

Properties of CaF₂ using X-Ray Diffraction and IR Ellipsometry

Jaden R. Love,¹ Nuwanjula S. Samarasingha,¹ Carlos Armenta,¹ Stefan Zollner,¹ H. Kim²

1. Department of Physics, New Mexico State University, Las Cruces, NM

2. National Institute of Aerospace, NASA Langley Research Center, Hampton, VA

IR Vase Mark II Ellipsometer

Empyrean X-Ray Diffractometer

Abstract

Calcium fluoride is a desirable substrate for optical devices such as tunable filters based on phase change memory materials.

Here we will describe the structural and optical properties of calcium fluoride on (100) and (111) bulk substrates.

Methods

Determined optical constants using Fourier-transform infrared ellipsometry on the IR-Vase Mark II ellipsometer from J.A. Woollam Company.

Structure	
Formula unit:	CaF ₂ , calcium fluoride
Space group:	Fm3m (no. 225)
Cell dimensions:	a = 5.04626 Å
Cell contents:	4 formula units per cell
Atomic positions:	Ca in (4a) m3m (0,0,0) +FCC
	F in (8c) $\overline{4}3m(1/4, 1/4, 3/4); (1/4, 1/4, 1/4) + FCC$
	Fluorine (F^-) Calcium(Ca^{2+})
General Orientation	(100) (111)

Substrate orientation was determined using the Empyrean x-ray diffractometer from Malvern Panalytical. Backside roughening was done with 220 and 80 grit aluminum oxide grain in a sandblaster.

X-Ray Diffraction

Fit Parameters MSE 1.380 1.990 ± 0.002 \mathbf{E}_{∞} 4.240 ± 0.015 A_{TO} $261.0 \text{ meV} \pm 0.109 \text{ meV}$ **E**_{TO} $6.610 \text{ meV} \pm 0.192 \text{ meV}$ Γ_{TO} 0.265 ± 0.009 A_{2P} $335.0 \text{ meV} \pm 1.080 \text{ meV}$ E_{2P} $102.0 \text{ meV} \pm 2.280 \text{ meV}$ Γ_{2P} 0.110 ± 0.009

ΊΑΤ

Analysis

- CaF_2 is an insulator with an ultra wide bandgap of 12 eV and a large exciton binding energy of 1 eV.
- A wide range of transparency from 125 meV to 10 eV makes CaF_2 an ideal substrate for optical devices.

of Optical Constants of Solids II, edited by E. D. Palik (Academic,

MTI Bulk CaF_2 (100)

