ω2 − iγLOω

ω2
TO − ω2 − iγTOω

. (31)
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Figure 2.12: Schematic illustration of the Bragg condition [7].

The static dielectric constant can be obtained from the Lyddane–Sachs–Teller

(LST) relation [17]

εs = ε∞
ω2
LO

ω2
TO

. (32)

2.2 X-ray powder diffraction (XRD)

X-ray powder diffraction (XRD) is the most commonly used rapid powerful non-

destructive structural characterization technique. This method has been used

extensively to characterize the crystal structure, lattice constant, preferred orien-

tation, grain size, and out-of-plane strain.

The basic principle of this technique is the monochromatic X-ray beam di-

rected toward the sample. Since the wavelength of this incoming x-ray beam

and the atomic spacing of the crystal have the same order of magnitude, these

X-rays get diffracted. For a crystalline material (long-range order of atoms) these
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diffracted beams undergo constructive or destructive interference. When Bragg’s

Law is satisfied, they interfere constructively and produce a diffraction pattern.

Since every crystalline material produces its own diffraction pattern, X-ray powder

diffraction is considered a fingerprint of materials.

Bragg’s law states that

2dsinθ = nλ, (33)

where d is the spacing between atomic planes, θ is the angle of incidence, λ is

the wavelength of the X-ray beam, and n is an integer that represents the order

of reflection. The lattice spacing d=a/
√
h2 + k2 + l2 for a cubic lattice. Where

a is the out-of-plane lattice constant, and h, k, l are Miller indices of the Bragg

planes.

The PANalytical Empyrean diffractometer operated in line focus mode with 45

kV anode voltage and a 40 mA beam current producing Cu Kα radiation with

wavelength 1.5419 Å, was used for the powder X-ray diffraction of thin films

explained in chapter 4. Symmetric 2θ-ω scans were performed with a Bragg-

Brentano HD (BBHD) optical module and a PIXcel1D Medipix3 array detector

to investigate the grain height of polycrystalline thin films, preferred orientation,

and vertical lattice strain (ε⊥).
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Scherrer Formula From the full width at half maximum (FWHM) of the

powder diffraction pattern, the grain height of polycrystalline thin films can be

determined [8].

t =
Kλ

βcosθ
. (34)

This is known as the Scherrer formula. Where K is the dimensionless shape

factor. This is a function of the shape of the crystallite and normally K is 0.9

(0.89 and 0.94 for spherical and cubic crystallites respectively [9]). λ is the X-ray

wavelength. θ is the Bragg angle. β is the FWHM of the Bragg peak (plotted as

a function of 2θ, after subtracting the instrumental broadening) in radians.

Strain The vertical lattice strain (ε⊥: Figure 2.13) can be calculated from

the out-of-plane lattice constant of the layer and the bulk lattice constant as below

ε⊥ =
a⊥
abulk

− 1. (35)

The out-of-plane lattice constant (a⊥) can be calculated from the position of the

Bragg peak in symmetric 2θ-ω scan and Bragg’s law.

a⊥ =
nλ
√
h2 + k2 + l2

2sinθ
(36)
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Figure 2.13: Schematic representation of the in-plane (ε‖) and out-of-plane (ε⊥)

strain in a thin film due to lattice mismatch with the substrate.

2.3 X-ray reflectance (XRR)

Thin films have been used in many optoelectronic and photonic devices, such as

thin film transistors, solar cells, light emitting diodes, etc. Film thickness is one

of the key parameters in these applications. This is because most properties of

thin films vary with the film thickness. Hence determination of film thickness

is very important for these applications. Among many surface characterization

techniques, X-ray reflectivity or simply XRR is a more accurate non-destructive

method for thin film characterization. Detailed surface properties of thin films

such as thickness, surface, and interface roughness, and electron density profile

can be obtained using the XRR technique. XRR is more accurate than electron

microscopy.
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Figure 2.14: Schematic of total external reflection of the X-ray beam at a planar

surface

In the case of X-ray reflection, we define the incident angle as the angle between

the sample surface and the incoming X-ray beam. This is known as the grazing

angle. When this grazing angle is smaller than the critical angle (θc) (Eq. 40) the

X-ray beam undergoes total external reflection (Figure 2.14). This is because

the refractive index of a material is slightly less than 1 at X-ray wavelengths (Eq.

37) [10].

n1 = 1− δ + iβ, (37)

n>n1

where δ and β explain the wavelength dependent scattering and absorption re-

spectively.

δ =
λ2re
2π

ρe, (38)
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β =
λ

4π
µ, (39)

where re is the classical electron radius. re=
1

4πε0
e2

meC2 =2.8*10−15 m, λ is the X-ray

wavelength, ρe is electron density and µ is the linear absorption coefficient.

The critical angle for total external reflection can be explained as below,

θc =
√

2δ (40)

If the angle of incidence is greater than θc, X-rays transmit into the material.

When the X-rays penetrate a layering system with different electron densities (ρe)

a part of the X-rays is reflected at every interface. These reflected beams interfere

constructively or destructively. XRR technique involves measuring the intensity

of these reflected X-rays from a sample R(Q) as a function of X-ray incident angle

(θi). Here R(Q) (Eq. 41) in the reflectivity curve and Q is the scattering vector

(Figure 2.15).

The wave vector [11] k=2π
λ

, Q=ks+ki, Q=2kisin(θ)

Q =
4πsinθ

λ
(41)

How does the scattering length density (SLD) β function relate to

R(Q) : The Fourier transform of the SLD function is an elastic differential cross

section ( dσ
dΩ

)el [11].
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Figure 2.15: Scattering vector Q

(
dσ

dΩ

)
el

∝
∣∣∣∣ ∫∫∫

V

β(r)eiQ.rd3r

∣∣∣∣2, (42)

where V is the total scattering volume. The reflectivity curve R(Q) is related to

the elastic differential cross section through [11],

R(Q) =
1

4LxLysinθ

∫∫
∆Ω

(
dσ

dΩ

)
el

dΩ, (43)

where 4LxLysin(θ) represents the area of the sample illuminated perpendicular to

the incoming beam [11].

(
dσ

dΩ

)
el

∝ 16L2
xL

2
y

∣∣∣∣ ∫ ∞
−∞

β(z)e−iQ.zdz

∣∣∣∣2 (44)
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∆Ω ≈ 16π2sinθ

LxLyQ2
(45)

Hence,

R(Q) ≈ 16π2

Q2

∣∣∣∣ ∫ ∞
−∞

β(z)e−iQ.zdz

∣∣∣∣2 (46)

Integration by parts [11],

R(Q) ≈ 16π2

Q4

∣∣∣∣ ∫ ∞
−∞

dβ

dz
e−iQ.zdz

∣∣∣∣2 (47)

For an ideal surface of a bare substrate (SLD βs), the depth profile is, βs for

z<0 and 0 for z>0. The derivative of the SLD function is a δ function [11].

dβ

dz
= −βsδ(z) (48)

From Eq. 47 the reflectivity curve R(Q) for a bare substrate is given by [11],

R(Q) ≈ 16π2β2
s

Q4
(49)

However, surfaces are not ideal. Generally, we should consider the surface and

interface roughness. Therefore, a rough bare substrate is modeled by a Gaussian

function. Hence the derivative of β function [11],

dβ

dz
= − βi

σ
√

2π
exp

(
− z2

2σ2

)
(50)
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Finally, the reflectivity curve R(Q) for a bare rough substrate can be defined

as,

R(Q) ≈ 16π2β2
s

Q4
exp(−σ2Q2) (51)

Another simple situation is one uniform layer of film thickness L and SLD βL on

a substrate with SLD βS. Without considering any surface or interface roughness

the depth profile is, βS for z<-L, βL for -L<z<0, and 0 for z>0. Similar to the

previous case the derivative of the SLD function is a δ function.

dβ

dz
= (βL − βs)δ(z + L)− βLδ(z) (52)

From Eq. 47 the reflectivity curve R(Q) for one uniform layer on a substrate

is given by,

R(Q) ≈ 16π2

Q4

[
β2
L + (βL − βs)2 − 2βL(βL − βs)cos(LQ)

]
(53)

For a rough surface and interface the Eq. 53 can be modified as,

R(Q) ≈ 16π2β2
i

Q4

[
5

4
− cos(LQ)

]
βiexp

(
−Q2σ2

2

)
(54)

According to the Eqs. 49 and 54, the reflectivity R(Q) decreases with increas-

ing Q. The film thickness is related to the ∆Q as [11],

∆Q =
2π

L
(55)
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∆Q is the period of the oscillation of the XRR fringe pattern.

XRR results shown in chapter 4 were taken on a PANalytical Empyrean

instrument (the same instrument that we used for XRD) with a Ge (220) two-

bounce hybrid monochromator. In order to limit the divergence of the X-ray beam,

we used a fixed 1/32◦ divergence slit, and a 4 mm beam mask as the incident beam

optics. Because of the low incidence angle of radiation large samples are more

preferable for X-ray reflectance. Due to this effect of the sample size, the XRR

profile needs to be corrected by a geometrical factor which is known as foot-print

correction.

The reflected beam path consisted of a 0.27◦ parallel-plate collimator (refocus-

ing the X-ray beam into a parallel path) with a 0.1 mm XRR slit, a 0.04 rad soller

slit, and a Xe proportional detector. A programable Ni 0.125 mm beam attenu-

ator was activated when the Xe detector count rate exceeded a preset threshold.

More details about the sample alignment and the data analysis part are explained

in chapter 4.

2.4 Atomic force microscopy (AFM)

Atomic force microscopy (AFM) is one of the primary forms of scanning probe

microscopy (SPM) [12]. This is a high-resolution three-dimensional surface charac-

terization tool used in a wide range of fields, including solid-state physics, surface

chemistry, molecular biology, medicine, etc. Since this requires minimal sample
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Figure 2.16: The basic principle of AFM [12].

preparation [13], it is easier to use.

As shown in Figure 2.16 the AFM tip (probe tip) is attached near the free

end of a cantilever. When the distance between this tip and the sample surface

is very small, according to the Hooke’s law (Eq. 56) the probe tip experiences a

repulsive force as below [12],

F = −k.x, (56)

where F is the force between the sample surface and the probe tip, k is the

spring constant, and x is the cantilever deflection. This force between the tip

and the sample surface results in a deflection of the cantilever. Depending on the

height between the tip and the surface, the deflection of the cantilever changes.
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This deflection is monitored by a laser beam and directed into a photodetector as

shown in Figure 2.16. According to the motion of this cantilever tip on the surface

of the sample, the AFM operation is categorized into three modes. Those are

imaging mode, contact mode, and non-contact tapping mode. A widely applied

non-contact tapping mode was used for all the AFM measurements in this work.

AFM results shown in chapter 4 were performed on a Bruker Dimension

FastScan instrument with a TESPA etched Si probe. To get the high-resolution

AFM data with minimum sample damage here we used non-contact tapping mode

across 10 × 10 µm2 area of the sample and several different positions of the same

sample were imaged in order to diminish the inhomogeneity of the sample sur-

face. Then we quantitatively analyzed this data and mainly obtained the root

mean square (rms) surface roughness (Rq) using NanoScope analysis software.
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3 DRUDE AND KUKHARSKII MOBILITY OF DOPED SEMICON-

DUCTORS EXTRACTED FROM FOURIER-TRANSFORM IN-

FRARED ELLIPSOMETRY SPECTRA

This article was published in the Journal of Vacuum Science and Technology B,

volume 37, 012904 (2019).

Stefan Zollner, Pablo P. Paradis, Farzin Abadizaman, and Nuwanjula S.

Samarasingha

Department of Physics, New Mexico State University, P.O. Box 30001, Las

Cruces, NM 88003, USA

3.1 Abstract

The factorized plasmon-phonon polariton description of the infrared dielectric

function is generalized to include an additional factor to account for the effects

of interband electronic transitions. This new formalism is superior to the usual

Drude-Lorentz summation of independent oscillators, especially in materials with

large transverse-longitudinal optical phonon splittings, multiple infrared-active

phonon modes, or high concentrations of free carriers, if a broad-band description

of the dielectric function from the far-infrared to the vacuum-ultraviolet spectral

region is desired. After a careful comparison of both approaches, the factorized

description is applied to the dielectric function of undoped and doped semicon-

39



ductors (GaAs, GaSb, InAs) and metal oxides from 0.03 to 9.0 eV. Specifically,

we find that both descriptions of the far-infrared dielectric function yield the same

carrier density and mobility, at least for a single species of carriers. To achieve

valid results for moderately high doping concentrations, measurements to lower

energies would be helpful.

3.2 Introduction

The infrared optical spectra of semiconductors obtained from Fourier-transform

infrared (FTIR) ellipsometry measurements contain rich information about their

free carrier and lattice vibrational properties, such as the plasma frequency, car-

rier density, mobility, and energies and broadenings of transverse and longitudinal

optical phonons [15]. There have been many discussions in the literature, if the

dielectric function ε (ω) should be written as a Drude-Lorentz sum of the contri-

butions of various elementary excitations (such as plasmons, phonons, polaritons,

excitons, etc) or as a Berreman-Unterwald product of the various terms. In this

manuscript, we introduce a broadband factorized description of the dielectric func-

tion, which can be used from the far-infrared to the vacuum-ultraviolet spectral

region, and apply it to undoped bulk cubic GaAs, wurtzite ZnO, and other ma-

terials. We also show that the factorized (Kukharskii) description of the infrared

dielectric function for doped GaAs yields a similar electron concentration and

mobility as the more commonly applied Drude-Lorentz model, if experimental er-
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rors and our limited experimental range (0.031 to 6.5 eV) are properly taken into

account.

3.3 Model dielectric functions

3.3.1 Drude-Lorentz model (sum)

Following Helmholtz [143], Kettler [144], and Drude [145–147], one can write the

dielectric function ε (ω) versus angular frequency ω as a sum

ε (ω) = 1 + χDrude (ω) + χTO (ω) + χelectronic (ω) , (57)

where the constant 1 is the contribution of the vacuum, the first term

χDrude (ω) = −
∑
i

ω2
u,i

ω2 + iγD,iω
(58)

the susceptibility of free carriers, the second term

χTO (ω) =
∑
i

Aiω
2
TO,i

ω2
TO,i − ω2 − iγTO,iω

(59)

the susceptibility of transverse optical (TO) phonons, and the last term

χelectronic (ω) =
∑
i

Biω
2
0,i

ω2
0,i − ω2 − iγ0,iω

(60)

the susceptibility of bound carriers due to interband optical transitions.

The justification for this summation (57) is the electromagnetic superposition

principle: We assume that the polarization fields of the various charges under the
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influence of the external electric field of the light source can be added, because

they are independent of each other, ignoring interactions between charges.

As suggested by Drude [145, 147], we allow more than one species i of free

carriers with an unscreened (angular) plasma frequency [148]

ω2
u,i =

nie
2

ε0m∗im0

, (61)

Drude scattering rate γD,i, carrier density ni, and effective mass m∗i to contribute

to the dielectric function. e is the electronic charge, ε0 the vacuum permeability,

and m0 the free electron mass. Usually, just a small number of free carrier species

(often one or two) are sufficient to describe ε (ω), such as electrons and holes, light

and heavy holes, electrons in different conduction band valleys, s- and d-electrons,

or bulk and surface electrons. For n-type semiconductors with a single occupied

conduction band valley or for metals with a simple spherical Fermi surface, only

one term should be sufficient, while more terms might be needed for more complex

Fermi surfaces of metals.

In the lattice absorption term (59), ωTO,i is the (angular) TO phonon fre-

quency with scattering rate γTO,i and dimensionless oscillator strength Ai. Since

electromagnetic waves are transverse, only TO phonons (not LO phonons) lead

to a pole in the lattice susceptibility (59).

Similarly, in the interband absorption term (117) due to bound carriers, ω0,i

is the (angular) frequency of the transition, γ0,i its scattering rate [149], and Bi
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its dimensionless oscillator strength. The summation in Eq. (59) runs over all

infrared-active phonon modes in the crystal (usually a small number, much less

than three times the number of atoms in the primitive unit cell), but additional

modes may be required due to higher-order phonon absorption or impurity-related

vibrational modes [15].

The summation in Eq. (117) in principle runs over all ~k-vectors in the Bril-

louin zone and all possible combinations of interband transitions. Therefore, the

interband contribution is usually replaced by a summation

χelectronic (ω) =
∑
i

gi (ω) (62)

over a much smaller number of Kramers-Kronig-consistent general oscillator func-

tions gi (ω), which might include Lorentzians with complex (or even negative) am-

plitudes, Gaussians, Tauc-Lorentz or Cody-Lorentz lineshapes, or the Herzinger-

Johs parametric oscillator model [150].

Writing the dielectric function as a sum of Lorentzians or other lineshapes as in

Eq. (57) implies that the various contributions are independent and that there is

no cross-talk (interaction) between different transitions. Therefore, these models

only use one broadening parameter for each term, in each denominator.

If we are only interested in the infrared portion of the dielectric function spec-

trum, we can define the high-frequency dielectric constant

ε∞ = 1 + lim
ω→0

∑
i

gi (ω) . (63)
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This quantity describes the contribution of the vacuum and the electronic inter-

band transitions to the static dielectric constant εs=ε (ω = 0). Experimentally,

one obtains ε∞ for insulators by measurements at frequencies above the region

of lattice absorption (thus the subscript ∞), but far below the band gap. The

infrared dielectric function then becomes

εIR (ω) = ε∞ −
∑
i

ω2
u,i

ω2+iγD,iω
+
∑
i

Aiω
2
TO,i

ω2
TO,i−ω2−iγTO,iω

= ε∞

(
1−

∑
i

ω2
P,i

ω2+iγD,iω

)
+
∑
i

Aiω
2
TO,i

ω2
TO,i−ω2−iγTO,iω

, (64)

where we have introduced the screened (angular) plasma frequency

ω2
P,i =

nie
2

ε0ε∞m∗im0

=
ω2
u,i

ε∞
. (65)

We will use Eq. (64) to fit the infrared dielectric function of undoped and doped

GaAs [151,152].

For ω=0, Eq. (64) shows that in the absence of free carriers the amplitudes

Ai describe the contribution of lattice absorption to the static dielectric constant,

since [19]

εs = ε∞ +
∑
i

Ai. (66)

For a single phonon absorption band, we can use the Lyddane-Sachs-Teller (LST)

relation [153]

εs = ε∞
ω2

LO

ω2
TO

(67)
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to calculate the longitudinal optical (LO) phonon frequency

ωLO = ωTO

√
1 +

A

ε∞
. (68)

(Kurosawa [154] and Barker [19] generalized the LST relation for cubic materials

with multiple phonons and Schubert [155] for anisotropic crystals.)

In the presence of free carriers, the dielectric function (57) diverges at low

frequencies. It is convenient to introduce the complex optical conductivity

σ (ω) = −iε0ω [ε (ω)− 1] , (69)

which cancels the divergence of the Drude term and therefore remains finite at

low frequencies. We can then identify the quantity

σDC = lim
ω→0

σ (ω) (70)

with the electrical low-frequency conductivity. For the specific case of the Drude-

Lorentz model (64), we find

σDC = ε0ε∞
∑
i

ω2
P,i

γD,i
= e2

m0

∑
i

ni
m∗i γD,i

=
∑
i

nieµi. (71)

A similar expression was already given by Drude [145]. The mobility of the carrier

species i is given by [148]

µi =
e

m∗im0γD,i
=

eτD,i
m∗im0

, (72)

where τD,i = γ−1
D,i is the Drude collision time.
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3.3.2 Kukharskii model (product)

Berreman and Unterwald [16] take a completely different approach in their de-

scription of the dielectric function. Without making physical assumptions about

the line shape of oscillators, they start with the mathematical fact that the di-

electric function, like any analytic function in the complex plane, is completely

determined by its zeroes and poles and therefore can be written as a quotient

of two polynomials. Since ε (ω) approaches unity as the angular frequency goes

to infinity, the number of poles must be equal to the number of zeroes and the

highest-order polynomial coefficients in the numerator and denominator must be

equal. Considering also the symmetry ε (−ω) = ε∗ (ω) to ensure that the time-

dependent dielectric displacement remains real, poles and zeroes come in pairs

and those not located on the imaginary axis must be symmetric relative to the

imaginary axis. This results in the functional form [14]

ε (ω) =
∏
i

ω2
L,i − ω2 − iγL,iω

ω2
T,i − ω2 − iγT,iω

, (73)

which was frequently applied to model the infrared reflectance of insulators [18].

For insulators with many phonon modes or for large TO/LO splittings, it often

gives a better description than the Drude-Lorentz model of independent oscillators

[156,157].

Since the dielectric function ε (ω) and its inverse ε−1 (ω) (called the loss func-

tion) obey causality (i.e., the polarization response follows the applied electric
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field), both zeroes and poles must be located below the real axis in the complex

plane, which is equivalent to the condition that all scattering rates γT,i and γL,i

must be positive. (We assume a time-dependence exp (−iωt) for the electromag-

netic wave. The other choice for the time-dependence exp (iωt) leads to complex

conjugate equations with poles and zeroes above the real axis, see Barker [19]).

To understand the physical significance of the zeroes and poles in Eq. (105),

it is instructive to place the various factors into three groups

ε (ω) = ε (ω)Drude ε (ω)TO ε (ω)electronic . (74)

Berreman and Unterwald [16] already recognized that the Drude response of free

carriers can be described by

ε (ω)Drude =
∏
i

ω2
LP,i − ω2 − iγLP,iω

−ω2 − iγK,iω
, (75)

which corresponds to one pole at the origin and another one at −iγK,i. We chose

the subscript K after Kukharskii, who first applied Eq. (75) to describe the re-

flectance of doped GaAs [158,159]. The zeroes in Eq. (75) are related to the lower

longitudinal plasmon-phonon polaritons (LP) [15,160,161]. In the absence of free

carriers, the LP angular frequency vanishes and the Drude factor (75) becomes

unity.

The second factor

ε (ω)TO =
∏
i

ω2
UP,i − ω2 − iγUP,iω

ω2
TO,i − ω2 − iγTO,iω

, (76)
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describes the dielectric response of infrared lattice absorption. The poles are

related to TO phonons, while the zeroes are the upper longitudinal plasmon-

phonon polaritons (UP). In the absence of free carriers, the UP modes are the

LO phonons. They are pushed towards higher energy by the interaction with

longitudinal plasmon oscillations of free carriers [160, 161]. (Since the plasmon

oscillations are longitudinal, they interact only with the LO, but not with the TO

phonons.) Additional factors may be attached to describe higher-order phonon

absorption or impurity-related absorption.

For a single plasmon-phonon polariton mode, the lower and upper polariton

frequencies are related to the screened plasma frequency and the LO frequency

by [159,160]

ωP =
ωLPωUP

ωTO

and (77)

ω2
LO = ω2

LP + ω2
UP − ω2

P . (78)

The third factor

ε (ω)electronic =
∏
i

ω2
L,i − ω2 − iγL,iω

ω2
0,i − ω2 − iγ0,iω

, (79)

can be expressed as a sum similar to Eq. (117)

ε (ω)electronic ≈ 1 +
∑
i

Biω
2
0,i + iω (γ0,i − γL,i)
ω2

0,i − ω2 − iγ0,iω
(80)

with the oscillator strength

Bi =
ω2
L,i

ω2
0,i

− 1, (81)
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if we pretend that all broadenings are small and thus neglect the coupling between

different interband transitions. (The presence of broadenings justifies complex

Lorentzian amplitudes.) More conveniently, we write this factor (80) as a sum of

general oscillators

ε (ω)electronic = 1 +
∑
i

gi (ω) , (82)

just like in the Drude-Lorentz case (62). We use the same definition (63) for ε∞.

If we are only interested in the dielectric function of doped insulators well below

the band gap, this allows us to write

εIR (ω) = ε∞
∏
i

ω2
LP,i−ω

2−iγLP,iω

−ω(ω+iγK,i)

∏
j

ω2
UP,j−ω

2−iγUP,jω

ω2
TO,j−ω2−iγTO,jω

, (83)

which is known as Kukharskii’s equation [158,159].

From the Kukharskii model (83), we can calculate the DC conductivy defined

by Eq. (70) as

σDC = ε0ε∞
∏
i

ω2
LP,i

γK,i

∏
j

ω2
UP,j

ω2
TO,j

. (84)

It is not straightforward to break up this product into a sum of contributions of

different species of carriers to the DC conductivity, but for a single carrier species

we can write using Eq. (77)

µ =
σDC

ne
=
ε0ε∞
ne

ω2
LPω

2
UP

γKω2
TO

=
e

m0m∗γK
, (85)

which is exactly the same expression as in the Drude-Lorentz case (72). The

Drude and Kukharskii scattering rates are therefore the same and we can omit

this distinction.
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Figure 3.1: (Color online) Real and imaginary parts of the pseudo-dielectric func-

tion for silicon-doped (top) and undoped (bottom) GaAs covered with native ox-

ide. Data from two different instruments were merged. The insets show expanded

views of the regions of lattice absorption. Symbols show experimental data, lines

the best fit to Eq. (74) with parameters given in Table 3.1.
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Figure 3.2: (Color online) Ellipsometric angle ψ at five angles of incidence for

silicon-doped (top) and undoped (bottom) GaAs covered with native oxide in the

region of plasmon-polariton absorption (grey). Symbols show experimental data,

lines the best fit to Eq. (74) with parameters shown in Table 3.1. The reststrahlen

bands are shaded in grey.
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3.4 Experimental procedure

In the infrared spectral region, we acquired the ellipsometric angles ψ and ∆ as

a function of angular frequency ω on a J. A. Woollam FTIR variable angle of

incidence spectroscopic ellipsometer (FTIR-VASE) from 0.031 to 0.600 eV with a

resolution of 4 cm−1, usually at five equally spaced angles of incidence from 60◦ to

80◦. We performed two-zone measurements with two polarizer angles (±45◦) and

two analyzer angles (0◦, 180◦) and a rotating compensator (15 spectra per revolu-

tion, 20 FTIR scans per spectrum). We also acquired ψ and ∆ from 0.50 to 6.60

eV with 0.01 eV steps at the same angles of incidence on a J.A. Woollam VASE

ellipsometer equipped with a computer-controlled Berek wave plate compensator.

Since data from two these instruments were merged, small discrepancies can

be noticed in the region of overlap, possibly due to slight misalignment. Most

noticeably, the data taken with the FTIR ellipsometer is noisy above 0.5 eV.

3.5 Results and Discussion

3.5.1 Intrinsic and n-type GaAs, doped GaSb, InAs

In Figure 3.1, we show the pseudodielectric functions for a nominally undoped

(intrinsic) and a Si-doped (n-type) GaAs substrate from 0.031 to 6.5 eV. Above

1 eV, we used tabulated optical constants for undoped and n-type GaAs and its

native oxide taken from the literature [162–164]. This allowed us to determine the
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native oxide thickness (40 and 26 Å, respectively). This fit is generally quite good,

although some discrepancies were found, most likely due to polishing damage near

the surface and uncertainties in the optical constants of the native oxide [164].

Using the tabulated optical constants for the electronic part of the dielectric

function εelectronic (ω), we then fitted the remaining parameters (TO phonon and

polariton energies and broadenings) in Eqs. (74) and (83), with results shown

in Table 3.1. ε∞ was taken as the zero-energy limit of the tabulated dielectric

functions.

Since the effects of plasmon-phonon polaritons on the optical constants can

only be seen at the lowest photon energies, we also show the ellipsometric angle

ψ below 0.09 eV for both substrates in Fig. 3.2. For each sample, there are two

regions called reststrahlen bands (shown in grey), where ψ is close to 45◦ (and

the normal-incidence reflectance is high). One of these bands extends from zero

to ELP, while the other one extends from ETO to EUP. Our FTIR ellipsometer

has good sensitivity to EUP (which appears as a strong peak in the loss function

shown in Fig. 3.5) and its broadening. ETO is right at the edge of our experimental

range, but clearly visible in ε, see the insets in Fig. 3.1. The energy range of

the lower plasmon-phonon polariton band, on the other hand, is too low to be

measurable using our instrument. Nevertheless, we obtain reasonable values for

all relevant parameters, see Table 3.1. The only exceptions are the Kukharskii

and LP broadenings, which are strongly correlated.
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Table 3.1: Screened plasma frequency EP = ~ωP , Drude broadening ΓD = ~γD, high-frequency dielectric

constant ε∞, carrier density n, mobility µ, TO and LO phonon energies ETO = ~ωTO and ELO = ~ωLO and

broadening ΓTO = ~γTO, Kukharskii broadening ΓK = ~γK , and lower and upper plasmon-polariton frequencies

ELP = ~ωLP and EUP = ~ωUP and their broadenings ΓLP = ~γLP and ΓUP = ~γUP for undoped and n-type

GaAs as well as n-type and p-type GaSb and InAs. For uniaxial undoped ZnO, values for the ordinary (o)

and extraordinary (eo) parameters are listed separately. Quantities marked (f) were fixed during the fit, those

marked with an asterisk were taken from the literature. For each material, the top row (model DL) shows a fit

with Eq. (64), where EP , ΓD, ETO, ΓTO, and ε∞ are experimental values from ellipsometry data, whereas n,

µ, and ELO were calculated using Eqs. (65), (72). and (68); the bottom row (model KK) shows experimental

values ε∞, ETO, ΓTO, ΓK , ELP, EUP, ΓLP, and ΓUP determined from a fit to the ellipsometry data with Eq.

(74), whereas EP , ELO, n, and µ were calculated using Eqs. (77), (78), (65), and (85), respectively. Calculated

quantities are shown in bold. The broadenings shown in italics show strong parameter correlations and therefore

are not reliable.

Sample Model EP ΓD ε∞ n µ ETO ELO ΓTO ΓK ELP EUP ΓLP ΓUP

(meV) (meV) (1) (cm−3) (cm/Vs) (meV) (meV) (meV) (meV) (meV) (meV) (meV) (meV)

u-GaAs DL 12.4 4.2 10.8 7.5×1016 4400 33.3 35.9 0.3

u-GaAs KK 13.0 10.8 8.5×1016 45000 33.2 35.8 0.3 0.4 11.9 36.2 0.6 0.3

n-GaAs DL 35.6 5.4 11.0 6.4×1017 3400 33.3 35.6 0.3

n-GaAs KK 36.7 11.0 6.8×1017 1600 33.0 35.0 0.2 11.3 29.2 41.5 4.9 4.3

n-GaSb DL 17 2 (f) 14.6 1.8×1018 1000 (f) 27.78∗ 28.89∗ 0.3 (f)

n-GaSb KK 10.9 14.6 7.2×1017 1000 27.78∗ 28.3 0.3 (f) 2 10.7 28.4 1 1 (f)

p-GaSb DL 33.3 32.8 14.0 3.4×1018 120 27.78∗ 28.89∗ 0.3 (f)

p-GaSb KK 28.9 14.0 2.5×1018 600 27.78∗ 28.6 0.3 (f) 6.4 25.1 32.0 1 (f) 11.7

InAs KK 17 12.2 5.9×1016 50000 27∗ 30 0.3 (f) 1 (f) 15 31 1 (f) 1 (f)

ZnO (o) KK 3.73 50.7 1.2 73.2 1.1

ZnO (eo) KK 3.81∗ 46.8 1 (f) 71.1 0.9
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Using Eqs. (77) and (78) we calculated the plasma and LO phonon frequen-

cies. From EP=13.0 meV for undoped GaAs, we obtain a carrier density of

8.5×1016 cm−3, which should be considered an upper limit. For n-type GaAs,

EP=36.7 meV implies a carrier density of 6.8×1017 cm−3, which is within the

range of doping densities specified by the supplier (5.5 to 14×1017 cm−3). An

effective electron mass of m0=0.063 was used.

For comparison, we also fitted the same data shown in Fig. 3.2 with the Drude-

Lorentz model (64). The Drude and TO phonon energies and broadenings are also

shown in Table 3.1. The LO energy, carrier density, and mobility were calculated

from Eqs. (68), (65), and (72). The carrier densities and LO frequencies agree quite

well between both models. Also, the optical mobility for undoped and doped GaAs

obtained from the Drude-Lorentz fit agrees with the electrical mobility expected

for the given carrier concentration [165].

Unfortunately, the Kukharskii scattering rate γK disagrees with the Drude

scattering rate γD, compare Eqs. (72) and (85), and therefore the Kukharskii

mobilities are not reliable, see Table 3.1. As mentioned earlier, this is due to our

limited spectral range and the correlations in the fit between γK and γLP because

of the larger number of broadening parameters in the Kukharskii model.

Results for n-type and p-type GaSb and for InAs are also listed in Table 3.1

and discussed in the supplementary materials.

55



3.5.2 Bulk undoped ZnO

According to Kukharskii [159], the factorized dielectric function (74) can also be

applied to each diagonal component of the dielectric tensor of anisotropic ma-

terials with at least orthorhombic symmetry, where the dielectric properties can

be described by a diagonal tensor in a coordinate system that is invariant with

photon energy.

To illustrate this point, we analyze the ellipsometric angles and the pseudo-

dielectric function of a bulk c-axis oriented ZnO substrate obtained commercially,

see Fig. 3.3. To model these data, we use a uniaxial model for a bulk substrate with

an ordinary and an extraordinary dielectric function, each described independently

with the form given by Eq. (74). Since no free carrier effects are visible for this

substrate, the Drude factor was set to unity. A surface roughness layer thickness

(described with a 50/50 mixture of ZnO and voids using the Bruggeman effective

medium approximation) of 21 Å was found from the magnitude of the pseudo-

absorption below the band gap of about 3.1 eV. The electronic part of the ordinary

dielectric function was described using two Tauc-Lorentz oscillators to account for

the absorption of the main exciton triplet [115, 120, 166] (not resolved) and the

exciton-phonon complexes [119–121]. At higher energies, we added two simplified

Herzinger-Johs parametric oscillators and a pole at 11 eV. For our c-axis oriented

ZnO substrate, the extraordinary dielectric function does not have a significant
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impact on the pseudo-dielectric function above the region of lattice absorption. We

therefore assume that the electronic part of the extraordinary dielectric function

is equal to that of the ordinary dielectric function, except for a rigid shift upward

by 0.08, see Ref. 114. Our data are not sensitive to the complications described

by Shokovets et al. [113] The infrared lattice absorption of ZnO is dominated by

the E1 (A1) phonons in the ordinary (extraordinary) dielectric function, each of

which is split into a TO/LO pair by the Fröhlich interaction [114].

Our experimental ellipsometry data for bulk ZnO along with the best fit using

Eq. (74) in the low and high photon energy regions are shown in Figs. 3.3 and

3.4, respectively. The physical significance of the various structures in the spectra

has been explained elsewhere [114]. Our main point here is to show that Eq. (74)

gives an excellent description over the complete spectral range from 0.03 to 6.5

eV. Our fit only has one problem: We are unable to describe the exact energy

where the pseudo-Brewster angle of the sample changes from 0 to π. This energy

depends on the precise value of the high-frequency dielectric constant ε∞. In our

approach, ε∞ is not a free parameter, but determined by the electronic part of

the spectrum shown in Fig. 3.3. A slight mismatch of the data from the two

instruments causes a small error in ε∞ (on the order of 0.05), which is responsible

for the error seen near 0.14 eV in Fig. 3.4.
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Figure 3.3: (Color online) Real and imaginary parts of the pseudo-dielectric func-

tion for undoped c-axis oriented bulk ZnO with 21 Å surface roughness. Data from

two different instruments were merged. Points show experimental data, lines the

best fit to Eq. (74) with parameters in Table 3.1.
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Figure 3.4: (Color online) Ellipsometric angles ψ and ∆ for undoped c-axis ori-

ented bulk ZnO with 21 Å surface roughness in the region of infrared lattice

absorption. Points show experimental data, lines the best fit to Eq. (74) with

parameters in Table 3.1.
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3.6 Summary

Fifty years ago, modulation spectroscopy [167] (to study the electronic band struc-

ture of materials) and vibrational spectroscopy [15,168] (Raman and FTIR, espe-

cially) were distinctly different fields, with different approaches to describe exper-

iments. The availability of modern commercial ellipsometry instruments covering

the range from 0.03 to 9.0 eV requires a consistent broadband approach suit-

able for insulators, semiconductors, and metals. The Drude-Lorentz summation

(57) meets the broadband requirement, but it is not suitable for interacting excita-

tions, such as insulators with multiple phonons [156,157] or doped semiconductors

with coupled longitudinal phonon-plasmon polaritons [158,159]. We therefore in-

troduced a factorized formalism (105), a generalization of Kukharskii’s equation

(83), which is appropriate to describe insulators, semiconductors, and metals over

the complete spectral range from the mid-IR to the vacuum-UV. This product

(105) is easily implemented in commercial software. Several examples were given

in the main text and in the supplementary materials.

Specifically, we also presented an approach to calculate the carrier mobility

of doped semiconductors from Kukharskii’s equation, if the effective mass of the

carriers is known. We applied this approach to doped GaAs, InAs, and GaSb.

Our results are reasonable, but the study of doped semiconductors could be more

reliable if the lower spectral range of commercial FTIR ellipsometers could be
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extended to 0.01 eV.

Supplementary Material

See supplementary material for additional experimental data and discussion of n-

and p-type GaSb, InAs, and spinel (MgAl2O4).
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3.7 Supplementary Materials

3.7.1 Definition of the Pseudo-dielectric Function

As described in the main manuscript, each isotropic pure material is characterized

by a frequency-dependent dielectric function ε (ω). A sample in an ellipsometry

experiment consists of more than one material (even a bulk material will have
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a surface region with optical constants different from the bulk) and therefore is

described by ellipsometric angles ψ and ∆ and a Fresnel reflectance ratio

ρ = tanψ exp (i∆) , (86)

which depend on the optical constants of all materials and the thicknesses of all

layers (Fujiwara 2006).

The pseudo-dielectric function of a bulk material with a very thin surface

overlayer defined by

〈ε (ω)〉 = sin2 φ

[
1 + tan2 φ

(
1− ρ
1 + ρ

)2
]
, (87)

where φ is the angle of incidence, is a zero-order approximation of the dielectric

function ε (ω) of the bulk material where the effects of the surface overlayer are

ignored (Fujiwara 2006, Yu and Cardona 2010). If overlayers are thin, the pseudo-

dielectric function does not usually depend on the angle of incidence and therefore

is a good representation of experimental data. For thick layers on a substrate,

it is better to display ellipsometric angles, since there is little resemblance of the

pseudo-dielectric function to the dielectric functions of the constituent materials

(Kormondy 2014). We also display the ellipsometric angles in the infrared spectral

region, where the pseudo-dielectric function is dominated by a few sharp peaks

that obliterate smaller features in the data.
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3.7.2 Results for GaSb

We measured the ellipsometric angles for two commercial GaSb substrates. The

first one was Te doped, to compensate the p-type nature of nominally undoped

GaSb, where Ga vacancies and Sb antisite defects result in a hole concentration

of about 1017 cm−3 (Kulala 2014). This Te doping resulted in an electron con-

centration of 4−6×1016 cm−3, as specified by the supplier. Since the L-valleys

in the conduction band of GaSb are just 70 meV about the Γ conduction band

minimum, most electrons are expected to be in the L-valley at room temperature

(Rode 1975), which has a density of states effective mass of 0.57. The effective

mass in the Γ-valley is much smaller, only 0.041.

The other GaSb substrate was a zinc-doped p-type sample with a hole den-

sity greater than 1018 cm−3 specified by the supplier. Hole transport in GaSb is

complicated because of k-linear terms due to the lack of inversion symmetry and

the warped non-parabolic heavy and light hole bands (Heller 1985). To model

this transport at room temperature with one band, an effective mass of 0.3 was

chosen. The mobility expected for this sample is 200−450 cm2/Vs.

A. n-type GaSb with low doping

Studying GaSb was more challenging than GaAs, because no high-accuracy op-

tical constants for bulk GaSb were available over the complete spectral range from

0.5 to 6.6 eV. We therefore acquired the pseudo-dielectric function, determined
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Figure 3.5: Same data as in Fig. 3.2 for n-type GaAs (top) and undoped GaAs

(bottom), but displayed as the loss function −Im (1/ε). The line shows the model,

the symbols the data. The LP and UP polariton modes are shown as peaks,

shifting and broadening dependent on carrier concentration.
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Figure 3.6: As Fig. 3.1, but for n-type compensated bulk GaSb with an electron

density of 4−6×1016 cm−3.

the oxide thickness (15 Å) from the pseudo-absorption below the band gap [150],

and then fitted GaSb optical constants using a parametric oscillator model. The

results are shown in Fig. 3.6. Unfortunately, our results for ε of GaSb are quite

different from the literature, presumably due to surface polishing damage of our

commercial GaSb wafer. A high-frequency dielectric constant ε∞=14.6 was found

from these data, consistent with the literature.

The ellipsometric angle ψ in the mid-infrared is shown in Fig. 3.7. Despite

the noise, it is clear that ψ is not flat, but shows some curvature. For angles of

incidence φ between 60◦ and 70◦, ψ bends down towards lower energies, while it

bends up for φ=75◦. For φ=75◦, ∆ also shows a phase change by π as the Brewster
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Figure 3.7: As Fig. 3.2, but for n-type compensated bulk GaSb with an electron

density of 4−6×1016 cm−3.

angle crosses the angle of incidence (not shown). To describe this curvature, we

fix the TO phonon energy and its broadening as well as the UP broadening and fit

the other parameters of the Kukharski model. The model fits the data well and

the parameters are quite reasonable, see Table 3.1. We find a plasma frequency of

10.9 meV from Eq. (77), which corresponds to a carrier density of 7.2×1017 cm−3

(an order of magnitude larger than the electron concentration specified by the

supplier) for the L-valley effective mass of 0.57. This should be considered an

upper limit. The upper limit of the electron concentration measurable with our

FTIR-VASE instrument is an order of magnitude larger for n-type GaSb than for

n-type GaAs, because the effective (L-valley) electron mass in GaSb is an order
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of magnitude larger than the effective (Γ-valley) mass in GaAs. The Kukharski

broadening of ΓK=2 meV has a large error bar, but it corresponds to a mobility

of 1000 cm2/Vs, which is quite reasonable for n-type GaSb at room temperature.

(The manufacturer specifies mobilities in the range of 2000−3500 cm2/Vs.) We

also calculate an LO phonon energy of 28.3 meV from Eq. (78), which is just

slightly lower than the accepted value of 28.9 meV.

We stress that the carrier density and mobility listed above used the L-valley

effective mass of 0.57. If we instead used the Γ-valley effective mass of 0.041, this

would result in a carrier concentration n=5.1×1016 cm−3 (within specifications)

and a mobility of 14,000 cm2/Vs (which is much too high).

To fit the data for n-type GaSb with the Drude-Lorentz model, we fix the TO

energy at 27.78 meV and its broadening at 0.3 meV (instrumental resolution).

We also calculate the amplitude A=1.19 from Eq. (68) using the value of 28.89

meV for the LO phonon energy. This leaves the plasma frequency and Drude

broadenings as the only parameters, assuming an L-valley electron mass of 0.57.

Since the Drude broadening trends to very small values in the fit (leading to

unphysically high mobilities), we fix γD at 2 meV, which corresponds to a mobility

of 1000 cm2/Vs, just like for the Kukharskii model. The screened plasma frequency

is the only remaining parameter. We find EP=17 meV (independent of our choice

of γD), which corresponds to an electron concentration of 1.8×1018 cm−3, clearly

much higher than expected.
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We note that the curvature of ψ at the lowest photon energies has two contri-

bution, due to TO phonon absorption and due to free carriers. The TO phonon

contribution to ψ is known (since the TO and LO phonon energies are known and

the broadening can be set to the instrumental resolution) and therefore the Drude

contribution can be fitted with a single parameter (the electron contribution).

Nevertheless, the sensitivity to the Drude contribution is small and therefore an

actual determination of the carrier contribution would require measurements at

longer wavelengths, beyond the TO energy of 27.78 meV. Perhaps the extrapola-

tion of our data to longer wavelengths and the subtraction of the lattice absorption

effect is the reason for our poor values for carrier concentration and mobility of

n-type GaSb.

B. p-type GaSb with high doping

The effects of free carrier absorption are much more pronounced for the p-type

sample with very high doping, see Fig. 3.8 (data above 0.8 eV are not available

for this sample). We clearly see an increase of 〈ε2〉 and a decrease of 〈ε1〉 at the

lowest energies, which is much larger than the expected phonon response. To

fit these data with the Drude-Lorentz model, we fix the phonon parameters as

stated above for the n-type sample. Figures 3.8 and 3.9 show the best fit with

a single Drude term, leading to a hole concentration of 3.4×1018 cm−3 (with an

effective hole mass of 0.3) and a mobility of 117 cm2/Vs, which is quite reasonable.
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Figure 3.8: As Fig. 3.1, but for p-type bulk GaSb with 6 nm native oxide and

a hole density greater than 1018 cm−3. The lines show the best fit with a single

Drude term and fixed TO lattice absorption.
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Figure 3.9: As Fig. 3.2, but for p-type bulk GaSb with a hole density greater than

1018 cm−3. The lines show the best fit with a single Drude term and fixed TO

lattice absorption.

However, this fit is not very good. A much better fit can be obtained with two

carrier species, a large term with a (screened) plasma frequency of 49.3 meV and

ΓD=318 meV (unreasonably large), and a smaller term with ωP=26.5 meV and

ΓD=9.2 meV.

A Kukharskii fit using Eq. (83) with a single plasmon-phonon polariton (sin-

gle hole species plus TO/LO phonon) yields a better fit than the Drude-Lorentz

fit with a single type of holes. The parameters are shown in Table 3.1. We

find ELP=25.1 meV and EUP=32.0 meV, which yields a plasma frequency of

EP=28.9 meV and a carrier density of 2.5×1018 cm−3, which is reasonable. The
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Figure 3.10: As Fig. 3.1, but for nominally undoped InAs. Experimental data

are shown by symbols (green-〈ε1〉, blue-〈ε2〉). Data from two instruments were

merged. The lines show the best fit with Eq. (74), including one plasmon-phonon

polariton and a parametric oscillator model to account for interband electronic

transitions. The native oxide thickness is 6 nm.

Kukharskii broadening is ΓK=6.4 meV, which seems a bit small, yielding a high

mobility of 600 cm2/Vs. We were unable to find a better fit by adding a second

plasmon to Eq. (83).

3.7.3 Results for InAs

Figure 3.10 shows the pseudo-dielectric function of nominally undoped InAs from

0.03 to 6.5 eV. The model for this wafer consists of a bulk InAs substrate and a
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Figure 3.11: As Fig. 3.2, but for nominally undoped InAs. The lines show the

best fit with a single plasmon-phonon polariton to account for free carrier and

lattice absorption.

6 nm thick native oxide [164] (quite thick, no surface cleaning was attempted).

The interband electronic transitions in the substrate are described using a semi-

conductor parametric oscillator model. Since prior experimental data for InAs are

sparse below 1.5 and above 6 eV, we made small adjustments to the published

model parameters, especially in the region near the direct band gap E0, which can

be seen clearly as an absorption threshold and a peak in 〈ε1〉 near 0.37 eV. Below

E0, 〈ε2〉 is about zero (except for the native oxide contribution to the pseudo-

absorption), but 〈ε1〉 shows a clear drop below E0. The high-frequency dielectric

constant from our parametric model is ε∞=12.2, close to its accepted value.
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The FTIR-VASE data (below 0.7 eV) are noisier than in the near-IR, visible,

and UV. Despite these noise issues, it is clear that there is a slow drop below 0.35

eV (due to the contribution of E0 to the dielectric function) and then a sharp

drop below 0.08 eV (due to plasmon-phonon polaritons).

We show a magnified graph of the far-IR data in Fig. 3.11. ψ is rather flat

near 0.1 eV and drops slowly towards smaller energies, until reaching a minimum

between 0.33 and 0.38 eV (depending on the angle of incidence). There is a very

steep egde near 0.03 eV, where ψ reaches almost 45◦. This is the upper edge of the

second restrahlen band and indicates the upper phonon-plasmon polariton energy.

Our model places the TO phonon of bulk InAs at 27 meV, since it is not affected

by free carrier effects. We also fix its broadening at 0.3 meV (the instrumental

resolution). The UP polariton is at 31 meV, significantly higher than the LO

phonon energy of 29 meV. This is due to the polariton effects pushing the UP

energy above the LO phonon energy because of free carrier effects (doping). We

fix its broadening at 1 meV to get good agreement with the data. Finally, the LP

polariton energy is 15 meV, well below our experimental range, also with a fixed

broadening of 1 meV. We also fix the Kukharskii (mobility) broadening at 1 meV,

since our data are not sensitive to this parameter.

The plasma frequency calculated from Eq. (77) is 17 meV, and the LO fre-

quency calculated from Eq. (78) is 30 meV, only slightly higher than the accepted

value of 29 meV. From the plasma frequency, we calculate an electron density of
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Figure 3.12: Pseudodielectric function for spinel (MgAl2O4) with 16.4 Å surface

roughness from the mid-IR to the vacuum-UV. Data are shown in green (〈ε1〉)

and blue (〈ε2〉), the model fit using Eq. (74) in red. Two Tauc-Lorentz oscillators

and a pole define the dispersion in this energy range.

5.9×1016 cm−3 for this nominally undoped sample, assuming an effective electron

mass of 0.023 for InAs. Our Kukharskii broadening of 1 meV results in a mobil-

ity of 50000 cm2/Vs, which is a little (but not much) too high (Karataev 1977),

since we are not sensitive to the broadenings parameters in our InAs data. (Basic

parameters for bulk InAs were taken from the Ioffe Institute web site.)
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3.7.4 Results for spinel

To demonstrate that Eq. (74) can be applied over the complete spectral range from

0.03 to 9.0 eV, we present a new fit to data previously [157] published for spinel

(MgAl2O4). In our previous work [157], we used five TO/LO oscillators as in Eq.

(76) to describe the infrared spectral region and two Tauc-Lorentz oscillators and

a pole for the near-IR to vacuum-UV region. Both regions were fitted separately.

The problem with this approach was that ε∞ entered as a separate parameter in

both fits and we had to make sure that it was consistent in both parts.

Our new Eq. (74) allows us to fit the entire dataset from 0.03 to 9.0 eV in one

step. All parameters were adjusted simultaneously, including the surface rough-

ness. To reduce the differences between data and fit, we increased the number of

TO/LO phonon pairs from five to seven, but it is not clear if the two additional

phonon modes are uniquely defined by the data. Results are shown in Figs. 3.12,

3.13, and 3.14. The Drude factor was set to unity for this insulator. Our revised

parameters are very similar to those published previously [157] and therefore not

listed again.
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Figure 3.13: As Fig. 3.12, but for the mid-infrared spectral range of spinel

(MgAl2O4). Seven TO/LO phonon pairs as in Eq. (76) define the dispersion

in this energy range.
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Figure 3.14: As Fig. 3.13, but data are displayed as ellipsometric angles ψ (green)

and ∆ (blue) for four angles of incidence from 60◦ to 75◦.
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4.1 Abstract

Using spectroscopic ellipsometry from the mid-infrared (0.03 eV) to the deep

ultraviolet (6.5 eV), the authors determined the thickness dependence of the di-

electric function for ZnO thin layers (5 to 50 nm) on Si and quartz in comparison
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to bulk ZnO. They observed a small blueshift of the band gap (about 80 meV) in

thin ZnO layers due to quantum confinement, which is consistent with a simple

effective mass theory in an infinite potential well. There is a drastic reduction

of the excitonic effects near the band gap, especially for thin ZnO on Si, which

affects not only the excitonic absorption peak, but also lowers the high-frequency

dielectric constant by up to 40%. No significant change of the phonon parameters

(except an increased broadening) in thin ZnO layers was found.

4.2 Introduction

The dielectric function (DF) of crystalline group-IV and III/V semiconductors

does not vary significantly with growth conditions, substrate, or layer thickness.

For example, the DF of bulk silicon [74] is very similar to that of thick poly-

crystalline Si [75] or silicon-on-insulator [76, 77]. The DF of bulk GaN [78, 79] is

nearly the same as for layers grown on sapphire [80,81], SiC, or GaAs [82]. Differ-

ences, if any, appear primarily near the infrared-active phonon peaks or interband

critical points due to strain (small shifts), disorder, or finite-size effects (shifts,

broadenings), but the high-frequency dielectric constant ε∞ is nearly constant [77].

On the other hand, the DF of complex metal oxides is highly variable. Bulk [83]

SrTiO3 (STO), for example, has a much higher DF than thick polycrystalline STO

on Si [84] or thin polycrystalline layers of STO on Pt [83]. The high-frequency di-

electric constant ε∞ of epitaxial STO on Si decreases monotonically with thickness,
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accompanied by a Kramers-Kronig-consistent decrease in the UV absorption [85].

This was attributed to an interfacial SiO2 layer, which becomes more important

for thinner STO layers [85]. Strain-induced effects in metal oxides [86–88], such

as BaTiO3 or PbTiO3, are also much larger than elasto-optic effects in semicon-

ductors [89,90].

Without thickness and roughness measurements by x-ray reflectance (XRR,

which is more accurate than electron microscopy) and atomic force microscopy

(AFM), such ellipsometry results are often problematic to analyze due to parame-

ter correlations: ellipsometry cannot determine both the optical constants and the

thickness of ultrathin layers or may not be able to detect thin interfacial layers,

surface roughness, or density variations [45,46,91].

Similar thickness-dependent DFs were also found for several metals [92, 93].

This might be due to variations in density caused by voids in the layers, island

growth for ultrathin layers, or variations of the Drude parameters with grain

size [94].

To avoid the well-known defectivity and variability of complex metal ox-

ides [95], such as perovskites, the present study focuses on ZnO layers. ZnO

is an attractive material for applications [96], especially for photovoltaics [97], as

a transparent conductor made of abundant elements (alternative to indium tin ox-

ide), and high-temperature electronics. Unique properties include a high excitonic

binding energy [96] of 60 meV, good chemical and mechanical stability [96, 98],
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and the ability of doping [99] as an n-type conductor [100,101].

Several studies on the variability of the optical constants of ZnO layers have

already appeared [98, 102–107]. Using spectroscopic ellipsometry, Logothetidis et

al. [98] found a dependence of the optical constants of sputtered ZnO on Si on

partial pressure and thickness, but the thickness dependence was not monotonic.

Nie et al. [102] found a quantum confinement shift of the band gap of ZnO pro-

duced on sapphire by pulsed laser deposition. Their measured shift was 250 meV

in the thinnest layers (5 nm), but this study has three flaws: The thickness was

determined from XRD using the Scherrer formula [101] (which is not very accurate

and does not determine density or roughness) and the absorption coefficient was

determined from transmission measurements (which might be affected by varying

reflection losses due to changes in refractive index). The absorption coefficient

did not depend monotonically on thickness. Using photoluminescence of annealed

ZnO layers on glass produced by DC magnetron sputtering, Mosquera et al. [103]

found a much larger confinement shift of up to 650 meV in layers of only 10 nm.

They determined thickness using a DECTAC profilometer and found the band

gap by photoluminescence, which might be related to defects rather than band

edges. Li et al. [104] found a monotonic decrease of the DF in thinner ZnO on Si

(sputtered on a 30 nm thermal SiO2 oxide) with ellipsometry and a confinement

shift of up to 140 meV in their thinnest (10 nm) layers with a grain size of 6 nm

determined using the Scherrer formula and scanning electron microscopy. No in-
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dependent method to determine thickness or density was used. The decrease in

the DF was attributed to reductions of single-particle interband absorption and

exciton-continuum absorption, while the discrete exciton absorption was affected

less [104]. Their theoretical model was rather incomplete, because it did not ad-

dress the reasons for these changes, especially the relative weight of the discrete

and continuum exciton absorption. To rule out layer density as a factor influenc-

ing the dependence of the ZnO DF on thickness, Pal et al. [105, 106] determined

thickness, density, grain size, and roughness of ZnO on Si grown by atomic layer

deposition [99] (ALD) using XRR, XRD, and AFM [101]. They found a mono-

tonic dependence of the DF on thickness and a confinement shift of no more than

100 meV.

Given the considerable variability in the literature regarding the optical con-

stants of ZnO thin layers, we deposited a new set of ZnO layers by ALD, with

thicknesses from 5 to 69 nm. To reduce the influence of interfacial layers, we

studied ZnO layers on Si as well as on SiO2, compare Ref. 108. We carefully de-

termined crystallinity, surface roughness, density, and layer thickness with x-ray

diffraction (XRD), AFM, and XRR. To understand the physics of the variability

of the DF and the influence of electronic and vibrational structure changes, we

combined data over a broad spectral range, from the mid-infrared (0.03 eV) to

the deep ultraviolet (6.6 eV).

We find significant variations of the optical constants of ZnO as a function of
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thickness. The role of the substrate (Si or quartz) is also very important. The

excitonic direct-gap peak is strongly broadened and weakened in thinner layers.

The infrared-active E1 phonons are also broadened due to finite-size effects. The

blueshift of the band gap due to quantum confinement is smaller than reported

before, but in excellent theory with a simple theoretical model. Our most striking

result is a 40% reduction of the high-frequency dielectric constant in thin layers on

Si, which we explain with a shift of oscillator strength to higher photon energies

due to the weakening of the excitonic electron-hole attraction.

4.3 Experimental Methods and Results

Wurtzite-type ZnO films with preferred c-axis orientation were grown at 200◦C

on single-side polished Si (001) and SiO2 (fused amorphous quartz) substrates

using atomic layer deposition (ALD) with diethylzinc and water as precursors

and nitrogen as a carrier and purge gas, as described elsewhere [105,106]. Large-

area uniform layers for shallow-angle ellipsometry and XRR measurements were

produced by growth on 20 by 20 mm2 substrates. By varying the number of

ALD growth cycles from 30 to 410, layer thicknesses between 5 and 70 nm could

be achieved, as measured using XRR. The growth rate of ZnO was about 1.7 Å

per cycle. Table 4.3 gives an overview of the samples with XRR characterization

results. Layers on Si had an interfacial oxide with a thickness of about 1 nm.

The surface roughness was also about 1 nm, much less than for sputtered ZnO
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layers [98, 103, 109, 110], and agreed well between AFM and XRR, see Fig. 4.10.

Most layers had an electron density just below that of bulk ZnO, except for the

thinnest layers on SiO2, for which it was about 10% lower. See supplemental

material for more information regarding characterization of the layers with AFM,

XRD, and XRR.

The ellipsometric angles [45, 46] ψ and ∆ of the as-received layers (without

cleaning) were acquired from 0.03 to 6.5 eV at three angles of incidence (60◦, 65◦,

and 70◦) on two different instruments. A J. A. Woollam FTIR-VASE instrument

was used to measure in the mid- and near-infrared spectral regions from 0.03 to

0.6 eV. A J. A. Woollam VASE instrument provided data from 0.5 to 6.5 eV

(near-infrared to deep ultraviolet). The overlap in the region between 0.5 and 0.6

eV (where data were taken on both instruments) is good, but not perfect. All

measurements were performed in air at 300 K. Typical spectra for thin and thick

ZnO on Si and SiO2 are shown in Figs. 4.1, 4.2, 4.3, and 4.4. Strong anisotropy

effects [111] were seen in thick ZnO layers on quartz.

4.4 Dielectric function models

We extract the dielectric functions for the ZnO layers on Si [74] by fitting the

ellipsometric angles versus angular frequency ω with an isotropic model for ZnO

[21]

ε (ω) =
ω2

LO − ω2 − iγLOω

ω2
TO − ω2 − iγTOω

[
1 +

∑
i

gi(ω)

]
×
∏
i

[1 +Gi (ω)] , (88)
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Figure 4.1: Ellipsometric angles ψ and ∆ for 9 nm ZnO on Si. Symbols: experi-

mental data; solid: best fit with an isotropic model based on Eq. (88). The inset

shows a magnified view of the infrared spectral region from 0 to 0.25 eV.
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similar to the model (99) for bulk ZnO described in the supplemental material.

This model allows us to describe the entire dielectric function from the mid-

infrared to the deep ultraviolet with a single equation, while retaining the option

of different broadening parameters γ for the transverse optical (TO) and longi-

tudinal optical (LO) phonons. The first factor [14] contains the infrared lattice

response, while the second factor describes the electronic response with oscilla-

tor functions gi (ω), such as Tauc-Lorentz or Herzinger-Johs parametric oscilla-

tors [46,74]. The third factor, which is not needed for bulk ZnO, contains complex

Gaussian functions Gi (ω) with an imaginary part

Im [G (ω)] = Ae−(ω−Eσ )2

− Ae−(ω+Eσ )2

(89)

and a Kramers-Kronig consistent real part. It describes an anomalous broad

infrared absorption, perhaps related to defects, such as oxygen vacancies [112].

These Gaussians are required to describe the optical constants for some of the

thicker ZnO layers, especially on quartz. The Gaussian oscillator has three pa-

rameters, a dimensionless amplitude A, a resonance energy E, and a FWHM

broadening Γ = 2σ
√

ln 2. At most two Gaussians were needed to achieve a good

fit to the ellipsometric angles. Gaussian parameters are listed in Tables 4.1 and

4.2, along with the TO and LO parameters.

For ZnO on Si, our model consists of the following layers: ambient, rough-

ness, ZnO layer, interfacial SiO2, Si substrate. The ZnO layer thickness on Si
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Figure 4.5: Real and imaginary parts of the complex dielectric function for ZnO

films on Si versus photon energy. The inset shows a magnified view of the infrared

spectral region from 30 to 70 meV. The dotted lines are explained in Sec. 4.8.11.
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was treated as a parameter shown in Table 4.3. SE and XRR find very similar

results for the ZnO layer thickness. The interfacial SiO2 layer thickness was fixed

at 1 nm. The roughness layer thickness was obtained from the XRR results in

Table 4.3. The entire model for ZnO on Si has 25-31 free parameters, includ-

ing the ZnO thickness, four TO/LO energies and broadenings, three parameters

for each Gaussian, four for the Tauc-Lorentz oscillator, seven for each simplified

parametric oscillator, and two for the UV pole. We started by fitting the TO/LO

and Gaussian parameters to the ellipsometric angles in the infrared spectral re-

gion, taking the UV parameters from the bulk as a starting point. Then, we also

adjusted the UV parameters by fitting the entire dataset. To avoid instabilities

in the IR to UV fit, we had to fix some infrared parameters to the values ob-

tained by fitting the infrared data set. These parameters are marked (f) in Tables

4.1 and 4.2. For the fit of the thinnest ZnO layers on Si, we had to enforce the

condition [14] ΓLO≥ΓTO.

To determine the dielectric functions for ZnO on SiO2 (quartz), we first ob-

tained the dielectric function of quartz from measurements of a bare substrate,

see supplemental material, especially Fig. 4.16. We proceeded in a similar fashion

to fit the ellipsometric angles for ZnO on quartz as on Si. However, the thickest

ZnO layers on SiO2 required a partially anisotropic model (with different phonon

energies and broadenings in the ordinary and extraordinary direction and a con-

stant birefringence offset ε∞e − ε∞o=0.08), see Sec. 4.8.4. This model contained
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the following layers: ambient, roughness, ZnO layer, quartz substrate. We did

not include an interfacial layer in this model, because we do not know how the

substrate clean and ALD growth affected the quartz substrate surface. Our data

did not require a fully anisotropic treatment of the optical constants [113].

After these oscillator fits were completed and the ZnO layer thickness deter-

mined, we also performed independent wavelength-by-wavelength (or point-by-

point) fits, where the thickness was fixed and the real and imaginary parts of the

dielectric function treated as free parameters at each wavelength. Both meth-

ods resulted in very similar dielectric functions (see Figs. 4.17 and 4.18), but the

point-by-point dielectric function is usually noisier than the oscillator fit.

4.5 Ellipsometry Analysis

The dielectric functions for ZnO layers on Si and SiO2 with various thicknesses

between 5 and 51 nm are shown in Figs. 4.5 and 4.6. Data for bulk ZnO, deter-

mined as described in the supplementary material and in good agreement with

prior ellipsometry measurements [115, 116] and theory [117], are also shown for

comparison. Both ε1 and ε2 show significant variations with thickness over the

complete spectral range, regardless of substrate.

For ZnO on Si, the absorption above the band gap (say, at 4 eV) increases

monotonically with layer thickness. The exciton-phonon complexes [118–121] are

not visible in the ZnO layers, only in the bulk. The excitonic enhancement of the
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Table 4.1: Longitudinal (LO) and transverse optical (TO) phonon energies E and

broadenings Γ (errors in parentheses) of ZnO films on Si compared to the bulk

for the ordinary (o) and extraordinary (eo) beam. Some films required additional

Gaussian (G) oscillators with dimensionless amplitude A, energy E, and broad-

ening Γ (both in cm−1). Parameters marked (f) were adjusted to the infrared

portion of the data and then fixed during the fit over the whole range.

ETO ΓTO ELO ΓLO

(cm−1) (cm−1) (cm−1) (cm−1)

Bulk o 408.75(6) 9.7(1) 589.67(5) 9.76(8)

eo 378.9(5) 8(f) 574.3(1) 8.13(4)

Bulka o 408.2(3) 592.1(2)

eo 379(2) 577.1(4)

51 nm 410(f) 61(f) 573(f) 75(f)

G A=3.8(f) E=82(f) Γ=1560(f)

G A=2.4(f) E=210(f) Γ=2475(f)

37 nm 402(f) 37(3) 577(f) 75(f)

19 nm 401(4) 41(f) 578(4) 50(5)

9 nm 399(f) 55(f) 575(5) same as ΓTO

5 nm 376(f) 55(f) 562(5) same as ΓTO

aRef. 114.
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Table 4.2: As Table 4.1, but for ZnO films on SiO2. The fit is not sensitive to the

values shown in italics, which were chosen arbitrarily.

ETO ΓTO ELO ΓLO

(cm−1) (cm−1) (cm−1) (cm−1)

50 nm o 403(f) 45(f) 591(f) 288 (f)

eo 380(f) 45 580(f) 58 (f)

G A=1.6(f) E=329(f) Γ=1607(f)

G A=0.9(f) E=219(f) Γ=231(f)

38 nm o 403(f) 74(f) 577(f) 180(f)

eo 380(f) 74 581(f) 52(f)

G A=0.8(f) E=577(f) Γ=1376(f)

19 nm o 402(f) 70(f) 584(f) 118(f)

eo 380(f) 70(f) 587(5) 41(f)

G A=0.47(f) E=577(f) Γ=1406(f)

9 nm 399(f) 83 589(f) 95(f)

5 nma 376 90 558 90

aAssuming identical parameters as for ZnO on Si.
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absorption is much weaker in the ZnO layers (especially the thinner ones) than in

bulk ZnO. The excitonic peak is broadened and completely disappears for the 5

and 9 nm thick ZnO layers on Si. The Tauc gap Eg determined from a Tauc plot

(αE versus
√
E, see Sec. 4.8.7) increases for thinner layers and can be described

with a confinement model [122]

Eg(t) = Eg,∞ +
F

t2
−∆E, (90)

see Fig. 4.7(a), where Eg,∞=3.29 eV is the bulk ZnO Tauc gap, t the layer

thickness, F the confinement factor (equal to ~2π2/2µeh for infinitely high barri-

ers, where µeh is the electron-hole reduced effective mass), and ∆E a thickness-

independent difference between the bulk and layer Tauc gap (for example due to

defects, doping, etc). The bulk Tauc gap (determined by linear extrapolation of

a Tauc plot as shown in Sec. 4.8.7) is about 80 meV lower than the bulk band

gap of ZnO, usually given as 3.37 eV, see Ref. 116. The blueshift between our

thinnest (5 nm) and thickest (51 nm) layers is no more than 80 meV, lower than

what has been reported in the literature for other ZnO layers [102–104]. For the

thickest ZnO layer (51 nm) on Si, there is a strong Gaussian absorption of un-

known origin, with parameters given in Table 4.1. ε1 drops towards the infrared

spectral region due to the dispersion related to infrared lattice absorption. For

the thickest (51 nm) layer, ε1 drops earlier (near 1 eV) and reaches a minimum

near 0.2 eV due to the unknown Gaussian absorption.
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line shows the best fit with Eq. 90.
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The dependence of ε1 on thickness for ZnO on Si is Kramers-Kronig consistent

with the dependence of ε2. The excitonic enhancement of ε1 near the band gap

becomes weaker and is broadened in thinner films. In addition, there is a drastic

reduction (by 40%) of ε∞, determined from the second factor in Eq. (88) by setting

ω=0, for thinner films, see Fig. 4.8(b). The differences of ε1 between thinner and

thicker films diminish towards higher energies. Unfortunately, we are not able to

measure beyond 6.5 eV.

The thickness dependence of the optical constants for ZnO on quartz is quali-

tatively similar to the behavior on Si, but weaker. The excitonic peak at the band

gap is not broadened as strongly in ZnO on SiO2. This makes it easier to see the

blueshift due to confinement, see Fig. 4.7(b). Also, the absorption does not drop

off as rapidly as the thickness decreases. The unknown infrared Gaussian absorp-

tion is present in several layers on SiO2. The high-frequency dielectric constant

ε∞ is nearly independent of thickness, see Fig. 4.8(b).

The phonon parameters used in these fits are given in Tables 4.1 and 4.2. The

values of the TO phonon energies versus layer thickness are shown in Fig. 4.9 in

comparison to the bulk [114]. From the TO and LO angular frequencies of the E1

phonon, we can calculate the Born effective charge [123]

(e∗t )
2 = V µε0ε∞

(
ω2
LO − ω2

TO

)
, (91)

see Fig. 4.8(c), where ε0 is the vacuum permittivity and ε∞ the high-frequency
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dielectric constant. µ is the reduced mass of the Zn and O atoms. V is the volume

per ZnO formula unit.

4.6 Discussion

4.6.1 Quantum confinement

ZnO layers on Si and quartz show a confinement shift of about 80 meV for 5 nm

thickness (for both types of substrates), see Fig. 4.7. This result is reasonable,

similar to what has been found for InGaAs quantum wells with InP barriers [124].

Fitting the band gap versus thickness using Eq. (90) yields two parameters ∆E≈30

meV and µeh≈0.2, as shown in Fig. 4.7. These parameters are nearly the same

for both substrates. The value of µeh from our confinement fit is very similar

to the reduced excitonic effective mass determined from fits to optical spectra

(photoreflectance and photoluminescence) [125]. The corresponding electron and

hole effective masses are 0.29 and 0.66, respectively [125].

4.6.2 High-frequency dielectric constant

The second significant result is that the high-frequency dielectric constant ε∞ is

nearly independent of layer thickness for ZnO on SiO2, but drops by 40% in the

thinnest ZnO layers on Si, see Fig. 4.8. How do we explain this? ε∞ is given

by [126,127]

ε∞ = 1 +

(
ωpl

ωPenn

)2

S0, (92)
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where

ω2
pl =

ρe2

ε0m0

(93)

is the unscreened plasma frequency, ωPenn the Penn gap, and S0 a constant typ-

ically assumed to be unity [126]. The electron density ρ is the total number of

electrons per unit cell divided by the unit cell volume. This number only depends

on the elements in our compound (Zn and O, 8 electrons per formula unit) and

the cell volume. Since the XRR density varies by less than 10% (see Sec. 4.8.3)

and varies more for ZnO on SiO2 than on Si, variations in density (or plasma

frequency) cannot explain the observed changes in ε∞.

On the other hand, the Penn gap ωPenn is the energy separation between the

bonding and anti-bonding sp3 hybrids, averaged in k-space over all bands. This

Penn gap becomes smaller if the excitonic electron-hole interactions are turned

on, which shifts oscillator strength to lower energies [128, 129]. Variations of the

Penn gap (and thus ε∞) can therefore be explained with variations of the excitonic

interactions.

The dependence of S0 on excitonic effects was recently discussed by Cirilo-

Lombardo [130]. In the absence of excitonic effects, S0=1 (Penn’s [126] result).

If excitonic effects are considered, then S0=2
3
. Therefore, as the excitonic peak

becomes stronger, ε∞ should decrease; as the excitonic peak becomes weaker, ε∞

should increase (if the Penn gap remains constant). This is the opposite of what

we observe and therefore the impact of the excitonic interaction on S0 does not
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explain our observations.

We pointed out previously [106] that the band alignments at ZnO interfaces

with Si and SiO2 are very different [131, 132]. ZnO/SiO2 is a type-I interface

where both electron and hole are confined in the ZnO well by the SiO2 barrier.

Therefore, strong excitonic effects are expected in ZnO/SiO2 quantum wells. On

the other hand, ZnO/Si is a type-II (staggered) interface. While electrons are

confined in the ZnO layer, holes will diffuse into the Si substrate, especially if the

ZnO layer is thin. (See Fig. 9 in Ref. 106.) This will break apart the exciton and

thus lead to an increase of the Penn gap, which reduces ε∞, as we observe.

We can also invoke the optical conductivity sum rule [70]

ω2
pl =

2

π

∫ ∞
0

ε2 (ω)ωdω. (94)

Since the electron density ρ (and therefore ωpl) is nearly constant, reducing ε2 (ω)

near the band gap (as excitonic effects are weakened) requires a shift of oscillator

strength to higher energies (outside of our spectral range), to keep the integral

nearly constant. To clarify this point, it would be useful to measure optical

constants beyond 6.5 eV, perhaps in a nitrogen-purged ellipsometer [83], at a

synchrotron,citeGoRa10, or with a high-harmonic femtosecond laser source [133].

The experimental problem with such measurements is that the importance of

surface roughness increases as the photon energy gets larger.
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The other sum rule [70]

ε∞ = 1 +
2

π

∫ ∞
0

ε2 (ω)

ω
dω (95)

directly relates the high-frequency dielectric constant to an integral containing the

imaginary part of the dielectric function ε2. As excitonic effects are reduced in

ZnO layers on Si, oscillator strength is shifted to higher photon energies [128,129],

which clearly reduces ε∞ from Eq. (95), because the denominator is larger for

higher photon energies.

4.6.3 Decreased absorption

It can be seen clearly from Figs. 4.5 and 4.6 that the magnitude of ε2 decreases in

thinner films. It decreases more in ZnO on Si due to the weakening of excitonic

effects (as discussed above in subsection 4.6.2), but to a lesser extent also in

ZnO on SiO2. The decreased absorption is described by the imaginary part ε2

of the dielectric function, which is related to its real part ε1 through Kramers-

Kronig transform. [46,70] It can be seen in Fig. 4.5 that ε2 for bulk ZnO decreases

towards higher photon energies, while ε2 for the thinnest layers increases at higher

energies. This may be a reflection of the shift of oscillator strength towards higher

energies as the excitonic effects are decreased.

Excitonic contributions to the absorption and dispersion of semiconductors are

described by the Elliot-Tanguy theory [134, 135]. The parameters of this theory
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are the bulk band gap, its broadening, the strength of the band gap absorption

(amplitude; related to the effective masses of electrons and holes, the transition

matrix element, and fundamental constants), the exciton binding energy, and the

excitonic screening parameter. This Tanguy oscillator is included in commercial

software (WVASE32) and can be used to fit the ellipsometric angles. However,

in the case of ZnO, one also needs to consider the exciton-phonon complexes.

This introduces two additional parameters, the phonon energy and the exciton-

phonon coupling constant [120,121]. Unfortunately, fitting the ellipsometric angles

while including the excitonic effects and exciton-phonon complexes is not currently

possible in commercial software. There is an explicit theory for the imaginary

part [120,121], but not for the real part of the dielectric function. Therefore, a fit to

our ellipsometric angles including excitonic effects and exciton-phonon complexes

(to determine exciton and exciton-phonon coupling parameters) is beyond the

scope of our current work. We note that it is possible to determine the imaginary

part of ε from a point-by-point fit as shown in Figs. 4.17 and 4.18 and then fit this

result with the Elliot theory for ε2, including exciton-phonon complexes [120,121].

However, this approach does not properly include the experimental errors of the

ellipsometric angles as a function of photon energy. It may also lead to results

that are not Kramers-Kronig consistent.

Therefore, we confine our discussion to the experimental finding that the ex-

citonic absorption peaks near the ZnO band gap are significantly reduced in am-
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plitude as well as broadened in ZnO layers on both Si and SiO2. We qualitatively

conclude that excitonic effects are weakened in thin layers, especially on Si, but

defer a quantitative treatment of these effects to future work.

4.6.4 Phonon energies and Born effective charge

From our infrared ellipsometry data, it is difficult to determine if the TO and LO

energies of the E1 phonon depend on layer thickness, see Fig. 4.9. For the thinnest

ZnO layers on Si, the TO absorption peaks are very weak and broad (see Figs. 4.5

and 4.6), which leads to large errors of the TO energies that do not allow a clear

statement about phonon softening at small thicknesses. For ZnO on SiO2, even
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for our thickest layers, the ZnO vibrational features are just minor corrections to

the strong infrared response of quartz, see Fig. 4.4.

In the bulk [114], the E1 TO and LO energies are about 408 cm−1 (50.6

meV) and 590 cm−1 (73.2 meV), respectively, compare Table 4.1. Theory states

[136–138] that a reduction of particle size (in ZnO nanoparticles) leads to a broad-

ening in k-space, which is on the order of 20% of the Brillouin zone radius for a

particle with a 5 nm diameter. This k-space uncertainty leads to a (possibly

asymmetric) broadening and a redshift or blueshift (depending on the phonon

dispersion curvature) of optical phonon peaks, as observed in our experiments on

thin ZnO layers. The shifts and broadenings in thin layers are not very large, how-

ever, because the dispersion of the E1 phonon near the Γ-point is rather flat [139].

A redshift and broadening of the E1 LO phonon was indeed observed in ZnO

nanoparticles with Raman spectroscopy [140]. However, it was pointed out that

laser heating in resonant Raman spectroscopy with a UV laser will also cause a

redshift [141], putting the results of Ref. 140 in question.

In an ellipsometry measurement of a c-axis textured layer, the electric field

vector interacts with E1 phonons, which have atomic displacements in the plane

of the layer. This in-plane dimension is not confined by the thickness of a thin

layer, only by the lateral extension of grains. However, the wave vector of the

excited phonon is equal to the wave vector of the photon (perpendicular to the

layer) and therefore confined by the layer thickness. In other words, while the
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motion of the atoms is not confined by the thin layer, the uncertainty of the

phonon wave vector is affected by the finite layer thickness. Therefore, the shift

of the E1 phonon energy in a thin layer should be similar to a nanoparticle, which

is confined in all three directions.

The E1 LO phonon is not observable in bulk ZnO crystals with infrared trans-

mission or ellipsometry experiments, because this phonon does not couple with

infrared light. However, in thin layers, the so-called Berreman effect [142] causes a

structure in the ellipsometric angles at the LO energy, which is clearly observable

even for a 9 nm thick ZnO layer on Si, compare Fig. 4.1. A softening of the E1

LO phonon energy by 20-30 cm−1 is possible (similar to the softening of the E1

TO phonon shown in Fig. 4.9), but the errors are rather large.

We therefore prefer not to make a definitive statement about the thickness

dependence of the E1 phonon energies and do not discuss this phenomenon quan-

titatively. Assuming a Gaussian lineshape for TO phonon absorption may not be

the optical approach for ultrathin layers, but adding additional parameters to de-

scribe asymmetry is not supported by the ellipsometric angles and the low signal

to noise ratio in our spectra.

From the TO and LO phonon energies, we can also calculate the Born effective

charge, see Eq. (91) and Fig. 4.8(c). The Born effective charge follows the same

trends as the high-frequency dielectric constant, see Fig. 4.8(b): It is nearly inde-

pendent of thickness for ZnO on SiO2, but decreases significantly (by about 20%)
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for ZnO on Si. The difference of the squares of the LO and TO phonon energies

changes much less, see Table 4.1.

4.6.5 Static dielectric constant

The static dielectric constant εs can be calculated in two different ways: First,

we can set ω=0 in Eq. (88), which directly yields εs in our WVASE ellipsometry

software. These results are shown by circles in Fig. 4.8(a). We find that thicker

layers have much larger static dielectric constants than the bulk because of the

strong infrared Gaussian absorption of unknown origin, which also contributes to

εs by Kramers-Kronig transform.

The static dielectric constants

εs = ε∞
ω2
LO

ω2
TO

(96)

calculated from the Lyddane-Sachs-Teller relations [70] shown by crosses in Fig.

4.8(a) are much closer to the bulk values, which gives us confidence in our results

for ε∞ and the optical phonon energies. We conclude that the static dielectric

constant is influenced by defect absorption much more than by changes in the

E1 phonon energies. To a lesser extent, εs is also influenced by the thickness

dependence of ε∞, but the ratio of the E1 LO and TO phonon energies is nearly

constant.
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4.7 Summary

We used broad-band spectroscopic ellipsometry from 0.03 to 6.6 eV to investigate

the origin of the variability of the optical constants of ZnO thin films on two dif-

ferent substrates (Si and quartz). The blueshift of the band gap with decreasing

layer thickness is small. It follows a simple inverse-square law due to confinement

in a quantum well with infinitely high barriers. On the other hand, there is a

very significant decrease of excitonic effects in thin layers, especially for ZnO on

Si, leading to a reduction of the excitonic absorption, a broadening of the exci-

ton peak, and a corresponding decrease of the high-frequency dielectric constant.

Since excitonic effects shift oscillator strength from higher to lower photon ener-

gies, our results are fully consistent with the sum rules for optical constants. We

speculate that the exciton is stabilized by type-I ZnO/SiO2 heterojunctions, but

breaks apart near type-II ZnO/Si interfaces. Surface electric fields in thin ZnO

layers may also play a role.
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4.8 Supplementary Material

4.8.1 Surface roughness

The surface roughness of our ZnO layers on Si and SiO2 was determined by x-

ray reflectance (XRR) and atomic force microscopy (AFM). Typical AFM and

plan-view SEM images for similar layers are shown in Ref. 105. For the thick-

est ZnO layers on Si and SiO2, the roughness was also studied with ellipsometry,

by describing the surface roughness layer with the Bruggeman effective medium

approximation (EMA) and a 50% void fraction [46]. Ellipsometry was not sen-

sitive to surface roughness for thinner layers. AFM was performed on a Bruker

Dimension FastScan instrument with a TESPA etched Si probe in non-contact

tapping mode with a scan window size of 10×10 µm2. The RMS surface rough-

ness was calculated using the Bruker NanoScope analysis software and averaged

over several sites. To compare the SE or XRR ellipsometry roughness with the

AFM roughness, we must consider the unflattened AFM roughness, because the

ellipsometry or XRR spot size is much larger than the AFM scan range.

A comparison of the roughness results for all three techniques is shown in

Fig. 4.10: The surface roughness measured by XRR for the ZnO films on Si and

SiO2 substrates (see below) is in good agreement with the unflattened AFM RMS

roughness.
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Figures 4.10 (c) and (d) show the projections of the 3D AFM scans for the

51 nm and 5 nm ZnO/Si films, respectively, onto a plane perpendicular to the

surface. The white frames, which identify the Bruggeman EMA layers, are about

twice as high as the RMS surface roughness from AFM, because they extend

from the lowest valley to the highest peak. We therefore show one half of the

Bruggeman EMA layer thickness in Figs. 4.10(a) and (b), which compares well

with the roughness determined from XRR and AFM.

4.8.2 Crystal structure

The crystal structure of ZnO layers on Si and SiO2 was investigated using x-ray

powder diffraction on a PANalytical Empyrean diffractometer operated in line

focus mode with 45 kV anode voltage and a 40 mA beam current producing Cu

Kα radiation with λ=1.5419 Å wavelength. The bremsstrahlung continuum was

removed using a Bragg-Brentano HD (BBHD) optical module with a fixed 1
4

◦

divergence slit, a 4 mm beam mask, 0.04 rad soller slits, and a fixed 1◦ anti-

scatter slit as the incident beam optics. As the diffracted beam optics, we used

a programmable anti-scatter slit, 0.04 rad soller slits, and a 0.02 mm thick Ni

filter (to block the Kβ radiation). The diffracted intensity was measured with a

PIXcel1D-Medipix3 array detector (PANalytical).

Typical symmetric 2θ-ω scans of ZnO on Si and SiO2 with different film thick-

nesses are displayed in Fig. 4.11. The XRD peaks were labeled according to the
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Figure 4.10: Surface roughness of ZnO films on (a) Si and (b) quartz as a function

of ZnO thickness. + and �: unflattened root mean square (RMS) roughness deter-

mined from AFM and XRR, respectively;©: half of the roughness layer thickness

obtained from an ellipsometry (SE) model with roughness. (c) Projection of the

3D AFM image for the 51 nm thick ZnO/Si film onto a plane perpendicular to the

surface. The white frame shows the EMA surface roughness layer used to model

SE data. (d) Same as (c), but for a 5 nm ZnO/Si layer.
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Table 4.3: List of samples used in this study with nominal thickness t and results

from XRR analysis, including thickness tXRR, interfacial SiO2 layer thickness tSiO2

(for ZnO on Si), surface roughness R from XRR, and average electron density ρe.

For comparison, the bulk ZnO electron density is 1.51 e/Å
3
. The layer thickness

tSE determined from ellipsometry is also given. The last two columns list the grain

size d and the vertical strain ε⊥ measured with XRD.

Nominal Sub- tXRR tSiO2 R ρe tSE d ε⊥

t (nm) strate (nm) (nm) (nm) (e/Å
3
) (nm) (nm) (%)

5 Si 4.5 1.3 0.4 1.42 7.6 12 0.10

9 Si 9.5 1.4 0.8 1.44 11.2 12 0.47

19 Si 19.4 1.0 0.8 1.46 20.7 20 0.01

38 Si 36.0 1.5 1.6 1.50 37.2 27 0.07

52 Si 50.5 1.0 1.7 1.49 50.5 26 0.01

69 Si 69.1 1.4 2.0 1.48 NA 30 0.03

5 SiO2 4.1 NA 1.1 1.35 4.1 NA NA

9 SiO2 8.7 NA 1.2 1.39 7.8 12 −0.19

19 SiO2 18.8 NA 1.4 1.47 19.6 21 0.17

38 SiO2 36.0 NA 1.7 1.49 34.1 31 0.10

52 SiO2 51.5 NA 1.5 1.45 48.4(f) 31 −0.10

69 SiO2 70.8 NA 1.1 1.44 NA 31 −0.05

113



International Center for Diffraction Data database (PDF card number 01-079-

2205). Since the ZnO (002) peak is the strongest, the layers have a preferred

c-axis orientation, but other ZnO (100) and (101) peaks are also seen, especially

in thicker layers. This indicates that the c-axis orientation is rather weak. For low-

temperature growth of intrinsic (undoped) ZnO by ALD, both the polar (001) and

the charge-neutral (100) surface are expected [99], consistent with the strongest

XRD peaks in Fig. 4.11. The thinnest (5 nm) layers have barely visible x-ray

diffraction peaks. They are either amorphous or there is insufficient scattering

volume for diffraction using our experimental conditions. Similar XRD spectra

were found for other ZnO layers produced by ALD [99, 105] or magnetron sput-

tering [101].

The grain height of polycrystalline thin films can be determined using the

Scherrer formula (B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction,

Prentice Hall, Upper Saddle River, NJ, 2001; P. F. Fewster, X-Ray Scattering

from Semiconductors and other Materials, World Scientific, Singapore, 2015)

d =
0.9λ

β cos θB
, (97)

where β is the full width at half maximum (FWHM) of the Bragg peak (plotted as

a function of 2θ, after subtracting the instrumental broadening) and θB the Bragg

angle of the ZnO (002) diffraction peak. This grain size is often associated with the

film thickness [101, 104], but this approach does not seem to work for our layers.

114



1400

1200

1000

800

600

400

200

0

In
te

n
s
it
y
 (

a
.u

)

45403530

 5 nm ZnO/Si
 9 nm ZnO/Si
 19 nm ZnO/Si
 37 nm ZnO/Si
 51 nm ZnO/Si
 66 nm ZnO/Si

S
i 
(2

0
0
)

Z
n
O

 (
0
0
2
)

Z
n
O

 (
1
0
0
)

Z
n
O

 (
1
0
1
)

(a)

1200

1000

800

600

400

200

In
te

n
s
it
y
 (

a
.u

)

45403530
2θ−ω (°)

5 nm ZnO/SiO2

9 nm ZnO/SiO2

19 nm ZnO/SiO2

38 nm ZnO/SiO2

50 nm ZnO/SiO2

65 nm ZnO/SiO2

Z
n
O

 (
0
0
2
)

Z
n
O

 (
1
0
1
)

Z
n
O

 (
1
0
0
)(b)

Figure 4.11: X-Ray diffraction pattern for (a) ZnO/Si and (b) ZnO/SiO2 with

different film thickness.
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For our thinnest (5 nm) layers, the grain height is 12 nm (which is not physically

possible), see Table 4.3. For the thicker layers (38 to 69 nm thickness from XRR),

the grain height is found to be around 31 nm, much less than the thickness. This

discrepancy is not caused by the resolution of the instrument, since the FWHM

of the Si (111) peak at 2θ=28.42◦ is only 0.11◦, considerably less than the FWHM

of the ZnO layer peaks. We conclude that our ZnO layers are very smooth, but

have rather small grains, since they were grown at low temperature (200◦C) and

not annealed after growth.

From the position of the ZnO (002) peak in comparison with a bulk wurtzite

ZnO crystal, we can determine the vertical lattice strain ε⊥, also given in Table

4.3. For all but one layer, the strain is small and not even the sign of the strain can

be determined with certainty. Therefore, the variations of the dielectric function

reported in this paper are more likely to be a function of thickness rather than

a function of strain, which has been reported from some piezo-electric materials,

such as perovskites [86–88].

4.8.3 X-Ray Reflectivity (XRR)

X-ray reflectance was used to obtain the ZnO layer thickness, electron density,

and surface and interface roughness, with results given in Table 4.3. Data were

taken on a PANalytical Empyrean instrument (same as for XRD) with a Ge (220)

two-bounce hybrid monochromator, a fixed 1/32◦ divergence slit, and a 4 mm
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beam mask to produce a parallel beam. The reflected beam path consisted of a

0.27◦ parallel-plate collimator with a 0.1 mm XRR slit, a 0.04 rad soller slit, and

a Xe proportional detector. A programmable beam attenuator with a 0.125 mm

Ni foil was activated when the Xe detector count rate exceeded a preset threshold.

The sample was aligned carefully to be perpendicular to the plane of incidence

and to reduce the straight-through beam intensity by 50% at zero incidence angle.

XRR spectra for all samples, displayed as reflectance versus scattering vector

Q =
4π

λ
sin θ, (98)

where λ=1.5406 Å is the Cu Kα1 wavelength and θ the angle of incidence (mea-

sured relative to the sample surface), are shown in Fig. 4.12 on a semi-logarithmic

scale. The data were analyzed using the Parrat formalism (L. G. Parrat, Surface

studies of solids by total reflection of x-rays, Phys. Rev. 95, 359, 1954) with de-

tails in Ref. 105, resulting in the sample parameters in Table 4.3. We used the

MotoFit program (http://motofit.sourceforge.net) in an Igor Pro (Wavemetrics,

Inc., Lake Oswego, OR, USA) environment to fit our XRR data and determine

the fit parameters. For some samples, two or three ZnO layer sections with dif-

ferent electron densities were required to achieve a good fit between model and

data. In such cases, the thickness given in Table 4.3 is the sum of the individual

thicknesses and the electron density is a weighted average over all ZnO sections.

Some trends are apparent by direct inspection of the XRR graphs. (1) The
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critical angle given by the sharp drop of the reflectance is nearly the same for all

but the thinnest samples, indicating a nearly constant electron density (indepen-

dent of layer thickness). (2) The period of the Kiessig fringes shows significant

changes with layer thickness. (3) The agreement between data and fit is excellent

using our model, indicating a high level of confidence in the accuracy of our layer

thicknesses and densities. (4) The amplitude of the Kiessig fringes, which depends

on the contrast of the electron density of layer and substrate, is nearly the same

for ZnO on Si and on SiO2, because Si and its oxide have nearly the same elec-

tron density. (5) The drop of reflectance versus Q is relatively slow, which allows

us to measure reflectance for large values of Q. This indicates that the surface

roughness for our ZnO layers is rather small.

Errors of the XRR thicknesses in Table 4.3 can be estimated by manual vari-

ation of the parameters followed by visual comparison of the fit and the data

(“chi-by-eye”). We found that the accuracy of the XRR thicknesses in Table 4.3

was about 1%. The genetic algorithm is usually best suited for fitting XRR and

high-resolution x-ray diffraction data to a model. Unfortunately, the Motofit im-

plementation of this algorithm does not return any errors. We also tried fitting our

data with a Marquardt-Levenberg algorithm in Motofit (which is said to return

errors), but this algorithm did not converge for our data.
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Figure 4.12: X-ray reflectivity for (a) ZnO/Si with film thickness 5 nm, 9 nm, 19

nm, 37 nm, 51 nm, and 66 nm (b) ZnO/SiO2 with film thickness 5 nm, 9 nm, 19

nm, 38 nm, 50 nm, and 65 nm. The solid line shows the model data and circles

represent the experimental data. The curves were shifted vertically for clarity.

The inset shows the electron density versus depth from the x-ray reflectivity fit

for one thickness (38 nm).
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4.8.4 Optical properties of bulk ZnO

For comparison with results from thin ZnO layers on Si and SiO2, we also per-

formed ellipsometry measurements on a bulk c-axis oriented ZnO crystal obtained

commercially. This work was described previously [21]. In summary, the ordinary

and extraordinary dielectric function of wurtzite ZnO are each described as a

product [21]

ε (ω) = εTO (ω) εelectronic (ω) , (99)

where the first factor [21]

εTO (ω) =
ω2

LO − ω2 − iγLOω

ω2
TO − ω2 − iγTOω

(100)

describes the infrared lattice absorption and the second factor

εelectronic (ω) = 1 +
∑
i

gi (ω) (101)

the optical properties due to interband transitions. ωTO and ωLO are the angular

frequencies of the transverse (TO) and longitudinal (LO) optical phonons and γTO

and γLO the corresponding broadenings. The terms gi (ω) are called oscillators.

They describe the electronic contributions to the dielectric susceptibility due to

different types of interband transitions. For bulk ZnO, we used two Tauc-Lorentz

oscillators with a common band gap in the near-gap region, one for the unresolved

exciton triplet and another one for exciton-phonon complexes [118–121]. (N. O.

Lipari, Exciton energy levels in wurtzite-type crystals, Phys. Rev. B 4, 4535, 1971;
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B. Gil, Oscillator strengths of A, B, and C excitons in ZnO films, Phys. Rev. B

64, 201310, 2001). At higher energies, we added two simplified Herzinger-Johs

oscillators and a pole at 11 eV. In the infrared spectral range, the anisotropy is

addressed by assigning different values to the phonon parameters for the ordinary

and extraordinary beam. The sensitivity to the anisotropy is reduced in the

visible and UV range for our experimental geometry. We therefore assume that

the extraordinary part of the dielectric susceptibility is larger by 0.08 than the

ordinary part throughout that spectral range. We call this a partially anisotropic

model, because the anisotropy is included only in the infrared region and for ε∞.

This ignores the dichroism of ZnO. [113] Surface roughness was included within

the Bruggeman effective medium approximation.

Figure 4.13 shows the ellipsometric angles ψ and ∆ from 60◦ to 70◦ angle of

incidence for bulk c-axis oriented ZnO from 0.03 to 6.5 eV obtained using FTIR

ellipsometry and variable angle UV/VIS spectroscopic ellipsometry. The fit shows

a partially anisotropic model with Eq. (99) including surface roughness. The signs

of anisotropy [111] are most apparent near 80 meV. The TO and LO phonon

parameters from this fit are given in Table 4.1. With this model, we extracted

the ordinary and extraordinary complex dielectric functions (εo and εe) of bulk

ZnO versus photon energy from 0.03 to 6.50 eV, as shown in Fig. 4.14. Because

of the assumptions of our partially anisotropic fit, ε2e=ε2o and ε1e=ε1o+0.08 in

the visible and UV range. The differences between the ordinary (E1 phonon) and
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extraordinary (A1 phonon) infrared lattice absorption are clearly visible by a shift

of the infrared absorption and dispersion peaks.

4.8.5 Dielectric function of quartz substrate

Fused (amorphous) quartz substrates were purchased from EL-CAT Inc., Ridge-

field Park, NJ. They were specified as UV grade fused silica, 20 by 20 mm in size

with 500 µm thickness, and single-side polished with an rms roughness of no more

than 0.5 nm. No XRD peaks were seen, see Fig. 4.11, only a broad background

typical for amorphous materials. (Compare Y. Deng, Y. L. Du, M. S. Zhang, J.

H. Han, and Z. Yin, Nonlinear optical properties in SrTiO3 thin films by pulsed

laser deposition, Solid State Commun. 135, 221, 2005, for XRD spectra of thick

SrTiO3 layers on fused quartz. Our amorphous quartz XRD background looks

similar.)

The ellipsometric angles ψ and ∆ for 50◦ to 80◦ angle of incidence from 0.03

to 6.0 eV are shown in Fig. 4.15. ψ decreases monotonically from 0.5 to 6.0 eV

(for the larger incidence angles) due to the normal dispersion of quartz, whose

dielectric constant increases from 2.06 to 2.49 over the same energy range. ∆

is negative in this energy range (for the larger incidence angles). Its magnitude

increases with photon energy. This indicates that there is a thin surface layer

which has a larger dielectric constant than quartz.

In the visible and UV spectral range, we describe the optical constants of
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Figure 4.14: (a) Real and (b) imaginary parts of the complex dielectric function

for bulk ZnO versus photon energy, determined from the ellipsometric angles in

Fig. 4.13 with a partially anisotropic model. Here εo and εe are the ordinary and

extraordinary dielectric function, respectively

124



250

200

150

100

50

0

-50

∆
 (

°)

6543210

Energy (eV)

(b)

70

60

50

40

30

20

10

0

Ψ
 (

°)

6543210
Energy (eV)

 50º
 55º
 60º
 65º
 70º
 75º
 80º

(a)Fused quartz

Figure 4.15: Ellipsometric angles ψ and ∆ for a bare single-side polished fused

quartz substrate for angles of incidence from 50◦ to 80◦ (symbols). The lines show

the best fit to a model which describes the quartz optical constants with a sum of

Gaussians and poles and which includes a thin surface layer, which has a slightly

larger ε than the substrate.

125



14

12

10

8

6

4

2

0

ε
2

6543210
Energy (eV)

(b)

10

5

0

-5

ε
1

6543210
Energy (eV)

(a)Fused quartz

Figure 4.16: Dielectric function of fused (amorphous) quartz, obtained by fitting

the ellipsometric angles shown in Fig. 4.15. The insets show the infrared spectra

region.

126



quartz with an isotropic Sellmeier model, i.e., a constant value of ε∞=1.24 and

a pole at 11 eV (fixed) with a magnitude of 107 eV2. (These parameters are

strongly correlated and therefore have large errors. The pole energy is consistent

with the band gap of quartz, often quoted between 9 and 10 eV.) For the surface

layer, we assume the same parameters as for quartz, but with a larger value of ε∞.

The exact value of ε∞ of the surface layer and its thickness are strongly correlated

and cannot be determined separately. However, a surface layer thickness of 1 nm

and ε∞=1.76 for the surface layer achieve an excellent description of ∆ in the

UV region. (Adsorbed surface layers like water or oil usually have a smaller

refractive index than glass and are not likely the reason for this surface layer.

A SiO suboxide, on the other hand, has a larger refractive index than SiO2 and

might be a good candidate. There might also be polishing damage near the

surface, for example residue from the slurry used for polishing, perhaps diamond

or alumina, both of which have a larger refractive index than quartz. Surface

characterization techniques such as Auger spectrometry or x-ray photoelectron

spectroscopy were not available for our work.) In the infrared spectral region,

absorption from molecular vibrations is described with a sum of eight Gaussians,

taking the values established for thermal oxide as the starting point for our fit.

The optical constants of the quartz substrate obtained from this model are shown

in Fig. 4.16.
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4.8.6 Comparison of oscillator and point-by-point fits

After the oscillator fits using Eq. (88) were completed and the ZnO layer thick-

nesses on Si and SiO2 determined, we also performed independent wavelength-by-

wavelength (or point-by-point) fits, where the ZnO thickness was fixed and the

real and imaginary parts of the dielectric function were treated as free parame-

ters at each wavelength [45, 46]. (Surface and interface layers were included in

the point-by-point fit in the same manner as in the oscillator fit.) Both meth-

ods resulted in very similar dielectric functions (see Figs. 4.17 and 4.18), but the

point-by-point fit is usually a little noisier than the oscillator fit. The agreement

is usually better for ε2 than for ε1.

For ZnO on Si, we see a monotonic increase of ε2 at 4 eV (above the band gap)

from thinner to thicker films. The value of ε2 below the band gap is very small.

This indicates that our layered model is very good. Pseudo-absorption below the

gap usually indicates that some of the layer thicknesses in the ellipsometry model

are incorrect. For ZnO on SiO2, ε2 also increases from thinner to thicker films,

but the increase is not entirely monotonic, because ε2 at 4 eV is smaller for the

19 nm thick layer than for the 9 nm thick layer.

Small uncertainties in the optical constants of the quartz substrates can cause

an apparent pseudo-absorption below the band gap. Therefore, it turned out to

be crucial to develop accurate optical constants for our quartz substrates, see Sec.

130



6x10
11

5

4

3

2

1

0

(α
E

)2
(c

m
-1

e
V

)2

4.03.83.63.43.23.0

 5 nm ZnO/Si
 9 nm ZnO/Si
 19 nm ZnO/Si
 37 nm ZnO/Si
 52 nm ZnO/Si
 Bulk ZnO

(a)

6x10
11

5

4

3

2

1

0

(α
E

)2
(c

m
-1

e
V

)2

4.03.83.63.43.23.0

Energy (eV)

 5 nm ZnO/SiO2

 9 nm ZnO/SiO2

 19 nm ZnO/SiO2

 38 nm ZnO/SiO2

 50 nm ZnO/SiO2

 Bulk ZnO

(b)

Figure 4.19: Tauc plot extrapolation for bulk ZnO and (a) ZnO on Si (b) ZnO on

SiO2 with different film thickness
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4.8.5. In contrast to earlier work, there are no artifacts in the ε2 optical constants

near the band gap. ε2 in ZnO thin layers qualitatively looks similar to the bulk,

except that the exciton-phonon continuum is not resolved and the exciton peak

is broader and weaker.

The agreement between the oscillator and point-by-point fit methods is also

good for ε1 near or above the band gap. For ZnO on Si, however, ε1 from the

point-by-point fit falls off faster towards the infrared than ε1 from the oscillator

fit. There is no physical reason for this faster dropoff, since there are no absorption

processes between the TO phonon energy and the band gap. Therefore, we believe

that the oscillator fit yields more accurate results for ε1 than the point-by-point

fit. The discrepancy for ZnO on Si might be due to inaccuracies in the treatment

of the interfacial layer between the Si substrate and the ZnO layer or due to small

errors in the optical constants of the Si substrate, see Sec. 4.8.10.

4.8.7 Band gap determination using Tauc plot

The direct optical band gap of a material is often found by plotting (αE)2 versus E,

where α is the absorption coefficient and E the photon energy. This is sometimes

called a Tauc plot [122]. One looks for a linear region in this graph, extrapolates

to zero, and then identifies the intercept with the optical band gap. While this

technique is clearly arbitrary and influenced by the choice of the linear region and

the extrapolation, it is used frequently. Figure 4.19 demonstrates the use of this
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technique to determine the band gap of bulk ZnO and thin ZnO layers on Si and

SiO2. When using this technique, it is very important to use the point-by-point

optical constants (see Sec. 4.8.6) for the extrapolation, since the use of oscillators

may bias the optical constants used for extrapolation. Results are shown and

discussed in the main manuscript.

4.8.8 Comparison of ellipsometry and transmission results

Some studies [102] report the absorption coefficient for thin ZnO layers determined

using transmission measurements. This procedure is dangerous, because both the

real and imaginary parts of the dielectric function (and complex refractive index)

change with layer thickness, see Fig. 4.6, but only one quantity (transmitted

intensity) is measured. One measured quantity cannot be used to determine

two unknowns. Therefore, it is our position that transmission measurements by

themselves cannot be used to determine absorption coefficients of a thin layer,

unless the refractive index of the layer is well known (and does not depend on the

deposition conditions of the layer).

On the other hand, it can be advantageous to combine ellipsometry measure-

ments of a layer A on a single-side polished transparent substrate B with trans-

mission measurements of the same layer A on a double-side polished substrate of

material B. Both ellipsometry and transmission results can be loaded into a multi-

sample environment and fitted simultaneously. The ellipsometry results will be
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more accurate for large absorption coefficients, while the transmission results will

be more accurate for small absorption coefficients. Combining both datasets will

lead to more accurate optical constants over the complete spectral range. A nice

application of this technique to GaN on sapphire has been presented by Yu et

al. (G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe,

and T. Jimbo, Optical properties of wurtzite structure GaN on sapphire around

fundamental absorption edge (0.78-4.77 eV) by spectroscopic ellipsometry and the

optical transmission method, Appl. Phys. Lett. 70, 3209 (1997)).

Unfortunately, we could not use this technique, because we did not have ZnO

layers on two-side polished quartz substrates. As a work-around, we performed

transmission measurements of ZnO layers on our single-side polished quartz sub-

strates (see Table 4.3) with the single-side polished bare quartz substrate taken

as the transmission background. These transmission results (referenced to the

single-side polished quartz substrate) should be similar to transmission results of

the same ZnO layer on a double-side polished substrate (with a two-side polished

quartz substrate as the reference). We therefore used these transmission results

to determine the absorption coefficient (taking the refractive index from our ellip-

sometry measurements, see Fig. 4.6). The results are shown in Fig. 4.20 (dotted)

in comparison to absorption coefficients determined from a point-by-point fit to

ellipsometry results (solid). It can be seen that both datasets show the same

trends (versus thickness and photon energy), but there is a constant offset, pre-

134



sumably due to artifacts from the scattering of the transmitted light by the rough

back surface of the quartz substrate, which were not properly taken into account

in our model. For this analysis, it is very important to consider the dependence of

the refractive index on thickness (see Fig. 4.6). If that is neglected, then α shows

the wrong trend versus thickness and pseudo-absorption artifacts appear below

the band gap. We can also use the absorption coefficients determined from our

transmission measurements to determine the band gap with a Tauc plot, see Sec.

4.8.7 and Fig. 4.19.

4.8.9 Lattice vibration versus total infrared optical response

As shown by Eq. (88), we write the total optical response as a product of three

factors. The second factor describes the electronic contribution to the dielectric

function. In the far-infrared region, this contribution is nearly constant and equal

to

ε∞ = 1 +
∑
i

gi (ω = 0) , (102)

the high-frequency dielectric constant. One might also ask about the relative

contribution of the E1 infrared-active phonon to the total dielectric response in

the infrared region. If we wrote the dielectric function as a sum of oscillators

(which is the common method of treatment), then this question would be trivial to

answer. As explained in Ref. 21, however, we have good reasons for our factorized

approach. Most importantly, we want to fit our data while allowing two different
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Figure 4.20: Absorption coefficient of ZnO layers with different thicknesses on

SiO2 quartz substrates determined from ellipsometry measurements (solid) and

transmission measurements of the same layers with the bare single-side polished

quartz substrate as a reference (dotted).

broadening parameters for the TO and LO features from the E1 phonon, but

without an arbitrary parameter ε∞, which comes from the second factor in our

approach. Therefore, we attribute the quantity

εTOLO (ω) = ε∞
ω2

LO − ω2 − iγLOω

ω2
TO − ω2 − iγTOω

(103)

to the lattice contribution contained in the total infrared response. This quan-

tity gets multiplied by the third factor (involving Gaussians) to obtain the total

infrared optical response. Figure 4.21 shows the total dielectric function in the
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infrared region (solid) in comparison with the contribution from the E1 phonon

given by Eq. (103) (dotted) for those layers where Gaussian oscillators where

included in our model, see Tables 4.1 and 4.2.

For ZnO layers on SiO2, this decomposition looks as expected: The TO/LO

absorption is lower than the total absorption. The Gaussian oscillators add ab-

sorption at very low energies and they also magnify the TO/LO absorption. The

TO/LO absorption approaches the total absorption at high energies. Similarly,

ε1 is larger at low energies if the Gaussian absorption is included in the dielectric

function and it magnifies the maxima and minima in the region of anomalous

dispersion, but the Gaussian absorption makes little difference to ε1 at the higher

energies. For the 51 nm layer of ZnO on Si, the Gaussian contribution is larger

(no longer a small correction) and therefore distorts the entire TO/LO lineshape,

making it very asymmetric.

4.8.10 Impact of Si substrate optical constants

Several sets of optical constants for Si have appeared in the literature over the

past 40 years, see Fig. 4.22. The silicon optical constants determined by Herzinger

et al. [74] (often described as “Woollam silicon”) are used nearly universally at

universities as well as in the semiconductor industry to describe the optical re-

sponse of dielectric layers on Si (001) substrates. Therefore, this dataset for Si

was also the basis for our work. It is interesting, however, to ask how other op-
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Figure 4.21: Total dielectric function in the infrared region (solid) in comparison

with the contribution from the E1 phonon given by Eq. (103) (dotted).
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tical datasets for the Si substrate optical constants will affect our results for the

thickness-dependent dielectric functions of ZnO layers on Si. (For quartz sub-

strates, as discussed in Sec. 4.8.5, we found it very important to develop our own

optical constants from a bare reference substrate rather than use optical constants

from a database.)

The oldest comprehensive dataset for the dielectric function of Si is based on

work by Aspnes and Studna (D. E. Aspnes and A. A. Studna, Dielectric functions

and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from

1.5 to 6.5 eV, Phys. Rev. B 27, 985-1009 (1983)). This work was later revisited

by Yasuda and Aspnes (T. Yasuda and D. E. Aspnes, Optical-standard surfaces of

single-crystal silicon for calibrating ellipsometers and reflectometers, Appl. Opt.

33, 7435-7438 (1994)). For three reasons, we did not select these datasets as

Si reference constants for our work. (1) Aspnes often states that semiconductor

optical constants depend on the surface orientation. These two papers cited above

describe work performed on bare Si (111) surfaces, while our layers were grown on

Si (001). (2) These data were taken on a rotating-analyzer ellipsometer without

compensator. Therefore, the accuracy of these data for small values of ε2 below

3.5 eV is limited. (3) These authors tried to minimize the thickness of surface

overlayers to achieve a bare Si (111) surface. Since the dielectric function depends

not only on the surface orientation, but also on surface conditions (M. K. Kelly, S.

Zollner, and M. Cardona, Modelling the optical response of surfaces measured by
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Figure 4.23: Dielectric functions for ZnO layers on Si with different thicknesses

as shown in Fig. 4.17, but with different reference constants for the Si substrate.
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spectroscopic ellipsometry, Surf. Sci. 285, 282-294 (1993)), the Woollam Si data

seem more appropriate to describe the dielectric function of a Si (001) substrate

covered with transparent layers. The modern value of the early work by Aspnes et

al. consists mainly in the precise description of preparing bare Si (111) surfaces.

Jellison (G. E. Jellison, Optical functions of silicon determined by two-channel

polarization modulation ellipsometry, Opt. Mater. 1, 41-47 (1992)) derived the

silicon optical constants from a Si (001) surface with a phase-modulation ellip-

someter, which provides accurate values of ε2 below 3.5 eV. He also corrected his

data for a thin oxide overlayer. Therefore, this data set is very accurate. Fi-

nally, Humĺıček and Šik (J. Humĺıček and J. Šik, Optical functions of silicon from

reflectance and ellipsometry on silicon-on-insulator and homoepitaxial samples,

J. Appl. Phys. 118, 195706 (2015)) achieved very high accuracy of the Si (001)

dielectric function below 3.5 eV with measurements of variable-thickness silicon-

on-insulator substrates produced by wafer bonding and back etching of the donor

wafer.

Four of these five sets of Si optical constants mentioned above are compared

in Fig. 4.22. (We did not find a digitized set of the data by Yasuda and Aspnes.)

More detailed comparisons were shown by Humĺıček and Šik (2015). The overall

agreement is excellent, but small differences exist, especially near the E1 and

E2 critical points. The extinction coefficient also varies below 3.5 eV between

datasets.
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Figure 4.24: As Fig. 4.23, but for the 5 nm ZnO on Si layer.
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Figure 4.23 shows the optical constants for all our ZnO layers on Si obtained

with a point-by-point fit, but with different Si substrate optical constants. The

choice of the dielectric function of the Si substrate does not significantly influence

the resulting ZnO optical constants for thicker layers, but differences are found

for thinner ZnO layers, where the optical constants of the Si substrate have more

influence. The largest differences can be seen for the Si optical constants of Aspnes

and Studna (1983), which are probably the least accurate. Despite all these

differences, the main conclusions of our work are not affected: There are significant

monotonic variations of both ε1 and ε2 with ZnO layer thickness, which are not

affected by the choice of the Si substrate optical constants.

Figures 4.24 and 4.25 show a magnified view of these comparisons for the

thinnest ZnO on Si layers with 5 nm and 9 nm thickness. There are slight vari-

ations in the band gap given by the peak of ε1 or the absorption threshold of ε2

for different choices of the Si substrate optical constants. We also find different

broadenings of the direct band gap given by the widths of the peak of ε1 and the

abruptness of the rise of ε2. The choice of the Si substrate optical constants will

have an influence on extracting exciton parameters (like exciton binding energy

and broadening) for the thinnest ZnO layers. This will influence future work,

when we consider excitonic effects and exciton-phonon coupling in our analysis.
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Figure 4.25: As Fig. 4.23, but for the 9 nm ZnO on Si layer.
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4.8.11 Accuracy of thicknesses determined from ellipsometry

It is well known that spectroscopic ellipsometry cannot determine both thickness

and refractive index for transparent layers as the thickness goes to zero [45,46,91].

For ultrathin layers, ellipsometry measures only the optical thickness, i.e., the

product nt of the refractive index n and the thickness t. As the film thickness

gets larger, interference fringes become visible, where the ellipsometric angle ∆

jumps by 2π. The refractive index of the layer can then be determined from the

amplitude of the interference fringes of the ellipsometric angle ψ, which is related

to the optical contrast, i.e., the ratio of the refractive indices of layer and substrate.

The spacing of the interference fringes is related to the optical thickness. The two

quantities n and t can therefore be determined from the amplitude and spacing of

the interference fringes. This method is implemented in commercial ellipsometry

data analysis software.

In the intermediate thickness regime, one performs a uniqueness fit: [45] One

fixes the thickness (over a certain range) and fits all other parameters, then plots

the mean standard error from this fit versus thickness. If there is a clear minimum,

then one can reasonably assume that the layer thickness is given by this minimum.

We performed this procedure for our thinnest ZnO layer on Si, compare Table 4.3,

where the XRR thickness (4.5 nm) deviates significantly from the ellipsometry

thickness (7.6 nm). The result is shown in Fig. 4.26. We conclude from this
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Figure 4.26: Uniqueness fit (mean standard error versus thickness in Å) for a ZnO

layer on Si with a nominal thickness of 5 nm.

figure that the thickness of this layer is not at all likely to be less than 6 nm,

but it might possibly be much thicker. We plot the same data in Fig. 4.27 on a

narrower scale, which shows a clear minimum for t=7.6 nm. We conclude that the

ellipsometry thickness of this layer is likely to be between 7.3 and 8.0 nm. (There

are no generally accepted criteria in the ellipsometry community [45] on how to

select a tolerance interval for a parameter from a uniqueness fit.)

We conclude that the roughly 50% difference of the thicknesses of the thinnest

ZnO layer on Si determined from XRR and from ellipsometry (see Table 4.3) is

much larger than the error of the XRR technique (about 1%, see Sec. 4.8.3) or

the ellipsometry technique (about 5%, see above). How can we explain this? One

of us has previously discussed the accuracy of several characterization techniques,
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Figure 4.27: Same data as in Fig. 4.26, but shown in a narrower range of thick-

nesses.

especially XRR, ellipsometry, and transmission electron microscopy to determine

the thickness of thin metal oxides on Si (S. Zollner, Y. Liang, R. B. Gregory, P.

L. Fejes, D. Theodore, Z. Yu, D. H. Triyoso, J. Curless, and C. Tracy, Limits

of optical and x-ray metrology applied to thin gate dielectrics, in Characterization

and Metrology for ULSI Technology 2005, edited by D. G. Seiler, A. C. Diebold,

R. McDonald, C. R. Ayre, R. P. Khosla, S. Zollner, and E. M. Secula, (American

Institute of Physics, Melville, NY, 2005), AIP Conf. Proc. 788, p. 166-171). As in

this earlier work, we note that XRR considers an interfacial SiO2 layer to be part

of the Si substrate (because Si and SiO2 have similar electron densities) while

ellipsometry sees it as part of the layer (because ZnO and SiO2 are much less

polarizable than Si and have much smaller magnitudes of the dielectric function).

148



Figure 4.28: Transient dielectric function of Ge versus photon energy.

We assumed a 1 nm thick SiO2 interfacial oxide layer between Si and ZnO in

our ellipsometry model, but it is possible that this interfacial oxide is thicker.

Unfortunately, there is no good answer for the discrepancy between the XRR

and ellipsometry results for the thickness of the thinnest ZnO layer on Si. This

discrepancy for ZnO layers on Si becomes smaller as the layers become thicker. It

is not a big issue for ZnO layers on quartz.

One might ask: What if the XRR thickness (4.5 nm) was the correct thickness

of our thinnest ZnO layer on Si? What would the ZnO dielectric function be under

this assumption? Unfortunately, we are not able to answer this question, because

no good fit to the ellipsometric angles can be found while assuming a 4.5 nm ZnO

thickness combined with a 1 nm thick SiO2 interfacial layer. However, we are able

to obtain a good fit if we assume a thickness of 5.0 nm for the thinnest ZnO layer

on Si, combined with an interfacial SiO2 layer thickness of 3.6 nm (rather than

1.0 nm as in our standard model described in Sec. 4.4). The results from this

fit are shown by the dashed lines in Fig. 4.5. Our main conclusions, a significant

reduction of ε1 below the band gap and a weakening of the excitonic absorption,

are not affected qualitatively, but there are quantitative differences between the

two models for the thinnest ZnO layer on Si.
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5 TEMPERATURE DEPENDENCE OF THE OPTICAL PHONON

REFLECTION BAND IN GAP

This article was published in the Journal of Vacuum Science and Technology B,

volume 39, 052201 (2021).

Nuwanjula S. Samarasingha and Stefan Zollner

Department of Physics, New Mexico State University, MSC 3D, P.O. Box 30001,

Las Cruces, New Mexico 88003, USA

5.1 Abstract

We explore the effect of temperatures between 80 and 720 K on the energy and

linewidth of zone-center transverse (TO) and longitudinal (LO) optical phonons in

bulk gallium phosphide (GaP) using Fourier transform infrared ellipsometry from

0.03 to 0.60 eV. We extract the optical phonon parameters of GaP by fitting the

ellipsometric angles with the Lowndes-Gervais model, which applies two different

broadening parameters to the TO and LO phonons. In GaP, the two-phonon

density of states is larger for the decay of TO phonons than for LO phonons.

Therefore, we observed a larger TO phonon broadening (compared to the LO

phonon) and an asymmetric reststrahlen line shape. This would lead to a negative

imaginary part of the dielectric function just above the LO phonon energy, but the

addition of two-phonon absorption avoids this. We find a temperature dependent
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redshift and broadening of TO and LO phonons with increasing temperature due

to thermal expansion and anharmonic phonon-phonon scattering, involving three

and four phonon decay processes. We also investigate the temperature-dependence

of the high-frequency dielectric constant. Its variation is explained by thermal

expansion and the temperature dependence of the Penn gap.

5.2 Introduction

Most insulators and non-conducting polar semiconductors exhibit bands of high

reflectance in the far- or mid-infrared spectral range. These so-called reststrahlen

bands extend from the energy of transverse optical (TO) phonons to that of the

corresponding longitudinal optical (LO) phonons. They have been studied exten-

sively for many materials [14–21].

One open question regarding these restrahlen bands is the relative magnitude

of the broadening parameters of the TO and LO phonons. Lowndes [14] and

Schubert [15] explain that the sum of the broadenings γTO of the TO phonons must

be smaller than the sum of the broadenings γLO of the LO phonons. Berreman

and Unterwald [16] call this the “passivity” condition, ensuring that the imaginary

part of the dielectric function ε (ω) does not become negative. This condition is

satisfied for alkali halides [14].

It is often violated for other materials, however, as shown by Lockwood, Yu,

and Rowell [17] for six different zinc blende semiconductors using infrared re-
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flectance measurements at oblique incidence combined with a derivative analysis

technique, where γTO>γLO is found for AlAs, GaP, InP, InAs, and InSb. For

highly ordered materials, such as zinc blende semiconductors, these broadenings

are lifetime broadenings, related to the decay of optical phonons into acoustic

ones [22]. For GaP, the decay of TO phonons into two acoustic phonons is very

fast, because a maximum of the two-phonon density of states (DOS) occurs at the

TO energy [23, 24]. By contrast, the two-phonon DOS is lower at the LO energy

and therefore γTO>γLO for GaP. As we will show below, the resulting negative ε2

above the LO energy is compensated by two-phonon absorption.

To further investigate the broadenings of the reststrahlen bands in semiconduc-

tors, we measured the temperature dependence of the dielectric function of GaP

in the mid-infrared spectral region from 80 to 720 K. We selected GaP for our

study, because its reststrahlen band is at rather high energies (due to the low mass

of the P atom) and Fourier-transform infrared (FTIR) ellipsometry measurements

can therefore be performed using commercial instrumentation. Furthermore, the

reststrahlen band is not distorted by two-phonon absorption between the TO and

LO energies [25]. We find a redshift and broadening of the TO and LO phonons

due thermal expansion and anharmonic phonon decay.

Gallium phosphide (GaP) is an isotropic indirect III/V compound semicon-

ductor with a band gap Eg of approximately 2.25 eV at room temperature [26,27].

It crystallizes in the zinc blende structure [26,28] with the cubic space group T 2
d .
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GaP has two atoms per primitive cell, resulting in three-fold degenerate acoustic

and optical phonon modes at Γ. The polar Fröhlich interaction splits the optical

modes into a TO doublet and an LO singlet [29,30], which are both Raman- and

infrared-active. Throughout this paper we refer to these infrared- and Raman-

active phonons as ”optical phonons”. This thermally stable indirect wide band

gap material is an excellent semiconductor for optoelectronic and photonic appli-

cations, especially in light-emitting diodes (LEDs) [31], detectors, solar cells, and

high-temperature transistors [27]. It is therefore important to study the optical

properties of this semiconductor, including the effects of cryogenic and elevated

temperatures.

Since the TO and LO phonons are both infrared- and Raman-active, they

can be studied with infrared reflection, transmission, or ellipsometry as well as

Raman scattering, as demonstrated by Barker [20]. In reflection measurements,

one observes a band of high reflection from the TO energy to just above the LO

energy. The precise location of the upper end of the restrahlen band depends on

the angle of incidence [15]. In infrared transmission experiments (of very thin

GaP layers), one observes an absorption band at the TO energy defined by ε2 (ω).

At the LO energy, where ε1 (ω)=0, there is a similar peak in the loss function

−Im [1/ε (ω)], but light does not couple with LO phonons to lowest order. In

infrared ellipsometry measurements, the ellipsometric angle ψ forms a reststrahlen

band similar to that found in reflectance measurements, while the ellipsometric
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angle ∆ usually transitions from 180◦ at low energies (due to the high value of

the static dielectric constant) to 0◦ at high energies (due to the low value of the

high-frequency dielectric constant), but this statement is not true for small or very

large angles of incidence. For measurements on bulk substrates, the ellipsometric

angles can directly be converted into the complex dielectric function and the loss

function. No fitting is required.

TO and LO phonons also cause Raman peaks in inelastic light scattering spec-

tra. As explained by Barker and Loudon [20, 32], ε2 (ω) determines the Raman

lineshape of the TO phonon, while −Im [1/ε (ω)] governs the LO Raman line, see

Fig. 2 in Barker [20]. Therefore, it should be possible to directly compare the Ra-

man energies and linewidths with the energies and linewidths of the peaks in ε2 (ω)

and −Im [1/ε (ω)] determined with infrared ellipsometry. This is a fundamental

premise for the work described in this article.

The vibrational properties of bulk GaP have already been studied theoreti-

cally and experimentally by several authors. Using FTIR reflectance, Lockwood

et al. [17] investigated TO and LO phonons in several III-V semiconductor materi-

als, including bulk GaP, in the reststrahlen region at room temperature. Bairamov

et al. [33,34] measured the effect of temperature on the optical phonon frequency

and linewidth with Raman scattering and explained their results with the anhar-

monic decay of optical phonons into two or three acoustic phonons. They found

a redshift and increasing broadening with increasing temperature from 4.2 K to
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550 K and also an increasing asymmetry of the TO phonon at high temperatures.

Debernardi [22, 23] calculated the temperature and pressure dependence of the

Raman linewidths and energies of the TO and LO phonons from 0 to 325 K.

From the observation of first order Raman spectra, Mooradian and Wright [35]

found almost no phonon frequency shift between room temperature and helium

temperature. The spectral range of most of these works is around the reststrahlen

band (250-550 cm−1) of bulk GaP. However, several other theoretical and exper-

imental studies of optical phonons in bulk GaP exist [36–40], including inelastic

neutron scattering data and shell model calculations [28]. Some of them identified

not only the long wavelength optical phonons at the Γ point of the Brillouin zone,

but also zone edge phonons [20,41,42].

5.3 Experimental methods and models

A bulk unintentionally doped single side polished GaP wafer grown by the liquid

encapsulated Czochralski method with 0.5 mm thickness, (111) surface orienta-

tion, and a (110) flat was obtained commercially (MTI Corporation, Richmond,

CA). The sample had n-type conductivity with an electron concentration on the

order of n=5×1016 cm−3 and a resistivity of about 0.3 Ωcm. By comparison, the

electron concentrations of GaP used for similar studies in the literature range from

1016 to 1017 cm−3. The electron density may influence the observed phonon line

broadenings.
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The ellipsometric angles Ψ and ∆ of the as-received GaP wafer were acquired

(without cleaning) on a J. A. Woollam FTIR Mark II ellipsometer from 0.03-0.60

eV (mid and near-infrared spectral regions) with 1 cm−1 resolution from 80-720

K with 25 K step size (30 measurements) inside an ultra-high vacuum cryostat

(Janis ST-400) with diamond windows (Diamond Materials GmbH, Freiburg, Ger-

many) at 70◦ angle of incidence [15]. At each temperature, measurements were

performed with 15 positions per revolution of the rotating compensator. To in-

crease the signal-to-noise ratio, we averaged 50 interferometer mirror scans at each

compensator position. Systematic errors were reduced with P=±45◦ polarizer an-

gles and also zone averaging the analyzer (A=0◦, 90◦). WVASE32 (J. A. Woollam

Co., Lincoln, NE) and IGOR Pro (WaveMetrics, Lake Oswego, OR) scientific data

analysis software were used to analyze our data.

We first measured Ψ and ∆ in air at three different incidence angles of 60◦,

65◦, and 70◦ to calibrate the cryostat windows [43]. The GaP sample was then

attached to a copper cold finger using metal clamps. The temperature was mea-

sured with two type-E (nickel-chromium/constantan) thermocouples. One located

near the cryogen reservoir was used to control the temperature with a Lakeshore

temperature controller. The second thermocouple was directly attached to the

surface of the GaP sample and measured the temperature of the sample surface.

The difference between both thermocouple readings was up to 60 K at the highest

temperatures.
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The cryostat was then sealed and pumped to a pressure below 10−5 Torr. In

order to reduce the surface contamination, the sample was heated to 700 K for

several hours with a 50 Ω resistor installed in the cryostat. This anneal may

change the surface reconstruction, but no serious degradation of the sample is

expected [44]. The cryostat was then allowed to cool down to room temperature

while continuing to pump. Once a sufficiently low base pressure of 10−9-10−8 Torr

was reached, we started to cool the system down to 80 K using liquid nitrogen.

Measurements were then taken from low to high temperatures in steps of about

25 K. Typical results at 300 K in air are shown in Fig. 5.1.

The static and high-frequency dielectric constants εs and ε∞ and the optical

phonon parameters (amplitude A, TO and LO phonon energies ωTO and ωLO, and

corresponding broadenings γTO and γLO) were obtained by fitting the ellipsometric

angles of GaP at each temperature either with a single Lorentzian

ε (ω) = ε∞ +
Aω2

TO

ω2
TO − ω2 − iγTOω

, (104)

or with the Lowndes-Gervais model [14,18]

ε(ω) = ε∞
ω2
LO − ω2 − iγLOω

ω2
TO − ω2 − iγTOω

. (105)

Details of this approach are given in Ref. 21 and in the supplementary material. A

thin surface overlayer with variable thickness (about 35 Å), described as a 50/50

mixture of GaP and voids within the Bruggeman effective medium approximation,

was also included in the model [45,46].
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Figure 5.1: Ellipsometric angles (a) ψ and (b) ∆ at 300 K in air at 70◦ angle of in-

cidence (AOI) for bulk GaP with a surface layer. The symbols show experimental

data. Solid and dashed lines show the result of a fit using Eq. (105).

158



Once the surface layer thickness and phonon parameters have been determined

from this model for each temperature, it is also possible to fix the surface layer

thickness and fit the ellipsometric angles with the optical constants at each photon

energy as parameters. This so-called “point-by-point fit” leads to results in Fig.

5.2. It can be seen clearly that the extrema of ε1 and ε2 show a redshift, increasing

broadening, and decreasing amplitude with increasing temperature. Tabulated

optical constants [47] are shown for comparison.

5.4 Results and discussion

5.4.1 Optical phonon parameters at 300 K

We used four different models to extract the phonon parameters from the exper-

imental data, with results shown in Table 5.1 for room temperature. Models (1)

and (4) fit the ellipsometric angles ψ and ∆ with consideration of the experi-

mental errors [46] to Eqs. (104) and (105), respectively. This the most common

data analysis methods for ellipsometry data. Models (2) and (3) fit 〈ε2 (ω)〉 and

−Im [1/ 〈ε (ω)〉] with Lorentzians to determine the TO and LO phonon parame-

ters, respectively. These results should be comparable with the Raman results of

Bairamov et al. [33] A detailed comparison of results from the four models follows

below.

The Lorentz model allowed us to find ε∞, A, ωTO, and γTO at room tem-

perature, either by fitting the ellipsometric angles with the experimental errors
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Figure 5.2: (a) Real and (b) imaginary parts of the complex dielectric function of

bulk GaP at three different temperatures versus photon energy (dashed), deter-

mined from a “point-by-point” fit, in comparison with room temperature results

as described in [47] (solid).
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(model 1) or only the imaginary part 〈ε2〉 of the pseudo-dielectric function (model

2). Both models yield similar results, see Table 5.1, but γTO is smaller when fitting

the ellipsometric angles (model 1). The Lorentzian broadening affects both the

lower and upper corner of the reststrahlen band. If γTO>γLO, model (1) will find

an intermediate Lorentzian broadening close to the average of γTO and γLO. On

the other hand, if we only fit 〈ε2〉 in model (2), we find the larger broadening γTO

of the TO phonon. This explains why models (1) and (2) report different values

for γTO, see Table 5.1.

These models (1-2) assume equal broadenings for the TO and LO phonons.

Results from the Lorentz model (1) are shown by the solid lines in Fig. 5.1. This

model (1) fits the ellipsometric angles near the LO energy well, but not near the

TO energy. The Lorentzian line shape is symmetric, while the ellipsometric angle

ψ is more rounded at the TO energy (indicating a larger broadening) than at the

LO energy.

Following Fig. 2 in Barker [20], we also determined the energy and broadening

of the LO phonon by fitting the pseudo-loss function (122) with a Lorentzian, see

Fig. 5.7. Results are shown in model (3) of Table 5.1. We find that γTO is two to

four times larger than γLO. This motivates the use of the Lowndes-Gervais model

(4), see Eq. (105), to fit the ellipsometric angles, because it treats γTO and γLO as

two independent parameters. These results are shown by the dashed line in Fig.

5.1 and in model (4) of Table 5.1.
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Table 5.1: Phonon parameters at 300 K determined with different models:(1) TO

phonon parameters obtained from the Lorentz model by fitting the ellipsometric

angles with the experimental errors. ωLO was calculated from Eq. (121). (2) Same,

but from fitting only 〈ε2〉. (3) LO phonon parameters from a Lorentzian fit to

the pseudo-loss function. (4) Results from the Lowndes-Gervais model, Eq. (105).

Data from the literature is also shown. Probable errors are listed in parentheses.

Model ε∞ A ωTO γTO ωLO γLO

(cm−1) (cm−1) (cm−1) (cm−1)

(1) 9.02(1) 1.950(2) 364.81(3) 1.61(3) 402.33(6) NA

(2) NA 1.97(3) 365.24(3) 3.86(8) NA NA

(3) NA 0.0211(1) NA NA 402.3(2) 0.88(1)

(4) 9.02(1) NA 364.81(3) 2.91(4) 402.33(2) 0.90(3)

Ref. 17 9.24(2) 366.3(3) 2.6(6) 402.50(5) 1.2(1)

Ref. 20 9.09 1.92 365.3 1.1 402.2

Ref. 33a,b 364.5 3.5 402.5 2

Ref. 35a 367.3 403.0

Ref. 48 9.091 363.4

Ref. 49c >4 0.76

aRaman scattering.

bn=9×1016 cm−3 (increased LO broadening).

cCoherent anti-Stokes Raman scattering.
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Our value of ε∞=9.02 ±0.01 is only about 0.8% smaller than ε∞=9.091 deter-

mined by Parsons and Coleman [48,50]. A better accuracy should not be expected

for spectroscopic ellipsometry and can only be obtained with minimum-deviation

prism measurements [51]. Using the LST relation (119), we find a static dielectric

constant εs=10.97, also slightly (1.6%) smaller than ε∞=11.147 found with far-

infrared measurements [48, 50]. The temperature dependence of these dielectric

constants will be discussed later within the context of Fig. 5.6. Our value for ωLO

=402.33±0.06 cm−1 agrees to within 0.1 cm−1 with Lockwood et al. [17] and Pa-

lik [48,50], but differences in the literature for ωTO are several wave numbers. This

is unexpected, since the upper end of the reststrahlen band near ωLO depends on

the angle of incidence and on the free electron concentration (see supplementary

material), while the lower end of this band should unambiguously yield ωTO.

It can be seen in Fig. 5.1 (dashed lines) that the reststrahlen band for bulk GaP

is asymmetric, a clear indication that the TO and LO phonon broadenings are

different. We can also see an asymmetry of ε2 in Fig. 5.2. We obtained a better fit

(dashed line in Fig. 5.1) to our data with larger TO broadening (γTO>γLO). The

mean squared error [46] (difference between model and measured ellipsometric

angles, weighted with the experimental errors) is about 10% smaller with the

Lowndes-Gervais model than when fitting with a single Lorentzian. The same

observation (γTO>γLO) was made by others [17] not only for GaP, but also for

four other zinc blende semiconductors. Only GaAs is an exception and fulfills
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the Lorentzian condition γTO≈γLO. Raman scattering measurements of GaP at

room temperature [20] also find γTO>γLO. The TO and LO Raman lineshapes

closely follow the peaks of the imaginary part of the dielectric function and the

loss function, respectively [20].

We interpret the GaP phonon broadenings as pure lifetime broadenings, sim-

ilar to the radiative broadenings discussed by Loudon [52]. (See supplementary

material for a discussion of other potential contributions to the broadenings.) The

TO phonon energy at the Γ-point in the Brillouin zone is at a maximum of the

two-phonon density of states. It is almost exactly the same as the sum of the

longitudinal and transverse acoustic (LA+TA) phonon energies at the X-point.

Therefore, the TO phonon can decay very efficiently into two acoustic phonons,

while the same is not true for the LO phonon [24]. The complex self-energy

D (ωTO) has a large imaginary part. This explains γTO>γLO.

The phonon dephasing time τ is related to its broadening by [49,53] γ=2~/τ ,

where ~=0.658 meVps is the reduced Planck’s constant. The LO phonon lifetime

should therefore be larger than that of the TO phonon. This was indeed observed

with picosecond pump-probe coherent anti-Stokes Raman scattering (CARS) ex-

periments [54], where Kuhl and Bron [49] found τLO≈14 ps (γLO≈0.76 cm−1) and

τTO<2.6 ps (γTO>4 cm−1) for GaP at 300 K, see Table 5.1. An earlier CARS

study [55] found a longer lifetime of 5.5 ps for a polariton near the TO phonon,

resulting in a lower value of γTO=2 cm−1.
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5.4.2 Two-phonon absorption

Berreman and Unterwald [16] introduced the passivity condition γTO≤γLO to en-

sure that the imaginary part ε2 (ω) of the dielectric function does not become

negative. This condition is violated for GaP, as described in the previous section.

Therefore, our model predicts a negative ε2 (ω) just above the LO phonon energy,

as shown by the dashed line in Fig. 5.3.

The passivity condition ε2≥0 only applies to the total dielectric function, not

to its individual contributions. So far, our Lowndes-Gervais model (105) only

includes absorption of light by a single phonon. However, we must also consider

multiphonon absorption [20,56–59], where one photon simultaneously creates two,

three, or more phonons.

Multi-phonon absorption is too weak (ε2<0.1, α<100 cm−1) to be observable

with spectroscopic ellipsometry, which is more appropriate for measuring large ab-

sorption coefficients (α>103 cm−1). Transmission measurements are better suited

for the detection of small α. We were only able to gain a glimpse of multi-phonon

absorption by increasing the band width of our ellipsometer to 4 cm−1 and the

number of scans fourfold, resulting in the experimental data shown in Fig. 5.3.

We clearly see that ε2>0 in the region from 400 to 600 cm−1. We include multi-

phonon absorption in our model with three broad Gaussians, which are added to

Eq. (105), as shown by the solid line in Fig. 5.3.
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These arguments show qualitatively that γTO>γLO is not unphysical, if the

resulting negative values of ε2 are compensated by multi-phonon absorption. The

anharmonic decay of optical phonons into acoustic phonons and multi-phonon

absorption of a photon are both higher-order processes involving the interaction

of several phonons. Therefore, it should not surprise that both processes are

related.

5.4.3 Temperature dependence of optical phonon parameters

To accurately determine the temperature dependence of the optical phonon pa-

rameters and the (apparent) surface layer thickness, the ellipsometry angles Ψ and

∆ of bulk GaP at each temperature were fitted with the Lowndes-Gervais model

as described in section 5.3. All of these models consisted of a single Lowndes

oscillator and the surface layer. The variation of this apparent GaP surface layer

thickness with temperature is shown in Fig. 5.17 and discussed in the supplemen-

tary material. It changes from 0 to 48 Å over the whole temperature range.

The experimental phonon broadenings are determined by the instrumental

resolution and defects (such as polishing damage [58]), which are independent of

temperature. In addition, there is a temperature dependence of the broadenings

due to the anharmonic decay of optical phonons. In analytical empirical models

[33, 60], one usually considers three-phonon processes (where the optical phonon

decays into two acoustic phonons of equal energy) and four-phonon processes
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Figure 5.3: (a) Imaginary part of the complex dielectric function for GaP versus
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(where the optical phonon decays into three acoustic phonons of equal energy).

Ab initio calculations [22] based on realistic phonon dispersions obtained from

density-functional theory relax the assumption that all decay products have the

same energy, as long as the overall energy and crystal momentum are conserved.

Three-phonon decay processes with a 2:1 ratio of the acoustic phonon energies

seem particularly important [61]. The temperature-dependent broadenings can

be calculated from the imaginary part of a complex self-energy describing the

interaction between the optical phonon and its decay products [61].

The temperature dependence of the phonon energies is given by the corre-

sponding real part of the same self energy [23]. However, there is also a contri-

bution to the phonon energies due to thermal expansion [61]. We therefore begin

with the discussion of the temperature dependence of the broadenings, followed

by the temperature dependence of the phonon energies. We follow the formalism

laid out by Bairamov et al. [33] and Menendez and Cardona [61].

1) Temperature dependence of phonon broadenings

The broadenings of the TO and LO phonon energies for GaP at each temper-

ature are shown in Fig. 5.4. Solid circles show the results obtained by fitting the

ellipsometric angles with a Lowndes model (105). Open circles show results ob-

tained by fitting 〈ε2〉 and the pseudo-loss function with a Lorentzian. Both meth-

ods yield the same values for the LO phonon broadenings, but the TO broadenings
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found from fitting 〈ε2〉 are significantly larger than when fitting the ellipsometric

angles. This discrepancy is discussed in detail in the supplementary material.

Our LO broadenings closely follow the 1979 results by Bairamov et al. [34],

Kuhl and Bron [49], and Vallée [62] obtained from Raman linewidths or coherent

anti-Stokes Raman scattering decay times of high-purity GaP samples (dotted).

Earlier Raman work [33] used a GaP sample with a higher electron concentration

of 9×1016 cm−3, where the LO broadening is increased due to plasmon-phonon

coupling (dashed). The Raman broadenings of the TO phonon [33] (dashed) are

not affected by doping. They follow our results for fitting 〈ε2〉 with a Lorentzian

(open symbols), since the Raman lineshape closely follows ε2, see Ref. 20.

Debernardi [22,23] calculated the temperature and pressure dependence of the

Raman linewidths and energies of the TO and LO phonons from 0 to 325 K, as

shown by the dashed-dotted lines. However, his calculated linewidths for the TO

phonon agree with Bairamov et al. [33] only at low temperatures and are much

larger than the experimental results at higher temperatures. In the case of the

LO phonon linewidths, the agreement with experiment [34,49,62] is much better.

Empirically, the broadenings due to anharmonic decay can be fitted with an

expression [33,60,63]

γ(T ) = γ0 + A

[
1 +

2

ex − 1

]
+B

[
1 +

3

ey − 1
+

3

(ey − 1)2

]
, (106)

where A and B are three- and four-phonon coupling constants, respectively. The
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reduced phonon energies x and y are

x =
}ω0

2kBT
and y =

}ω0

3kBT
. (107)

ω0 is the unrenormalized phonon frequency and kB is the Boltzmann constant.

The parameter γ0 describes temperature-independent mechanisms, such as inho-

mogeneous broadening due to defects or the instrumental resolution. Table 5.2

lists the best-fit parameters of Eq. (106) for TO and LO phonons. The broaden-

ings calculated with these parameters (shown by the solid lines in Fig. 5.4) agree

very well with the experimental results. Our anharmonic parameters A and B

agree well with those in Ref. 33 for the TO phonon (except for a constant shift

related to a different value for γ0 due to a different fitting method), but our param-

eter B is much smaller for the LO phonon, since our sample had a lower doping

concentration than in Ref. 33.

2) Temperature dependence of phonon energies

The temperature dependence of the optical phonon energies due to thermal

expansion (TE) is given by [61,64,65]

ωTE (T ) = ω0 exp

[
−3γ

∫ T

0

αl (θ) dθ

]
, (108)

where ω0 is the phonon energy at 0 K, γ the Grüneisen parameter for the phonon

mode, and αl the linear thermal expansion coefficient. Since thermal expansion is

small, it suffices [33] to keep only the linear term in the exponential in Eq. (108).
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Table 5.2: Anharmonic decay parameters for Eq. (106) for the temperature de-

pendence of TO and LO phonon broadenings. Errors are shown in parentheses.

Energies marked (f) were fixed during the fit, compare Table 5.3.

This work TO LO

A (cm−1) 0.2(1) 0.2(f)

B (cm−1) 0.08(1) 0.069(2)

γ0 (cm−1) 1.4(1) 0.03(4)

ω0 (cm−1) 367.3(f) 406.6(f)

Ref. 33 TO LO

A (cm−1) 0.20 0.16

B (cm−1) 0.06 0.20

γ0 (cm−1) 2.8 0

ω0 (cm−1) 366 404
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The thermal expansivity can be described using a Debye model for the phonons

[66]

αl (T ) = αl∞D

(
ΘD

T

)
, (109)

where ΘD=440 K is the Debye temperature, αl∞=5.8×10−6 K−1 the thermal

expansion coefficient in the high temperature limit, and [33,66]

D (η) =
3

η3

∫ η

0

eξξ4

(eξ − 1)2dξ. (110)

Instead, we can also use tabulated values [23, 67, 68] for the thermal expansion

coefficient and perform the integration in Eq. (108) numerically.

The dependence of TO and LO phonon energies on temperature determined

from a Lowndes fit to the ellipsometric angles is shown in Fig. 5.5 (symbols).

Both show a redshift (decrease) with increasing temperature. The contribution

of thermal expansion to these redshifts (dashed) is not sufficient to explain the

experimental data. Therefore, Bairamov et al. [33] also included three- and four-

phonon anharmonic decay processes.

The anharmonic contribution to the redshift can be described as [60]

ω(T ) = ω0 − C
[
1 +

2

ex − 1

]
−D

[
1 +

3

ey − 1
+

3

(ey − 1)2

]
, (111)

where and C and D are the anharmonic coupling strengths. The second and third

terms in Eq. (111) relate to three- and four-phonon decay processes, respectively.

Setting D=0 (i.e., ignoring four-phonon processes) does not achieve a good fit.
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In principle, one should subtract the redshift due thermal expansion from

the observed redshift and then fit the parameters C and D. This was done by

Bairamov et al. [33], which resulted in the parameters shown in Table 5.3. In

practice, however, one often ignores the thermal expansion contribution [60] and

directly fits the experimental data with Eq. (111). These parameters are also

shown in Table 5.3. The two methods result not only in different sets of coupling

constants C and D, but also in differences for the unrenormalized phonon energies

ω0.

This redshift can also be fitted empirically with a Bose-Einstein expression [69]

ω(T ) = ω0 − C
[
1 +

2

e
θB
T − 1

]
(112)

as an anharmonic three-phonon decay with an adjustable effective phonon energy

ωeff=kBθB, where θB is an effective phonon temperature related to the Debye

temperature of GaP (440 K). These results are also shown in Table 5.3.

3) Temperature dependence of high-frequency and static dielectric

constants

The high frequency dielectric constant ε∞ for bulk GaP was also obtained from

fitting the ellipsometric angles at each temperature with the Lowndes model (105).

It increases with temperature, as shown in Fig. 5.6. ε∞ can be expressed as [70]

ε∞ = 1 +

(
Eu
EPenn

)2

, (113)
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Figure 5.5: Temperature dependence of the (a) transverse (ωTO) and (b) longitu-

dinal (ωLO) optical phonon energies of GaP (symbols). The dashed line shows the

contribution of thermal expansion. Fits using Eqs. (111) and (112) with parame-

ters in Table 5.3 are shown by dashed-dotted lines.

175



Table 5.3: Anharmonic decay parameters for the temperature dependence of TO

and LO phonon energies. Errors are shown in parentheses.

Anharmonic decay parameters TO LO

This work, Eq. (111), ignoring thermal expansion.

ω0 (cm−1) 367.3(2) 406.6(1)

C (cm−1) 0.5(1) 1.6(1)

D (cm−1) 0.14(1) 0.11(1)

Ref. 33, Eq. (111), Raman, thermal expansion subtracted.

ω0 (cm−1) 364.5 401.4

C (cm−1) −1.76 −2.98

D (cm−1) 0.30 0.51

This work, Eq. (112), ignoring thermal expansion.

ω0 (cm−1) 374.6(8) 410.5(4)

C (cm−1) 8.3(9) 5.9(4)

ωeff (cm−1) 530(30) 380(20)
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where the unscreened plasma frequency of the valence electrons is given by

E2
u = ~2ω2

u =
}2Ne2

m0ε0
= (16.5 eV)2 . (114)

N is the density of valence electrons per unit volume (8 electrons per formula

unit), e the charge of the electron, m0 the free electron mass, and ε0 the vacuum

permittivity. The resulting Penn gap EPenn=5.83 eV, calculated from ε∞ at 300 K,

is the average separation between the valence and conduction band across the

Brillouin zone, usually located near the E2 gap (5.28 eV for GaP, see Refs. 70,71).

We assume that E2 and EPenn have the same temperature dependence.

Taking the derivative of Eq. (113) with respect to temperature yields [72, 73]

dε∞
dT

= −3αl (ε∞ − 1)− 2 (ε∞ − 1)
d lnE2

dT
. (115)

The first term considers the decrease of the electron density due to thermal ex-

pansion, which results in a decrease of ε∞. The second term describes the increase

of ε∞ due to the decrease of the Penn gap with increasing temperature. This is

the dominant term.

We calculated the temperature dependence of ε∞ at room temperature, result-

ing in

dε∞
dT

∣∣∣∣
300 K

= (−1.2 + 7.6)× 10−4 K−1 = 6.4× 10−4 K−1. (116)

This value compares favorably with the experimental variation of ε∞ between 200

and 400 K, which is 4.5×10−4 K−1. Therefore, we conclude that the model (115)

for the temperature dependence of ε∞ is reasonable.
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The temperature dependence of εs was calculated from the Lyddane-Sachs-

Teller (LST) relation (119) and is also shown in Fig. 5.6. Since the ratio of

the TO and LO phonon energies does not strongly depend on temperature, the

variations of εs with temperature are very similar to those of ε∞. We find that εs

changes by about 1% between 0 and 300 K, which is three times larger than the

change calculated by Debernardi [23].

5.5 Summary

We used FTIR spectroscopic ellipsometry from 0.03-0.60 eV to determine the

effects of temperature on the properties of long-wavelength optical phonons of GaP

at temperatures ranging from 80 to 720 K. With different experimental conditions,

we also observed two-phonon absorption. GaP shows an asymmetric reststrahlen

line shape, because the linewidth of the TO phonon is larger than that of the

LO phonon at all temperatures. This violates the Lowndes passivity condition

and the imaginary part ε2 of the dielectric function becomes slightly negative

just above the LO energy. To achieve a physically meaningful non-negative total

dielectric function, we must also add multi-phonon absorption to the single phonon

absorption. We also observed that the energies of the TO and LO optical phonons

show a redshift and increasing broadening with increasing temperature due to

thermal expansion and anharmonic phonon-phonon decay. The static and high-

frequency dielectric constant increased with increasing temperature because of

178



11.6

11.5

11.4

11.3

11.2

11.1

11.0

10.9

ε
s

8007006005004003002001000

Temperature (K)

(b)

9.5

9.4

9.3

9.2

9.1

9.0

8.9

ε
∞

8007006005004003002001000

(a) This work
 Barker, 1968
 Palik, 1998

Figure 5.6: Temperature dependence of the (a) high-frequency (ε∞) and (b) static

(εs) dielectric constants. ε∞ was found by fitting the experimental data with Eq.

(105). εs was calculated from the Lyddane-Sachs-Teller relation (119). Data from

the literature [20, 48,50] are also shown.
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the thermal expansion of the crystal and the temperature dependence of the Penn

gap.
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5.6 Supplementary Material

5.6.1 Lorentz model for a single phonon

The static and high-frequency dielectric constants εs and ε∞ and the optical

phonon parameters (amplitude A, TO and LO phonon energies ωTO and ωLO,

and corresponding broadenings γTO and γLO) were obtained by fitting the ellipso-

metric angles of GaP at each temperature either with a single Lorentzian or with

the Lowndes-Gervais model [14, 18]. The difference between these two models is
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that the Lowndes-Gervais model assigns two different broadening parameters γTO

and γLO to the two phonons, while the Lorentz model has only one broadening

parameter γTO.

Following Helmholtz (Ann. Phys. 230, 582, 1875) or Wooten (Optical Proper-

ties of Solids, Academic, New York, 1972), the dispersion due to damped vibra-

tions of molecules in a solid under the influence of an electromagnetic wave can

be described by a Lorentz oscillator [20]

ε (ω) = ε∞ +
Aω2

TO

ω2
TO − ω2 − iγTOω

. (117)

TO phonons therefore appear as a strong symmetric peak with linewidth γTO

(FWHM) just below ωTO (due to damping) in the imaginary part ε2 of the complex

dielectric function [25]. The maximum height of this peak is

ε2 (ωTO) ≈ A
ωTO

γTO

(118)

for γTO�ωTO. The peak position ωTO can usually be determined very precisely

from the position of the ε2 peak. However, the peak amplitude is influenced by

both A and γTO. In practice, this leads to parameter correlations when fitting

data, especially if the peak shape is not precisely Lorentzian (e.g., due to asym-

metry).

The minimum and maximum of the real part ε1 of the dielectric function are

separated by γTO. In this region, ε1 shows anomalous dispersion. The LO phonon

energy is defined by ε1 (ωLO)=0. It can be found from the Lyddane-Sachs-Teller
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(LST) relation [17]

εs = ε∞
ω2

LO

ω2
TO

. (119)

The real part ε1 (ω) is negative between ωTO and ωLO. This leads to a region of

high reflectivity called reststrahlen band. Representative graphs of the dielectric

function, the complex refractive index, and the reflectivity at normal incidence

for a Lorentz oscillator are shown by Wooten (1972). The ellipsometric angles

at 70◦ angle of incidence calculated from the Lorentz model are shown by solid

lines in Fig. 5.1. It is important to note that the Lorentz model shows strong

symmetry in the dielectric function, the reflectivity at normal incidence, and in

the ellipsometric angles (but not in the complex refractive index or the absorption

coefficient). For γTO=0, the reflectance R equals unity and the ellipsometric

angle ψ=45◦ within the reststrahlen band. The corners of R and ψ are very

sharp. The rise of ψ or R occurs precisely at the TO frequency, but the drop

is pushed beyond the LO frequency at higher angles of incidence [15]. These

corners are rounded symmetrically once γTO increases and R and ψ are lower than

their ideal undamped values. The most precise determination of the broadening

parameter γTO can therefore be made from the ellipsometric angle ψ within the

reststrahlen region and its deviation from 45◦. This is independent of the value

of the amplitude A. Within the reststrahlen band, there is enhanced sensitivity

to the low absorption caused by two-phonon processes (J. Humĺıček, Thin Solid
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Films 313-314, 687, 1998). Setting ω=0 in Eq. (117), we find the relationship

εs = ε∞ + A (120)

between the static (ω=0) and high-frequency (ω→∞) dielectric constants. Com-

bining Eqs. (119) and (120), we find

ωLO = ωTO

√
1 +

A

ε∞
. (121)

As shown in Fig. 5.7, the pseudo-loss function

Im

(
− 1

〈ε〉

)
= −〈η2〉 =

〈ε2〉
〈ε1〉2 + 〈ε2〉2

(122)

shows a strong peak at the LO phonon energy (Wooten, 1972). To obtain the

amplitude B, energy ωLO, and broadening γLO of the LO phonon, the experimental

data points in the pseudo-loss function (122) were fitted in IGOR Pro with the

imaginary part of a Lorentzian

−〈η2〉 =
Bω2

LOγLOω

(ω2
LO − ω2)2 + γ2

LOω
2
. (123)

The parameters from this fit are shown in model (3) of Table 5.1. The LO phonon

energy of 402.3 cm−1 obtained from this pseudo-loss function fit matched perfectly

with the calculated value 402.33 cm−1 from Eq. (121).

5.6.2 Frequency-dependent broadening

The Lorentz oscillator function (117) can be solved for the broadening parameter

iγω = ω2
TO

ε− εs
ε− ε∞

− ω2. (124)
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Figure 5.7: Pseudo-loss function for GaP in the reststrahlen region at room tem-

perature (in air) fitted with a Lorentzian as in Eq. (123).
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If ε follows a Lorentzian lineshape, then of course this expression (124) yields

a constant γTO. However, we can also evaluate this expression for other types

of lineshapes or from experimental data ε (ω) = ε1 + iε2, if the static and high-

frequency dielectric constants εs and ε∞ are found from extrapolation.

We can break up Eq. (124) into real and imaginary components [39] (see also

A. Rastogi, K. F. Pai, T. J. Parker, and R. P. Lowndes, in Proceedings of the

International Conference on Lattice Dynamics, Paris, September 5-9, 1977, edited

by M. Balkanski (Flammarion, Paris, 1978), p. 142)

iγω = ω2
TO

(ε1 − εs) (ε1 − ε∞) + ε22
(ε1 − ε∞)2 + ε22

− ω2 +

+i ω2
TO

(εs − ε∞) ε2

(ε1 − ε∞)2 + ε22
. (125)

In the anharmonic literature [39], the broadening term

iγω = 2ωTO [∆ (ω) + iΓ (ω)] (126)

in the denominator of the Lorentzian lineshape (117) is typically associated with a

complex self-energy ∆ (ω)+ iΓ (ω). In this view, ωTO is the unrenormalized (truly

harmonic) resonance frequency of the oscillator. The real part ∆ (ω) of this self

energy has two contributions due to thermal expansion and due to the anharmonic

decay of optical phonons into acoustic ones. It usually leads to a redshift of the

phonon frequency. The imaginary part Γ (ω) causes a broadening of the phonon

resonance, leading to a FWHM of γTO≈2Γ (ωTO).
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Figure 5.8: Frequency-dependent scattering rate of GaP at (a) 80 K, (b) 300 K,

and (c) 720 K calculated from the Lowndes lineshape in Eq. (105) (solid) and

from our experimental (point-by-point fit) data (dashed) in Fig. 5.2.
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We first evaluate the broadening γ in Eq. (125) for a Lowndes lineshape (105),

shown by the solid lines in Fig. 5.8. The Lowndes parameters were taken from

fits to our ellipsometric angles at three different temperatures. The broadening

parameter decreases steadily with increasing photon energy, since γTO>γLO, and

eventually becomes negative above the LO frequency where ε2<0 for our Lowndes

parameters. A negative broadening parameter leads to a pole in the dielectric func-

tion below the real axis. This is forbidden, because it violates both the causality

and the passivity conditions [16]. In practice, this is offset by higher-order phonon

absorption processes which lead to a positive ε2 as discussed in Sec. 5.4.2.

The application of Eq. (125) to our experimental data is somewhat disap-

pointing, see the dashed lines in Fig. 5.8. First, we note that γ is always positive,

because our ellipsometry fitting software enforces ε2>0. The noise is very high

above the LO phonon energy, where the reflected light intensity is very low. We

have excellent signal-to-noise ratio in the reststrahlen region between ωTO and

ωLO, which allows a very accurate determination of the broadening parameter in

this region. The data is also noisy below the TO phonon energy, because this

spectral region is at the very edge or even below the specified energy range of our

instrument. A better signal-to-noise ratio in FTIR ellipsometry would be needed

to study the frequency dependent scattering rate.

The broadening parameter γ increases with increasing temperature and there-

fore one expects that this technique should yield better results at higher temper-
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atures, where the broadenings are larger. With a bit of imagination, we might

indeed locate a peak in the broadening at 720 K below the TO energy, see Fig.

5.8, where it is expected [20]. See also Ushioda et al., Phys. Rev. B 8, 4634 (1973),

and Ushioda and McMullen, Solid State Commun. 11, 299 (1972). Similar results

are shown in Ref. 39 for ZnSe and by Ratogi et al. (1978) for RbBr and KTaO3.

5.6.3 Accurate determination of the broadening parameter

In Fig. 5.4, we show the TO and LO broadenings versus temperature fitted to our

experimental data using two different methods: (1) We fitted the ellipsometric

angles weighted with the experimental errors with the Lowndes model in Eq.

(105). (2) We fitted the imaginary part of the pseudodielectric function 〈ε2〉 and

the pseudo-loss function 〈η2〉, see Eq. (122), with a Lorentzian to obtain the TO

and LO broadenings, respectively. Both methods yield the same broadenings for

the LO phonon, but not for the TO phonon. We therefore discuss how the choice

of the TO broadenings in the models affects the agreement with the experimental

data. Since the Raman lineshapes of the TO and LO phonons closely follow the

peaks of ε2 and the loss function [20], it is not surprising that the second method

provides better agreement with the Raman broadenings determined by Bairamov

et al. [33]

To investigate this question, we show the ellipsometric angles ψ and ∆, the

imaginary part 〈ε2〉 of the pseudo-dielectric function, and the pseudo-loss function
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Figure 5.9: Ellipsometric angles (a) ψ and (b) ∆, (c) imaginary part 〈ε2〉 of

the pseudo-dielectric function, and (d) pseudo-loss function −〈η2〉 versus photon

energy for GaP at 80 K (symbols) fitted with two different Lorentz models (blue,
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Figure 5.11: Same as Fig. 5.9, but at 720 K.
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−〈η2〉 versus photon energy for GaP at three different temperatures in Figs. 5.9,

5.10, and 5.11 (symbols). The Lowndes model (shown by red lines), fitted to

the ellipsometric angles, describes the ellipsometric angles and the pseudo-loss

function very well, but it significantly overshoots the magnitude of the peak in

〈ε2〉. Since the resolution of the ellipsometer was set to 1 cm−1 and the peak

width at room temperature is γTO=2.9 cm−1, we do not believe that this is an

issue with the instrumental resolution. The asymmetry of the 〈ε2〉 peak also does

not explain this discrepancy. Perhaps small systematic errors in the ellipsometric

angles lead to large errors in 〈ε2〉, especially for very large values of 〈ε2〉.

Fitting the ellipsometric angles with a Lorentzian (shown in blue in Figs.

5.9, 5.10, and 5.11) overshoots the 〈ε2〉 peak even more. In this case, the fit

arrives at a low value of γ, because the same broadening is used for the TO

and LO phonons. The LO phonon broadening is very small and therefore the

Lorentz fit takes an average value of the TO and LO broadenings as the Lorentzian

broadening γ, which is too small. Therefore, we understand why the Lorentzian

fit to the ellipsometric angles overshoots the 〈ε2〉 peak.

Finally, we determine γTO by fitting the 〈ε2〉 peak with a Lorentzian (green

line). We obtain a good fit to the data and the amplitude of the 〈ε2〉 peak is repro-

duced well. However, the large broadening leads to a poor fit of the ellipsometric

angles and the pseudo-loss function peak. The peak value of the ψ-reststrahlen

band is much lower in the model than in the data. Also, the falling slope near the
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LO energy is pushed too far towards larger energies. For completeness, we also

show a Lorentzian fit to the pseudo-loss function peak (brown).

We noted earlier that the peak of the ψ-reststrahlen band strongly depends

on the broadening. For γ=0, the maximum of ψ equals 45◦ and decreases with

increasing γ between the TO and LO energies. Therefore, accurate measurements

of ψ using spectroscopic ellipsometry allow accurate measurements of γ, even

when the instrumental resolution is larger than γ. While absolute reflectance

measurements are very difficult experimentally, the accuracy of ψ is usually better

than 0.3◦ in the mid-infrared spectral range around 30 µm wavelength.

It is well known that the magnitude of the reststrahlen bands in GaP reflection

measurements is influenced by polishing and etching, presumable due to changes

in surface roughness [58]. A poorly prepared surface will reduce the measured

reflectance or the ellipsometric angle ψ. Since our value of ψ is above 44◦ at room

temperature, our surface is quality is excellent and does not explain the broad

〈ε2〉 peak.

5.6.4 Relationship between Phonon Lifetimes and Broadenings

According to Laubereau and Kaiser [53] and Kuhl and Bron [49], the relation-

ship between the broadening of the Raman phonon in wave numbers ∆ν̄ and the

phonon dephasing time (coherence time, or simply lifetime) τ=T2 is

∆ν̄ =
1

πcτ
, (127)
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where c is the speed of light. The phonon wave number ν̄ is related to its wave-

length λ and its energy E through

hcν̄ =
hc

λ
= hf = E, (128)

where h is Plack’s constant. Therefore,

γ = ∆E = hc∆ν̄ =
hc

πcτ
=

h/2π

πτ/2π
=

~
τ/2

=
2~
τ
. (129)

Kuhl and Bron [49] found a dephasing time T2 for GaP at room temperature of 14

ps. The coherent anti-Stokes Raman decay constant T2/2 is therefore 7 ps. The

corresponding Raman broadening γ equals 0.094 meV or 0.76 cm−1, as shown in

Fig. 2 of Kuhl and Bron [49].

A different perspective is given by von der Linde, Kuhl, and Klingenberg [54].

For GaAs at 77 K, they list a phonon lifetime of τ=6.3 ps and a broadening

∆ν̄=0.85 cm−1 or γ=0.10 meV. This suggests a relationship similar to the radia-

tive broadening of Loudon [52]

γ =
~
τ
. (130)

Laubereau, von der Linde, and Kaiser [55] also emply Eq. (130). Equations (129)

and (130) differ by a factor of two.

In some publications [39,52] (R. F. Wallis, I. P. Ipatova, and A. A. Maradudin,

Fiz. Tverd. Tela 8, 1064, 1966; Sov. Phys. Solid State 8, 850, 1966), the full width

at half maximum (FWHM) of a Lorentzian is taken to be γ=2γ′. In that case

2γ′ =
~
τ

or γ′ =
~
2τ
. (131)
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This convention is related to the identity

ε (ω) = ε∞ + A

(
1

ω0 − ω − iγ′
+

1

ω0 + ω + iγ′

)
=

= ε∞ +
2Aω0

(ω2
0 + γ′2)− ω2 − 2iγ′ω

. (132)

In other words, Eq. (132) indicates that the sum of two complex-conjugate har-

monic terms with broadening γ′ equals a Lorentzian with a full width at half

maximum (FWHM) of 2γ′. Note also the shift of the resonance frequency due to

broadening. Compare Loudon [52] and the WVASE32 software guide published

by the J. A. Woollam Co.

For our work described in this manuscript, we follow Eq. (129) from Laubereau

and Kaiser [53].

5.6.5 Origin of the TO and LO Phonon Broadenings

In the main manuscript we interpreted the TO and LO broadenings as pure life-

time broadenings, but we should also discuss other potential contributions to the

phonon broadenings. To this end, we first calculate the optical penetration depth

dopt (the inverse of the absorption coefficient α) from our model, see Fig. 5.12.

We find that the penetration depth is 200 nm at the TO energy and even

larger at different photon energies. Therefore, the width of our phonon peaks

is not likely influenced by polishing damage near the surface. Of course, we are

not able to rule out other inhomogeneous broadening mechanics, such as crystal
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Figure 5.12: Optical penetration depth for GaP in the reststrahlen region as a

function of photon energy.

defects or impurities.

The finite penetration depth also leads to an uncertainty

∆q =
2π

dopt
∼ 0.005

2π

a
(133)

of the phonon wave vector, where a is the lattice constant of GaP. We find the

corresponding uncertainty ∆E by calculating the phonon dispersion of GaP from

a ten-parameter shell model [28] using the programs of Kunc and Nielsen (Com-

put. Phys. Commun. 17, 413, 1979) as shown in Fig. 5.13. For our (111) oriented

sample, the uncertainty is along the Λ-direction. We find that the finite penetra-

tion depth causes an energy broadening of no more than 0.002 cm−1, much smaller
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Figure 5.13: Phonon dispersion curves for GaP, calculated using a ten-parameter

shell model [28]

.

than our spectrometer resolution (1 cm−1). Therefore, we conclude that the finite

penetration depth does not have a significant impact on the phonon broadenings

of GaP. By contrast, the finite penetration depth of x-rays determines the widths

of Bragg reflections in C, Si, and Ge (Pietsch, Holy, Baumbach, High-Resolution

X-Ray Scattering, Springer, New York, 2004, Fig. 1.5).

Finally, we discuss the impact of doping on the optical phonon broadenings.

For an effective electron Drude (or conductivity) mass of (P. Kühne, T. Hofmann,
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C. M. Herzinger, and M. Schubert, Thin Solid Films 519, 2613, 2011)

mcc =
3mlmt

2ml +mt

= 0.35m0 (134)

for GaP in the X-valley (where ml=1.12m0 and mt=0.22m0 are the longitudinal

and transverse masses, respectively, and m0 is the free electron mass) and an

electron concentration near 5×1016 cm−3, the screened plasma frequency [21] ωP

is about 5 meV or 40 cm−1. The lower (LP) and upper phonon-plasmon (UP)

resonances are therefore given by (Varga, Phys. Rev. 137, A1896, 1965; Mooradian

and Wright, Phys. Rev. Lett. 16, 999, 1966; Kukharskii, Solid State Commun.

13, 1761, 1973)

ω2
LP,UP =

1

2

(
ω2
P + ω2

LO

)
±
√

1

4
(ω2

P + ω2
LO)

2 − ω2
Pω

2
TO. (135)

The UP energy is the experimentally measured LO energy modified by doping.

Using ωP=40 cm−1, ωTO=364.8 cm−1, and ωLO=401.9 cm−1, we find ωLP=36.3

cm−1 (below our spectral range) and ωUP=402.3 cm−1. This means that the

“true” LO energy for an undoped sample is about 0.4 cm−1 below our measured

value of 402.3 cm−1 for our electron concentration of 5×1016 cm−3. This might

explain small variations of the reported values of ωLO in the literature, if no doping

correction was performed.

With increasing doping concentration, the UP broadening (i.e., the observed

LO broadening due to the interaction between the LO phonon and free carriers)

increases considerably, while the TO phonon broadening remains about the same
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(Kukharskii 1973). This was observed in two different studies by Bairamov et

al., [33, 34] where the sample with the higher resistivity of 1010-1012 Ωcm had an

LO broadening of 0.6 cm−1, while a less pure sample with a carrier concentra-

tion of 9×1016 cm−3 had an LO broadening of 2 cm−1, see Table 5.1. Therefore,

free-carrier effects cannot explain why the TO broadening is larger than the LO

broadening. We also verified this by adding the effects of free carriers in our el-

lipsometry model with a Drude term. As shown in Fig. 5.14, the ellipsometric

angle ψ for a 70◦ angle of incidence depends on the doping level for carrier con-

centrations exceeding 5×1017 cm−3, one order of magnitude higher than for our

sample. For this simulation we assumed a mobility of 375 cm2/Vs (independent

of carrier concentration), calculated from the resistivity of 0.3 Ωcm specified by

the supplier of this sample.

Since we perform measurements at elevated temperatures, one might also ask

if the density of thermally excited carriers can contribute to the broadenings of

LO phonons. We therefore calculated the intrinsic carrier density (N. W. Ashcroft

and N. D. Mermin, Solid State Physics, Saunders, Fort Worth, 1976, p. 575)

ni (T ) = 1
4

(
2kBT
π~2
)3/2

(mcmv)
3/4 e

− Eg
2kBT = (136)

= 2.5
(
mcmv
m2

0

)3/4 (
T

300 K

)3/2
e
− Eg

2kBT × 1019 cm−3.

Here we need to use the density of states mass for electrons

mc = N2/3
v

3
√
mlm2

t = 0.79m0, (137)
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Figure 5.14: Doping dependence of the ellipsometric angle ψ for bulk GaP at room

temperature and 70◦ angle of incidence.

where Nv=3 is the number of X-valleys. The other parameters are mv=0.83m0

and Eg=2.25 eV. The results of calculating the intrinsic carrier density (136) are

shown in Fig. 5.15. Even at our highest temperatures, the intrinsic density of

thermally excited carriers is many orders of magnitude lower than the doping

concentration of 5×1016 cm−3 and therefore can be ignored.

5.6.6 GaP born effective charge

In a polar crystal, there is a charge transfer between the atoms involved in the

chemical bond. This is known as the Born effective charge e∗t . It does not have

a large influence on the energies of long-wavelength TO phonons, but it adds
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Figure 5.15: Intrinsic carrier concentration of GaP as a function of temperature

calculated from Eq. (136).
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an additional Coulombic restoring force to the long-wavelength LO vibrations

(Fröhlich interaction). This leads to a splitting of the TO and LO phonons at the

Γ-point. From this Fröhlich splitting, the Born effective charge

e∗t =
√
V µε0ε∞(ω2

LO − ω2
TO) (138)

can be calculated at each temperature, see Reparaz et al., Appl. Phys. Lett. 96,

231906 (2010). V is the volume per GaP formula unit (volume of the primitive unit

cell), µ the reduced mass of the Ga and P atoms, ε0 the vacuum permittivity, and

ε∞ the high-frequency dielectric constant. As shown in Fig. 5.16, the Born effective

charge does not depend on temperature, as one would expect. The average Born

effective charge is 2.15(1) over the whole temperature range. We did not observe

the small increase in the Born effective charge with temperature due to thermal

expansion predicted by Debernardi [23].

5.6.7 Variation of the apparent GaP surface layer thickness

Insulators are mostly transparent in the mid-infrared spectral region, above the

phonon absorption energies and below the band gap. In this region, the ellipso-

metric angle ∆ must be 0 or π for a bare substrate, depending on the relative

magnitude of the angle of incidence and the Brewster angle. Experimentally, one

observes deviations of ∆ from the ideal values for two reasons: (1) Surface overlay-

ers, such as surface roughness, native oxides, or adsorbed overlayers such as water,
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ice, or other airborne molecular contamination. See G. E. Jellison and B. C. Sales,

Appl. Opt. 30, 4310 (1991). (2) Systematic errors affecting the measurement of

∆, especially those caused by the diamond windows of our UHV cryostat [43].

In Fig. 5.17, we report the surface layer thickness in our experiments, modeled

as a 50/50 mixture of GaP and voids within the Bruggeman effective medium

approximation. We call this the apparent surface layer thickness, because it might

be affected by systematic errors from the cryostat windows.

An initial measurement of the GaP sample in air (without windows) finds

a surface layer thickness of 38 Å, shown by the green data point. The sample

is then mounted in the cryostat followed by pumping to UHV conditions. This

reduces the surface layer thickness to 29 Å, as shown by the blue data point. This

reduction might be due evaporation of some of the overlayer, but it could also

be due to errors caused by our windows. We then heat the sample to 800 K for

several hours and let it cool down to room temperature overnight. This reduces

the surface layer thickness to 9 Å, as shown by the red data point. Most likely,

this value of 9 Å represents the residual surface roughness, after all adsorbed

contaminants have evaporated.

We now start our temperature series at 80 K, where the surface layer thickness

is 19 Å. We gradually increase the temperature to 275 K and measure the pseudo-

dielectric function at each step for several hours. This increases the surface layer

thickness to 48 Å, as ice forms on the sample. At the next temperature (300 K),
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the surface layer thickness is only 18 Å, because most of the ice has evaporated. As

we heat the sample to 325 K, the surface layer thickness is 8 Å and it gradually

is reduced to zero as we heat towards 700 K. It is not likely that the surface

layer thickness will actually vanish at 700 K. It is more likely that our data are

affected by experimental errors due to the diamond windows. These windows are

not getting warm, even at the highest sample temperatures. Therefore, the errors

due to the windows are likely independent of temperature. It is likely that we

underestimate the surface layer thickness in the cryostat by about 10 Å, due to

the retardance of the diamond windows.

This discussion emphasizes that one must be careful when interpreting changes

of optical constants with temperature. A careful preparation of the sample is

required to minimize surface overlayers. It can be very helpful to heat the sample

for several hours to reduce airborne molecular contamination, if this does not

change the properties of the sample. It is inevitable for ice to form on the sample

below room temperature, even under the best (10−8 Torr) vacuum conditions

achievable in our setup.
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6 CONCLUSION

In this work, we introduced a convenient way to describe the dielectric function ε

over a broad range. This new comprehensive formalism can be used to describe

the entire dielectric function from the midinfrared to the deep ultraviolet of in-

sulators, semiconductors, and metals. Here we defined ε as a product of Drude,

TO/LO phonon, and electronic interband transition factors. We applied this fac-

torized broadband description to bulk wurtzite ZnO and ZnO thin films. With

this approach, we investigate the thickness dependence optical properties of ZnO

thin films on Si and quartz (SiO2) substrates. Regardless of the substrate both

ε1 and ε2 show significant variations with thickness over the complete spectral

range. The bandgap of thin ZnO layers shows a small blue shift (≈ 80 meV)

with decreasing film thickness due to quantum confinement. Near the band gap,

the excitonic absorption shows a drastic reduction with decreasing film thickness.

This behavior is more apparent in ZnO on Si than on SiO2. The reduction of

excitonic effects leads to a reduction of the static and high-frequency dielectric

constant with deceasing film thickness.

We also studied the temperature dependence of transverse (TO) and longitudinal

(LO) optical phonon energies and the linewidths of bulk GaP. Due to thermal

expansion and anharmonic phonon-phonon decay, we observed a redshift and in-

creasing broadening of TO and LO phonons with increasing temperature. The
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static and high-frequency dielectric constant increases with increasing tempera-

ture. This variation can be explained by the thermal expansion of the crystal and

the temperature dependence of the average band gap (Penn gap).

7 FUTURE WORK

In order to explain the behavior of excitonic absorption near the ZnO bandgap

with film thickness, our ellipsometric spectra need to be fit with the Elliot–Tanguy

theory model [134, 135]. This theory describes the excitonic contributions to the

absorption and dispersion of semiconductors. As explained in chapter 4, we would

like to model our ellipsometric spectra including excitonic effects and exciton-

phonon complexes. This will allow us to fully understand the dielectric function

and dependence of the excitonic Tanguy parameters on film thickness and sub-

strate material. Since ZnO is an excellent semiconductor for high temperature

electronics, the temperature dependent optical properties of ZnO thin films can

be the next experimental step.

In case of GaP, we would like to extend our measurement range to cover the far-

infrared regions and study the frequency dependent scattering rate with a better

signal-to-noise ratio.
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[107] H. Zaka, B. Parditka, Z. Erdélyi, H. E. Atyia, P. Sharma, and S. S. Fouad,
Optik 203, 163933 (2020).

[108] N. Ehrmann and R. Reineke-Koch, Thin Solid Films 519, 1475 (2010).

[109] M. Mirzaee, A. Zendehnam, and S. Miri, Scientia Iranica F 20, 1071 (2013).

[110] P. Wang, H. Du, S. Shen, M. Zhang, and B. Liu, Nanoscale Res. Lett. 7,
176 (2012).

[111] T. E. Tiwald, J. A. Woollam, S. Zollner, J. Christiansen, R. B. Gregory, T.
Wetteroth, S. R. Wilson, and A. R. Powell, Phys. Rev. B 60, 11464 (1999).

[112] A. Janotti and C. G. Van de Walle, Appl. Phys. Lett. 87, 122102 (2005).

[113] S. Shokhovets, L. Spieß, and G. Gobsch, J. Appl. Phys. 107, 023509 (2010).

[114] N. Ashkenov, B. N. Mbenkum, C. Bundesmann, V. Riede, M. Lorenz, D.
Spemann, E. M. Kaidashev, A. Kasic, M. Schubert, M. Grundmann, G.
Wagner, H. Neumann, V. Darakchieva, H. Arwin, and B. Monemar, J. Appl.
Phys. 93, 126 (2003).

[115] H. Yoshikawa and S. Adachi, Jpn. J. Appl. Phys. 36, 6237 (1997).

[116] G. E. Jellison and L. A. Boatner, Phys. Rev. B 58, 3586 (1998).

[117] A. Schleife, C. Rödl, F. Fuchs, J. Furthmüller, and F. Bechstedt, Phys. Rev.
B 80, 035112 (2009).

[118] W. Y. Liang and A. D. Yoffe, Phys. Rev. Lett. 20, 59 (1968).

[119] S. Shokhovets, G. Gobsch, and O. Ambacher, Superlattice Microst. 39, 299
(2006).

[120] S. Shokhovets, O. Ambacher, B. K. Meyer, and G. Gobsch, Phys. Rev. B
78, 035207 (2008).

214



[121] M. D. Neumann, C. Cobet, N. Esser, B. Laumer, T. A. Wassner, M. Eickhoff,
M. Feneberg, and R. Goldhahn, J. Appl. Phys. 110, 013520 (2011).

[122] M. Fox, Optical Properties of Solids (Oxford University Press, 2010, Oxford,
UK) 2nd edition.

[123] J. S. Reparaz, L. R. Muniz, M. R. Wagner, A. R. Goñi, M. I. Alonso, A.
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