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ABSTRACT

The temperature dependence of the complex dielectric function ϵ1 þ iϵ2 of bulk Ge near the direct bandgap was investigated with spectro-
scopic ellipsometry at temperatures between 10 and 710 K. Second derivatives of the dielectric function with respect to energy are obtained
using a digital linear filter method. A model that incorporates excitonic effects using the Tanguy model for the Hulthén potential [C. Tanguy,
Phys. Rev. B 60, 10660 (1999)] was used to fit the dielectric function and its second derivatives simultaneously. Using k � p theory and literature
values for effective masses, reasonable agreement with the experiment is obtained for ϵ2 up to room temperature using the direct bandgap and
its broadening as the only adjustable parameters.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0080158

I. INTRODUCTION

Photo-excited electron–hole pairs in semiconductors form
excitonic bound states, because the negatively charged electron and
the positively charged hole are attracted to each other by the
Coulomb force, similar to a hydrogen atom. The Bohr model gives
a reasonable description of excitonic effects in semiconductors, as
long as the effective masses of electrons and holes replace the
masses of the proton and free electron, respectively, and the elec-
trostatic screening is taken into account using the static dielectric
constant. This electron–hole interaction not only results in discrete
excitonic peaks below the bandgap, but also it leads to the so-called
Sommerfeld enhancement of the absorption above the bandgap.1

While the physics of excitonic effects has been understood for
decades,2–4 a quantitative comparison of these theories with experi-
mental data for the dielectric function of semiconductors near the
direct bandgap E0 has, to the best of our knowledge, never been
attempted. The goal of this work is to fit the dielectric function (and
its second derivative) of Ge near E0 from 10 to 710 K with only two
adjustable parameters that describe the influence of E0: the bandgap
energy and the broadening at each temperature. Our model will have
important applications for optoelectronic devices such as detectors

and lasers. It can be applied not only to Ge, but also to other materi-
als, such as GaAs, InSb, or germanium-tin alloys.

In a recent publication,5 we presented results on the tempera-
ture dependence of the direct bandgap energy and broadening of
bulk Ge, obtained from spectroscopic ellipsometry (SE). The E0
energy was determined by a Fourier or reciprocal space6 (RS) anal-
ysis, without assuming a specific line shape, as well as by fitting a
three-dimensional (3D) standard analytical line shape7,8 to the
numerically calculated9 second derivatives (SD) with respect to
energy, and by applying a parametric semiconductor model.10

However, the assumption of a 3D line shape does not deliver a sat-
isfactory description of the absorption edge of Ge due to the pres-
ence of excitonic effects.11,12 An analytical expression for optical
absorption by excitons was published by Elliott2 and the theory
was expanded to the complex dielectric function by Tanguy.3 The
bare excitonic Coulomb interaction in semiconductor materials can
be screened by mobile carriers, and this leads to a Yukawa-like
potential for which there are no analytical solutions to the excitonic
problem. However, it has been shown that a remarkably accurate
substitution for the Yukawa interaction is the Hulthén potential,13

for which Tanguy4 has found analytical expressions for the
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complex dielectric function. In the limit of negligible screening,
applicable to intrinsic Ge at room temperature and below, the dielec-
tric function for the Hulthén potential becomes identical to the
dielectric function found by Tanguy for the bare Coulomb potential.
At the highest temperatures in our experiments, however, the intrin-
sic carrier concentration increases by several orders of magnitude to
values comparable to the critical Mott concentration14 and, therefore,
screening effects may be substantial. Accordingly, we use the Tanguy
solution for the Hulthén potential to fit the dielectric function and
its second derivative. The latter is obtained using a digital linear
filter method15–17 based on extended Gauss functions.18,19

The Hulthén–Tanguy model depends on the bandgap energy,
a Lorentzian broadening parameter, the exciton binding energy, an
amplitude, a momentum matrix element, and a screening parame-
ter. The amplitude, momentum matrix element, and excitonic
binding energy can be obtained from k � p theory and fit to the
band structure. The screening parameter is computed from a stan-
dard expression for the Thomas–Fermi screening wave vectors,
following a prescription from Ref. 20. This leaves only two adjust-
able parameters for the Hulthén model: energy and broadening of
the direct gap. We add a Sellmeier term with two additional adjust-
able parameters to consider contributions from critical points at
higher energies to the real part of the dielectric function. We
simply combine the heavy-hole (hh) and light-hole (lh) excitonic
dielectric functions as if they were additive. This is not strictly
correct but it has been shown to be a good approximation.20,21

Recent work20 on phonon-assisted indirect absorption in Ge
shows that this absorption is strongly resonant at the direct
bandgap. A satisfactory theory including phonon-assisted processes
for photon energies above the direct gap is not available at this
time, and one cannot rule out a significant contribution in a range
that was traditionally believed to be accounted mainly by direct
transitions. Unfortunately, previous fits of the dielectric function in
this range relied on adjustable amplitude parameters that are not
well described by theory and on the introduction of phase factors
that account for excitonic effects very indirectly. Due to the ad hoc
character of the parameters, the issue of whether the above gap
absorption is truly dominated by direct transitions could not be
addressed. The new model that we present in this paper treats exci-
tonic effects explicitly and relies on known material parameters to
calculate those “amplitudes.” By accounting for direct absorption in
a realistic way, it creates a basic framework from which the impact
of additional contributions to the absorption, such as
phonon-assisted processes, can be evaluated and quantified.

II. EXPERIMENT

The dielectric function in the region of the direct bandgap of
a commercially obtained undoped bulk Ge sample with (100)
surface orientation was measured between 80 and 710 K using a
J.A. Woollam VASE ellipsometer22 with a xenon light source
(190 nm–2 μm) and a Janis ST-400 UHV cryostat. The Ge wafer
was undoped with a resistivity higher than 50Ω cm, which indi-
cates an electron or hole concentration no higher than 1014 cm�3 at
room temperature.23

We used liquid nitrogen to cool the system for the measure-
ments between 80 K and room temperature. The sample was

cleaned in an ultrasonic bath in isopropanol for 20min, followed by
an ultrasonic bath in ultrapure water for another 20min, which
reduced the native oxide layer thickness from 4 to about 1 nm. After
cleaning, the sample was immediately mounted into the UHV cryo-
stat and heated up to 635 K for about 8 h for degassing and to stabi-
lize the native oxide layer. At temperatures T � 391 K, we installed
an iris at the exit window of the cryostat to suppress effects due to
blackbody radiation, as illustrated in Fig. S4 in Ref. 5. To better
resolve the narrow structure of the excitonic peak, we used a slightly
smaller step size (0.4meV) than in our previous work.5 A slit width
between 400 and 1700 μm was chosen for our J.A. Woollam Co.
HS-190 monochromator in order to achieve an instrumental resolu-
tion of about 1–2.5meV and a satisfactory signal-to-noise ratio at each
temperature. Experimental parameters at the various temperatures are
listed in Table I. We also analyze the data set from Ref. 5 measured at
10 K with a step size of 0.5meV and slit width of 500 μm.

A two-layer model (substrate+native oxide layer) was used to
perform an oxide correction of the pseudodielectric function and
to extract the dielectric function, as explained elsewhere.24,25

The thickness of the native oxide layer varied between 12 and 13 Å
at and below room temperature and 7–11 Å at higher temperatures.
A similar approach was used by others to measure the optical func-
tions of silicon at high temperatures up to 1200 K.26

III. HULTHÉN–TANGUY MODEL

To describe excitonic effects at the direct bandgap of Ge, we
use the expression for the complex dielectric function given by the
Tanguy model for the Hulthén potential,4

ϵ(E) ¼ A
ffiffiffi
R

p

(E þ iγ)2
~g ξ(E þ iγ)ð Þ þ ~g ξ(� E � iγ)ð Þ � 2~g ξ(0)ð Þ½ �, (1)

with

ξ(z) ¼ 2

E0�z
R

� �1=2þ E0�z
R þ 4

g

� �1=2 (2)

TABLE I. Experimental parameters: Slit width (s), step size (ΔE0), and native oxide
layer thickness (d). An iris was installed at the exit window of the cryostat for mea-
surements above 400 K. ΔE is the width of the linear filter used to calculate the
second energy derivatives (see Sec. IV).

Temperature (K) s (μm) ΔE0 (meV) d (Å) Iris ΔE (meV)

10a 500 0.5 11 No 1.0
80–300 400 0.4 12–13 No 0.9–1.6
323–368 400 0.4 9–11 No 1.8–4.0
391 400 0.4 9 Yes 4.0–4.5
412–436 500 0.4 9 Yes 3.5
458–479 900 0.4 8 Yes 3.5–4.0
500–542 1000 0.4 8 Yes 4.0–4.5
559 800 0.4 8 Yes 5.0
578–676 1500 0.4 8 Yes 5.0–7.0
690–710 1700 0.4 7–8 Yes 8.0

aReference 5.
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and

~g(ξ) ¼ �2ψ
g
ξ

� �
� ξ

g
� 2ψ(1� ξ)� 1

ξ
, (3)

where ψ(z) is the digamma function, A is the amplitude, R is the
excitonic binding energy, γ is the broadening, and E0 is the direct
bandgap energy. The Hulthén screening parameter g depends on
the carrier concentration and is set to g ¼ 35 for undoped Ge,
according to Fig. 5 in Ref. 21. However, g is not independent of
temperature due to the temperature-dependent carrier concentra-
tion (see Fig. S3 in the supplementary material). The four terms in
Eq. (3) define the line shape of the direct bandgap, which is illus-
trated in Fig. 1. We define ϵ(E) ¼ ϵ1(E)þ iϵ2(E) ¼

P4
j¼1 fj with

f1 ¼ �2β ψ
g

ξ(z1)

� �
þ ψ

g
ξ(z2)

� �
þ ψ

g
ξ(0)

� �	 

, (4)

f2 ¼ � β

g
ξ(z1)þ ξ(z2)þ ξ(0)½ �, (5)

f3 ¼ �2β ψ(1� ξ(z1))þ ψ(1� ξ(z2))þ ψ(1� ξ(0))½ �, (6)

and

f4 ¼ � β

ξ(z1)
� β

ξ(z2)
� β

ξ(0)
, (7)

where β ¼ A
ffiffiffi
R

p
(E þ iγ)�2, z1 ¼ E þ iγ, and z2 ¼ �E � iγ. The

first term, f1, describes the enhancement due to the exciton contin-
uum (unbound excitons), f3 describes the peak of the bound
exciton, and f4 is equal to an M0 three-dimensional critical point
line shape,1 which describes the absorption edge without excitonic
effects. For large screening parameters, i.e., g � 1, the screening
term f2 given by Eq. (5) vanishes.

The Hulthén–Tanguy model assumes spherical parabolic
bands,2–4 as well as one conduction and one valence band, but
since two degenerate valence bands (hh and lh) are present at the
Γ-point of Ge, one would have to solve a complicated three-body
problem.21 However, the error made by adding separate hh- and
lh-excitons is small, as discussed in Refs. 20 and 21, and, therefore,
we use separate terms for hh and lh. To take into account contribu-
tions from the E1 critical point to the real part of the dielectric
function, we add a single term from the Sellmeier dispersion
formula, i.e., 1þ A1=(1� B02

1 E
2),27,28 where we treat the parameters

A1 and B0
1 ¼ B1=(2πc�h) as adjustables. Values for A1 and B1 for Ge

can be found in Ref. 28 (A1 � 14:76, B0
1 � 0:35 eV�1). Since the

split-off band contribution E0 þ Δ0 is small and only affects the
real part of the dielectric function, which can be compensated by
adapting the Sellmeier parameters, we do not include an additional
term for the split-off band. Following these considerations, the
expression that we use for the fits is

ϵ(E)¼ 1þ A1

1�B02
1 E2

þ Ahh
ffiffiffiffiffiffiffi
Rhh

p

(Eþ iγhh)
2 ~g ξ(Eþ iγhh)ð Þþ~g ξ(�E� iγhh)ð Þ� 2~g ξ(0)ð Þ½ �

þ Alh
ffiffiffiffiffiffi
Rlh

p

(Eþ iγ lh)
2 ~g ξ(Eþ iγ lh)ð Þþ~g ξ(�E� iγ lh)ð Þ� 2~g ξ(0)ð Þ½ �,

(8)

where γhh and γ lh are the hh- and lh-broadening parameters,
respectively. The excitonic amplitude is given by Ref. 1

Ah ¼ e2
ffiffiffiffiffiffi
m0

pffiffiffi
2

p
πϵ0�h

μ3=2h

EP
3
, (9)

where h ¼ hh, lh, e is the electron charge, m0 is the free electron
mass, ϵ0 is the vacuum permittivity, μh is the reduced mass calcu-
lated from the effective mass of the hh or lh and the effective mass
of the electron in the Γ-valley, and EP ¼ 2P2=m0, with P being the
k � p momentum matrix element corresponding to interband transi-
tions between the Γ0

25 valence band and the Γ0
2 conduction band.

From the reduced mass μh ¼ mhmeΓ=(mh þmeΓ) and the Rydberg
energy of the hydrogen atom Ry ¼ 13:6 eV, the exitonic binding

FIG. 1. Real and imaginary parts of the terms in Eq. (1), defined in Eqs. (4)–(7),
with E0 ¼ 0:889 eV (marked by the vertical line), γ ¼ 1 meV, R ¼ 1:5 meV,
A ¼ 1:0 eV�3=2, and g ¼ 35. The solid line represents the dielectric function as
defined in Eq. (1), which is equivalent to the sum of the four terms f1-f4 in
Eqs. (4)–(7). For g ! 1, f2 ! 0.
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energy is calculated by

Rh ¼ μh
m0ϵ2st

Ry , (10)

where ϵst is the static dielectric constant. The effective mass meΓ of
the electron in the Γ-valley is related to EP and E0,

29–31

m0

meΓ
¼ 1þ EP

3
2
E0

þ 1
E0 þ Δ0

	 

, (11)

where Δ0 ¼ 0:29 eV5,32 is the temperature independent spin–orbit
splitting at the Γ-point. The hh and lh effective masses are given by
Ref. 33,

m0

mhh
¼ 1

�h2
�Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ C2=5

ph i
(12)

and

m0

mlh
¼ 1

�h2
�A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ C2=5

ph i
, (13)

where A, B, and C are parameters introduced by Dresselhaus, Kip,
and Kittel34 (DKK), which are defined as31,34

A ¼ 1
3
F þ 2Gþ 2M½ � þ 1, (14)

B ¼ 1
3
F þ 2G�M½ �, (15)

C2 ¼ 1
3

F � GþMð Þ2� F þ 2G�Mð Þ2� �
: (16)

The DKK parameters A, B, and C2 depend on temperature via1

F(T) ¼ �EP(T)=E0(T), (17)

M(T) ¼ �EQ(T)=E
0
0(T), (18)

G(T) ¼ G(4:2K)
a20(4:2K)
a20(T)

: (19)

The temperature dependence of E0
0 is taken from Ref. 25,

E0
0(T) ¼ (3:18 eV)� (0:05 eV) 1þ 2

e
313K
T � 1

� �
: (20)

In Eq. (18), EQ ¼ 2Q2=m0, and Q is the non-zero matrix element
corresponding to interband transitions between the Γ0

25 valence
band and the Γ0

15 conduction band.1,31 Thermal expansion causes a
temperature dependence of the matrix elements M ¼ P, Q given by

Ref. 20,

EM(T) ¼ EM(4:2K)� a20(4:2K)
a20(T)

, (21)

via the temperature-dependent lattice constant

a0(T) ¼ (5:6516Å)þ δ

exp(T0=T)� 1
, (22)

where δ ¼ 1:315� 10�2 Å and T0 ¼ 355:14 K are parameters
describing thermal expansion of the Ge lattice.20 The change of the
matrix elements with temperature is small (less than 1% between 0
and 800 K). Therefore, the major contribution to the temperature
dependence of the DKK parameters and consequently of the effec-
tive masses stems from the energy gaps.

Equation (19) specifies the contribution related to the matrix
element R between Γ0

25 and Γ0
12.

1,31 Since the temperature depen-
dence of this gap is not known, we use A ¼ �13:34, B ¼ �8:48,
and Cj j ¼ 13:14 at 4.2 K from Ref. 20 in order to find exact low-
temperature solutions. Using E0(4:2K) ¼ 0:889 eV,35 we obtain
EP(4:2K) ¼ 26:0 eV (which is close to the value of 26.3 eV reported
by Lawaetz36), EQ(4:2K) ¼ 18:5 eV, and G(4:2K) ¼ �1:04. Table II
lists the resulting effective and reduced masses, amplitudes, and exci-
tonic binding energies at liquid He temperature. The conduction
band effective mass meΓ agrees well with meΓ ¼ 0:037m0 reported
by Roth et al.37 and meΓ ¼ 0:038m0 by Lawaetz,

36 and the calculated
hh and lh masses are in reasonable agreement with the values found
by Lawaetz36 (mhh ¼ 0:35m0 and mlh ¼ 0:043m0).

IV. SECOND DERIVATIVES THROUGH LINEAR
FILTERING

To obtain the second energy derivatives, we apply the linear
filter method using Gaussian kernels by Le et al.,16 which is based
on a direct space convolution,

�f (E) ¼
ð1
�1

dE0f (E0)bM(E � E0), (23)

with extended Gauss (EG)16,18,19 filters

bM(x) ¼
XM
m¼0

�1ð Þma
m

m!

dm

dam

� �
a�

1
2

2
ffiffiffi
π

p e�
x2
4a , (24)

where a ¼ ΔE2. This technique allows for simultaneous noise
reduction, interpolation, calculation of derivatives, and scale

TABLE II. Parameters at 4.2 K, determined as explained in the text. Effective and
reduced masses are given in units of m0.

meΓ mhh mlh μhh μlh Ahh Alh

Rhh
(meV)

Rlh
(meV)

0.036 0.33 0.042 0.032 0.019 0.74 0.35 1.8 1.1
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change.16 The latter is not needed for our data which were mea-
sured with equidistant energy steps.

We choose M ¼ 4 following the discussions in Refs. 16
and 17, and since we do not see a significant advantage in
using M of higher order. Substituting Eq. (24) into Eq. (23)

and approximating the integral as a sum over the data
points f (Ej) ¼ ϵj, in accordance with Eq. (21c) in Ref. 16
for wavelength-to-energy conversion, we can write the
dielectric function for M ¼ 4 and equidistant energy steps
ΔE0 as

�ϵ4 Eð Þ � π�
1
2ΔE0

12 288ΔE

X1
j¼�1

ϵj e
�

E�Ejð Þ2
4ΔE2 15 120� 10 080 E � Ej

� �2
ΔE2

þ 1512 E � Ej
� �4
ΔE4

� 72 E � Ej
� �6
ΔE6

þ E � Ej
� �8

ΔE8

 !" #
, (25)

from which we calculate the second derivative

d2�ϵ4 Eð Þ
dE2

� π�
1
2ΔE0

49152ΔE3

X1
j¼�1

ϵj e
�

E�Ejð Þ2
4ΔE2 �110880þ 188496 E� Ej

� �2
ΔE2

� 45936 E� Ej
� �4
ΔE4

þ 3608 E� Ej
� �6
ΔE6

� 106 E� Ej
� �8
ΔE8

þ E� Ej
� �10

ΔE10

 !" #
:

(26)

Equation (25) can be used to obtain a continuous function of
the dielectric function with noise reduction depending on the filter
width ΔE, which is chosen according to the white noise onset of
the Fourier coefficients obtained from a discrete Fourier transform
of the data16,17 as illustrated in Fig. 2. The Fourier coefficients Cn

of the real (ϵ1) and imaginary (ϵ2) part of the dielectric function
are obtained from a discrete Fourier transform along with removal
of endpoint discontinuities, as described in Ref. 6. Comparing the
Fourier transform B4(n) of the EG filter defined in Eq. (24)
(symbols in Fig. 2) with ln(Cn), it becomes obvious why the right
choice of ΔE is crucial to efficiently suppress noise while at the

same time preserving information about the line shape contained
in the lower order Fourier coefficiens.16,17 In other words, if ΔE
takes on a value that is too small, noise is enhanced and distorts
the line shape, while a rather large ΔE broadens the line shape. For
most data sets, the filter widths of ϵ1 and ϵ2 are chosen to have the
same value, but for some cases (such as the one shown in Fig. 2),
ϵ2 requires slightly more filtering. We reach the best compromise
between noise reduction and broadening of the line shape due to
the filter for a drop of B4 by approximately 40%–50% at the onset
of white noise (similar to Fig. 5 in Ref. 16 and Fig. 2 in Ref. 17).
For the data shown in Fig. 2, this corresponds to a filter width of
ΔE ¼ 0:85 meV for ϵ1 and ΔE ¼ 0:95 meV for ϵ2, which is about
twice the step size (ΔE0 ¼ 0:4 meV) and about the same as the
instrumental broadening for E0 at 80 K.

Determining the filter widths from the Fourier coefficients
provides a tangible method to set the amount of smoothing for
each data set in the same way. For the calculation of the second
derivatives of our data, smoothing works slightly better using the
EG filter method compared to the commonly used Savitzky–Golay9

technique. This is illustrated in Fig. S8 in the supplementary
material. In more recent publications, the authors of Ref. 16 point
out that the EG filter can be outperformed by either using different
filters38 or by exploiting a maximum-entropy method39 to extend
the Fourier coefficients beyond the white-noise onset to reconstruct
data and generate derivatives that are effectively noise-free. For the
purpose of our investigations, we achieve satisfactory results utiliz-
ing the EG filters.

V. FITTING

The fits are performed using a standard Levenberg–
Marquardt algorithm,40 modified for the possibility of a simultane-
ous fit of the real and imaginary parts of the dielectric function
and their second energy derivatives by calculating a weighted χ2.
Parts (a) and (b) of Fig. 3 show ϵ1 and ϵ2 (dotted lines),

FIG. 2. Natural logarithm of the Fourier coefficient amplitude Cn of the real (ϵ1)
and imaginary (ϵ2) parts of the dielectric function of Ge at 80 K, obtained as
explained in the text. Symbols represent the Fourier transform of the EG filters
for M ¼ 4 and different ΔE. The vertical lines mark the onset of white noise for
ϵ1 (solid) and ϵ2 (dashed), respectively. ΔE ¼ 0:85 meV for ϵ1 and
ΔE ¼ 0:95 meV for ϵ2 are the best choices for this case.
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respectively, determined through independent fits at each wave-
length (point-by-point fits) and corrected for the native oxide layer
at various temperatures. Dotted lines in (c) and (d) represent the
second derivatives calculated via Eq. (26) and solid lines in (a)–(d)
show the fits with Eq. (8). The energy and broadening parameters
are fitted to ϵ1 and ϵ2 and their second energy derivatives,
d2ϵ1=dE2 and d2ϵ2=dE2, while the Sellmeier parameters are fitted
to the real part only. Since the hh and lh excitonic peaks cannot be
distinguished in our data, we set γ ¼ γhh ¼ γ lh. If the heavy and
light hole excitons are split, for example, in a quantum well,41 in a
wurtzite crystal like ZnO or GaN, or under biaxial stress,42 it may
be possible to determine γhh and γ lh independently. The agreement
between the model and the data right at the bandgap (i.e., in the
range of E0 + 40 meV) at room temperature and below is remark-
able, particularly in view of the fact that amplitudes are not fitted,
as in traditional ellipsometry work. At the lowest temperatures (10–
110 K), however, while the model provides a good description of
the exciton continuum, the excitonic peak, which depends on the
broadening, the amount of screening, and the excitonic binding
energy, is not described well by the model. The reason for this dis-
crepancy is unclear, but might partly be related to the broadening
and to limitations of our additive model for the excitonic contribu-
tions of light and heavy holes. Above room temperature, we

observe distortions at about 0.74, 0.77, and 0.8 eV due to xenon
lamp spectral line peaks. These distortions seem to affect the
second derivatives and the broadening between 370 and 450 K. It
may be possible to avoid this problem by taking measurements
with a quartz tungsten halogen lamp, which does not have discrete
spectral lines. Furthermore, the agreement between the model and
the imaginary part ϵ2 worsens with increasing temperature.
This can be explained only to some extent by the uncertainty
caused by the native oxide layer correction, see also Sec. S1 in the
supplementary material. Changing the oxide layer thickness by 1 Å
results in a change in the ϵ2 magnitude of about 6% (as shown in
Fig. S2 in the supplementary material), while the deviation between
model and data at T . 500K is on the order of 10%–25%. This is
illustrated in Fig. 4, which shows the fit results of the 690 K mea-
surement. Although it appears that the bandgap energy is off by a
few meV and shifting the fit to the left (dashed curve) improves the
agreement of the model and ϵ2, it worsens the real part and the
second derivatives. Hence, we conclude that the problem lies with
the amplitude rather than the direct bandgap energy.

We have extended the model to include non-parabolicity and
the energy dependence of the momentum matrix element, but we
find that the overall effect is negligible for the spectral range of our
fits and, therefore, use the simpler formulation for parabolic bands.

FIG. 3. Real (a) and imaginary (b) parts of the dielectric function and the corresponding second derivatives with respect to energy, (c) and (d), respectively, calculated
from Eq. (26) at various temperatures. Solid lines represent the best fits to the data.
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The discrepancies due to non-parabolicity are small for E � E0
, 40 meV and only become important for E � E0 . 100 meV.

Due to the issue with the amplitude, it was necessary for the
high-temperature data sets to fit the energies, and in some cases
also the broadenings, to the second derivatives only. However, in
Fig. S1 in the supplementary material, we plot the model using the
fit parameters also for the dielectric function to illustrate that the
agreement between model and data is good for ϵ1, while this is not
the case for ϵ2. At the highest temperature (710 K), the energy and
broadening were fitted to the second derivative of ϵ2 only, since
d2ϵ1=dE2 is too distorted as a result of noise. Figure S1 in the
supplementary material shows the fit results at 598, 639, 676,
and 710 K.

VI. TEMPERATURE DEPENDENCE

A. Energy and broadening

Figure 5 shows the temperature dependence of the direct
bandgap energy obtained from the fits with Eq. (8) compared to
results from Refs. 5 and 35. The temperature dependence of the
broadening parameters, which are assumed to be independent of

FIG. 4. Like Fig. 3 for a temperature of 690 K, where the solid line represents the best fit to the data and the dashed line shows the fit shifted by 8 meV toward lower
energies.

FIG. 5. Temperature dependence of the direct bandgap energy obtained from
the fits with Eq. (8) (□), compared to the results by a reciprocal space analy-
sis5 (4) and the results from Macfarlane et al.35 (�). Lines represent fits with
Eq. (27).
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photon energy, obtained from the Hulthén–Tanguy fits is shown in
Fig. 6 along with experimental results by McLean and Paige43,44

and Aspnes,45 and the broadening calculated according to Eq. (38)
in Ref. 21 for ϵ ¼ 0. For the latter, only contributions correspond-
ing to the scattering of electrons with LA and LO phonons are
taken into account (for further explanations, see Sec. S2 in the
supplementary material). Temperature-dependent phonon energies
from Ref. 46 are considered in the calculation, as well as the tem-
perature dependence of the transverse mass using Eqs. (B4) and
(B5) in Ref. 20. The deformation potentials (taken from Ref. 21)
and the longitudinal mass are assumed to be independent of tem-
perature. For better comparison with the theory, the instrumental
resolution is added to the calculated broadening. We note that the
agreement between the experimental and predicted broadenings is
reasonable up to room temperature. Theory and experiment begin
to diverge at the temperatures when the line shape fits begin to
worsen. Taking into account the temperature dependence of the
screening parameter g reduces the broadening at the highest
temperatures by about 10% (see Sec. S2 B in the supplementary
material), as shown in Fig. S4, but the agreement with theory and
experiment for the dielectric function and its second derivative
does not really improve.

To fit the temperature dependence due to electron–phonon
interactions, we use the Bose–Einstein model for the energies,47

E(T) ¼ Ea � Eb 1þ 2= eEph=(kBT) � 1
� �h i

, (27)

where Ea is the unrenormalized transition energy, Eb is the elec-
tron–phonon coupling strength, kB is the Boltzmann constant, and
Eph ¼ kBΘph is an effective phonon energy. A similar expression

describes the broadening as a function of temperature,47

γ(T) ¼ γ1 þ γ0 1þ 2= eEph=(kBT) � 1
� �h i

: (28)

Equation (28) is an attempt to capture the complex physics of the
electron–phonon self-energies in a simple expression that uses an
effective phonon frequency. It is helpful as a compact parametriza-
tion of the experimental data. The fits with the above equations are
shown by the various lines in Figs. 5 and 6, and the fit parameters
in Eqs. (27) and (28) are listed in Tables III and IV. We find
E0 ¼ 888:8+ 0:6 meV at 10 K and E0 ¼ 882:4+ 0:7 meV at 80 K,
which compare well to the energies reported by Nishino et al.49

(889.0 meV at 24 K and 881.4 meV at 83 K) and Macfarlane et al.35

(889.2 meV at 20 K and 883.2 eV at 77 K). Aspnes45 found
E0 ¼ 887:2 meV and the excitonic energy Eex ¼ 885:8+ 0:5 meV,
as well as a broadening of 1:8+ 0:3 meV at 10 K.

B. Effective masses and excitonic binding energies

The decrease in the effective masses between 10 and 710 K is
29% for meΓ and mlh and 9% for mhh according to Eqs. (11)–(13).
The major contribution to the temperature dependence of the
effective masses stems from the energies E0 (Fig. 5) and E0

0 via
the DKK parameters defined in Eqs. (14)–(16) since the changes
due to thermal expansion of the matrix elements are small. This
temperature dependence of the effective masses also leads to a
temperature-dependent excitonic binding energy. According to
Ref. 50, the excitonic binding energy is proportional to the direct
bandgap energy, Rh / E0, illustrated by the dotted line in Fig. 7.
Our results do not satisfy this relation. Instead, we find

Rhh(E0) ¼ 2:158(5)E1:549(8)
0

FIG. 6. Temperature dependence of the broadening obtained from the fits with
Eq. (8) (4), best fit to the data with Eq. (28) (dashed), filter widths used for the
real part (5) and imaginary part (□), the instrumental resolution (γ inst:), calcu-
lated width as explained in the text (	), and values from McLean and Paige43,44

(�) and Aspnes45 (þ). The hh and lh broadening parameters are forced to
have the same value.

TABLE III. Parameters Ea, Eb, and the effective phonon energy Eph obtained from
fitting Eq. (27) to the temperature dependent energy E0 of the direct bandgap for dif-
ferent analysis methods and models.

Ea (eV) Eb (eV) Eph (meV)

This work 0.958 ± 0.002 0.071 ± 0.003 25 ± 1
RS (Ref. 5) 0.953 ± 0.003 0.070 ± 0.004 25 ± 1
SD, 3D (Ref. 5) 0.947 ± 0.004 0.061 ± 0.005 22 ± 2

TABLE IV. Parameters obtained by fitting Eq. (28) to the temperature dependent
broadening, where γ1 = 0 and the effective phonon energy was fixed to the value
obtained from fitting the energy (see Table III). Calculated values from Ref. 48 are
listed for comparison.

γ0 (meV) Eph (meV)

This work 2.21 ± 0.06 25 (fixed)
Theory (Ref. 48) 1.459 ± 0.001 27.6 ± 0.2
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and

Rlh(E0) ¼ 1:302(3)E1:598(8)
0 :

Only two parameters affect the excitonic binding energy: the
reduced mass and the static dielectric constant ϵst. We obtain ϵst,
which is equal to the high-frequency dielectric constant ϵ1 in the
case of Ge, from our data by extrapolating the fit of the dielectric

function with a parametric oscillator model10 to very low energies.
Figure 8 shows how ϵ1 increases with temperature, mostly due to
the decrease in the Penn gap EPenn via1

ϵ1(T) ¼ 1þ Eu
EPenn(T)

� �2

: (29)

We use Eu ¼ �hωu ¼ 15:6 eV for Ge, which is calculated from
the plasma frequency ωu, and assume that EPenn and E2 (the critical
point at about 4.5 eV, see Ref. 1) have the same temperature depen-
dence.51 Taking the latter from Ref. 25 and ϵ1 ¼ 16:2 at room
temperature from the literature,52 we can write the temperature
dependence of the Penn gap as

EPenn(T) ¼ 4:146 eVð Þ � 0:05 eVð Þ 2

e
217K
T � 1

þ 1

� �
: (30)

We find a reasonable agreement between the high-frequency dielec-
tric constant calculated from Eq. (29) (line in Fig. 8) and the values
we obtain from the extrapolation of our data (symbols in Fig. 8) up
to room temperature. Using Eq. (29) to calculate Rhh and Rlh

results in

Rhh(E0) ¼ 2:14(2)E1:13(3)
0

and

Rlh(E0) ¼ 1:29(1)E1:18(3)
0 :

The effective masses used to compute Rhh and Rlh depend on the
fit parameter E0 as outlined in Sec. III.

VII. CONCLUSIONS

Several assumptions and simplifications were made to the
theory. First, we simply added two Hulthén–Tanguy terms, one for
the hh and one for the lh, instead of solving a complicated three-
body problem. Second, the contribution of the split-off band was
ignored since it only affects the real part of the dielectric function
and the small effect can be compensated by adjusting the Sellmeier
parameters. Third, we did not consider warping and non-
parabolicity. The latter results in a deviation between the model and
the data starting at about 100meV above the bandgap. Furthermore,
we ignore the indirect bandgap, which affects E0 due to the resonant
character of the direct and indirect bandgaps.20 An experimental and
theoretical study thereof is given in Ref. 20. This effect might be
important for Ge because the indirect bandgap lies only about
0.15 eV below the direct gap.32,53 Finally, we only fit the bandgap
energy and broadening, but no adjustable parameter that would
affect the magnitude of the imaginary part. In principle, this theory
can also be applied to other semiconductors with similar band struc-
tures such as GaAs, InSb, or germanium–tin alloys.

In summary, we fitted the Hulthén–Tanguy model to the
dielectric function and its second derivatives and find the model to
be in good agreement with our data up to room temperature.
Discrepancies at higher temperatures might be partly due to the
above-mentioned simplifications of the theory and partly due to

FIG. 7. Excitonic binding energies of the heavy-hole (Rhh) and light-hole (Rlh)
excitons calculated from Eq. (10) vs energy E0 of the direct bandgap (which
varies with temperature, as shown in Fig. 5). Closed symbols depict Rhh and
Rlh calculated using ϵst from extrapolating ϵ1 to lower energies (symbols in
Fig. 8) and open symbols show Rhh and Rlh calculated using Eq. (29) (line in
Fig. 8). Solid lines represent fits with R(E0) ¼ bEx

0 and the dashed line repre-
sents the extension to lower energies of the curve shown in Fig. 5 of Ref. 50
with Rh / E1:0(1)

0 .

FIG. 8. Temperature dependence of the high-frequency dielectric constant ϵ1
of Ge obtained from the experimental data (symbols) compared with ϵ1 calcu-
lated from Eq. (29) (line) using the literature value52 ϵ1(T ¼ 300 K) ¼ 16:2.
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the challenging experimental conditions at high temperatures.
Improvements to the model and investigations of electron–phonon
scattering processes will be addressed in future work.

SUPPLEMENTARY MATERIAL

See the supplementary material for discussion on the broaden-
ing of the direct bandgap and the limitations due to instrumental
resolution, noise, and the digital linear filter. Furthermore, a brief
discussion of the second derivatives obtained from the EG filter
method and Savitzky–Golay coefficients and fit results at some
selected high temperatures are provided.
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S1. FIT RESULTS AT HIGHER TEMPERATURES

As an addition to the discussion in the main part of the
manuscript regarding the discrepancies above 500 K, we
show the fit results at some selected temperatures (598,
639, 676, and 710 K) in Fig. S1. Despite using an iris at
the exit window of the cryostat to suppress black body
radiation at high temperatures (as demonstrated in Fig.
S4 in Ref. 5), the noise below about 0.6 eV is significant.
At 710 K, it is not possible to obtain reasonable parame-
ters from fitting the second derivative of the real part of
the dielectric function (d2ε1/dE

2) and hence the energy
and broadening was obtained from fitting d2ε2/dE

2 only.
At all other temperatures, both d2ε1/dE

2 and d2ε2/dE
2

could be fitted with the second derivative of the Hulthén-
Tanguy model.

As already mentioned in Sec. V, the discrepancies be-
tween model and experiment at the highest temperatures
can not be explained by the uncertainty of the native
oxide layer thickness, which is on the order of 1-2 Å.
Figure S2 shows ε2 at 710 K for various native oxide
layer thicknesses compared to the model given by Eq. (8)
(which is also shown in Fig. S1). While the agreement
above the band gap improves for the larger oxide thick-
ness of 10.5 Å compared to the value of 8.2 Å obtained
as explained in Sec. II, it worsens below the band gap.
Therefore, we conclude that the deviations are not (or
only partly) due to the native oxide layer correction.

S2. BROADENING OF THE DIRECT BAND GAP

A. Theory

Intervalley scattering of electrons by longitudinal
acoustic (LA) phonons between the high symmetry
Γ- and L-points is allowed, while longitudinal optical
(LO) and transverse acoustic (TA) phonon scattering
is forbidden.21 However, to calculate the lifetime of the
states at Γ that form the direct gap, transitions to points

near but not necessarily coincident with L must be in-
cluded. For this Γ → “around L” processes, transitions
induced by TA and LO phonons become allowed due to
the lower symmetry. Of these, ab initio calculations54,55

show that the TA contribution is negligible. A simple
expression that captures this phenomenology is Eq. (38)
in Ref. 21, which for ε = 0 (the parameter ε represents
the energy above the conduction band edge at Γ) corre-
sponds to the broadening of the direct gap if the broad-
ening of the hole states is neglected. The expression con-
tains a term corresponding to LA phonons and a term
corresponding to LO phonons. The LA contribution the
scattering rate is equivalent to Conwell’s expression56

τ−1
ΓL =

NVD
2
ΓLm

3/2
eff√

2π~2ρEph

×[
Nph

√
∆E + Eph + (Nph + 1)

√
∆E − Eph

]
, (S1)

where Nph is the Bose-Einstein phonon occupation factor
defined as

Nph =
1

eEph/(kBT ) − 1
. (S2)

DΓL in Eq. (S1) is the intervalley deformation potential
for Γ to L scattering, NV = 4 (four equivalent valleys at
the L-point), ρ is the mass density, ∆E is the difference
between the Γ-valley and L-valley minima, Eph = Eph,LA

is the LA-phonon energy at the L-point, and meff is the
effective electron mass for the final state in a single valley
calculated from the transverse and longitudinal effective
masses at the L-point, meff = (m‖m

2
⊥)1/3. The LO scat-

tering contribution is given by the second term in Eq.
(38) in Ref. 21. Note also that a term representing scat-
tering to the higher ∆-minimum vanishes due to energy
conservation.

To assess the validity of the neglect of a hole contribu-
tion in the theoretical estimate of the broadening using
Eq. (38) in Ref. 21, we explicitly estimate this contribu-
tion. Intravalley scattering of holes with optical phonons
at the Γ-point is estimated by setting ε = 0 in Eq. (4.42)
in Ref. 57, which leads to

τ−1
op,h =

m
3/2
h D2

o√
2πρ~2

√
Eph,op

Nph,op , (S3)

where Eph,op is the optical phonon energy at the Γ-point,
Do = do/a is the optical deformation potential in units
of eV/Å, a is the lattice constant, Nph,op is the phonon
occupation factor of optical phonons, and mh is the hh
or lh effective mass.

To estimate the broadening related to intravalley de-
formation potential scattering of electrons with acoustic
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FIG. S1. Like Fig. 3 for temperatures of 598, 639, 676, and 710 K.
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FIG. S2. Imaginary part of the dielectric function at 710 K
plotted for different native oxide thicknesses (solid) compared
to the model given by Eq. (8) (dashed).

phonons, we use the expression for LA phonon intravalley
scattering at the Γ-point in Ref. 57, which reads

τ−1
ac (ε) =

√
2E2

1m
3/2
eΓ kBT

πρ~4v2
s

√
ε, (S4)

where E1 is the acoustic deformation potential in units
of eV and vs = vlo is the longitudinal sound velocity.

Exactly at the Γ-point, Eq. (S4) is zero. We set ε =
10 meV to take into account a small region around the
zone center to estimate if this type of scattering possibly
becomes important away from Γ.

Table SI lists the parameters defined above and which
are used to calculate the scattering times and lifetime
broadenings listed in Tabs. SII and SIII, respectively.
According to these calculations, it appears that the in-
travalley deformation potential scattering does not con-
stitute an important contribution to the broadening, con-
sistent with our initial assumptions. Notice that in our
calculations we allowed small deviations from the exact
maximum of the valence band. If we allow for a similar
small energy shift from the minimum of the conduction
band, TA-induced transitions from such “near-Γ” states
to the L-point also become allowed and have been shown
to play a role in indirect absorption.21 However, the con-
tribution of such terms in our broadening expressions is
also very small.

Although, as indicated above, ab initio calculations
imply that TA phonons are unimportant at room tem-
perature, we cannot state with certainty that they do
not play a role at higher temperatures due to possi-
ble temperature-dependent deformation potentials (as
for example in the case of GaAs, see Ref. 63) An increase
in the deformation potential with temperature might im-
prove the discrepancies between the experimental and
predicted widths shown in Fig. 6 above 300 K. However,



S3

TABLE SI. Parameters in Eqs. (S1)–(S4) for Ge.

ρ (g/cm3) vlo (105 cm/s) E1 (eV) do (eV) DΓL (eV/Å) a (Å) Eph,op (meV) Eph,LA (meV)

5.32 5.4a 11.4b 37c 2.8d 5.66 37e 28e

a Ref. 58
b Ref. 59
c Ref. 60
d Ref. 61
e Ref. 62

TABLE SII. Estimated relaxation times in fs from Eqs. (S1)–(S4) for the direct band gap of Ge at 10, 80, 300, and 710 K.

Temperature τac τop,hh τop,lh τΓL

10 K 4.3× 105 3.4× 1021 1.0× 1023 1050
80 K 5.4× 104 1.7× 105 4.9× 106 550
300 K 1.4× 104 2600 8.2× 104 110
710 K 6000 740 3.1× 104 53

TABLE SIII. Estimated lifetime broadenings in meV at 10, 80, 300, and 710 K obtained from the relaxation times in Tab. SII.

Temperature γac γop,hh γop,lh γΓL

10 K 7.7× 10−4 9.5× 10−20 3.3× 10−21 0.31
80 K 6.1× 10−3 2.0× 10−3 6.8× 10−5 0.59
300 K 0.023 0.13 4.0× 10−3 3.0
710 K 0.055 0.44 0.011 6.2

resolving the question of the importance of transverse
phonon scattering requires more calculations of the in-
tervalley scattering present in Ge, which is beyond the
scope of this work. In the case of DΓL in Eq. (S1), we
estimate DΓL = 3 eV/Å for T = 10 K, DΓL = 4 eV/Å for
T = 80 K, andDΓL = 6.5 eV/Å at room temperature and
above to take into account a temperature-dependent de-
formation potential similar to the one in GaAs.63 When
adding the instrumental resolution of about 2 meV to the
broadening at the highest temperatures, γΓL ≈ 8 meV
which is still about 40% smaller than the width obtained
from the Hulthén-Tanguy fit.

B. Screening parameter

As mentioned in Sec. VI, the screening parameter
g depends on temperature through the temperature-
dependent carrier density N , which is calculated based
on the model as in Eqs. (9)-(12) in Ref. 21. Figure S3
shows how the carrier density of intrinsic Ge increases
from N ≈ 2× 1013 cm−3 at 300 K to N ≈ 6× 1013 cm−3

at 700 K. The screening parameter calculated from Eqs.
(13) and (44) in Ref. 21 is plotted in Fig. S3. The tem-
perature dependence of g has no significant impact on
the results of the E0 energies, but it starts affecting the
broadening at T > 500 K, which is illustrated in Fig. S4.
Using g = 0.28 at 700 K instead of g = 35 results in a de-
crease in broadening of about 10% at the highest temper-
atures. The effect of using the temperature-dependent g
on the agreement between fit and data is small, as shown
in Fig. S5 for the dielectric function and its second deriva-
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FIG. S3. Carrier density N and screening parameter g of
intrinsic Ge as functions of temperature.

tive at 710 K.

C. Experiment

Determining accurate information regarding the life-
time broadening of the direct band gap is challenging
because of the limitation due to instrumental resolution
and noise. The latter increases with temperature as a
result of black body radiation and the simultaneous shift
of the band gap to lower energies. Attempts to over-
come the instrumental resolution at 10 K by decreas-
ing the width of the filter to the smallest possible value
(0.6 meV, which is slightly larger than the step size), re-
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sult in a broadening of 1.3 meV, which is still twice as
large as γth = 0.77 meV calculated from theory without
adding the instrumental resolution. Below a filter width
of 0.6 meV, noise becomes dominant and the derivatives
cannot be used for analysis. Further reducing the instru-
mental resolution by using slit widths < 400 µm does not
show any advantages since it worsens the signal-to-noise
ratio, which is also reflected in the second derivatives.
Figure S6 depicts the model calculated from Eq. (8) for
a temperature of 10 K and the parameters listed in Tab.
II for γhh = γlh = 0.77 meV and γhh = γlh = 1.53 meV.
On the one hand, using the predicted width of 0.77 meV
increases the agreement between model and data for the
excitonic peak of the imaginary part ε2, on the other
hand, the theory does not describe the tail of ε2 below
the gap. For the data between 80 and 710 K, the tail in
ε2 is described well by the model.

Apart from restrictions due to resolution and noise,
the nature of the Lorentzian broadening is questionable.
It is pointed out in Ref. 20 that at room temperature
a Gaussian broadening yields a much better agreement
with experiment than a Lorentzian one, which is illus-
trated in Fig. 7 in Ref. 20. The tail of the Lorentzian
broadening expands to the region of the indirect band
gap, where it results in an absorption coefficient which is
larger than the one of the indirect absorption itself. Fur-
thermore, at higher temperatures, the exciton lineshape
will be Gaussian rather than Lorentzian64 and the tem-
perature dependence of the broadening is proportional to
T 2.43 Nevertheless, we fit the broadening parameters ob-
tained from the fits to the Bose-Einstein model (Eq. (28))
in order to find an estimate of the effective phonon energy
related to electron-phonon interaction. Due to the un-
certainties at higher temperatures, we consider the low-
temperature data only, see Fig. S7. The lines in Fig. S7
represent the best fit to the data using Eq. (28), where

γ0 was set to zero (fitting γ0 leads to negative values for
the zero-temperature broadening, which is unphysical).
The fit parameters are listed in Tab. SIV. Although
the broadenings are probably enhanced due to the limi-
tations discussed above, the phonon energies found from
the fits are within a reasonable range (the energy of LA
phonons at the L-point is 28 meV and the energy of op-
tical phonons at the Γ-point is about 37 meV).62

TABLE SIV. Parameters describing the temperature depen-
dence of the broadening obtained by fitting Eq. (28) to the
broadening between 10 and 300 K, where γ1 = 0 was fixed,
compared to values from the literature.

γ0 (meV) Eph (meV)
10-300 K (this work) 1.9± 0.1 36± 4
20-291 K (Ref. 43) 0.8 26

S3. SECOND DERIVATIVES

Figure S8 shows the second derivatives of the real and
imaginary parts of the dielectric function, respectively, at
a temperature of 10 K taken from Ref. 5. The derivatives
calculated from Eq. (26) for a filter width of 1 meV (solid
line) are compared to the derivatives obtained from the
Savitzky-Golay (SG) algorithm9 using a polynomial of
third degree over N = 10 (squares) and N = 11 data
points (circles). The amount of smoothing is comparable,
however, the EG derivatives have the advantage of being
a continuous function and hence having as many points
available as needed for the analysis.
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