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ABSTRACT

Most cubic semiconductors have threefold degenerate p-bonding valence bands and nondegenerate s-antibonding conduction bands. This
allows strong interband transitions from the valence to the conduction bands. On the other hand, intervalence band transitions within
p-bonding orbitals in conventional p-type semiconductors are forbidden at k ¼ 0 and, therefore, weak, but observable. In gapless semicon-
ductors, however, the s-antibonding band moves down between the split-off hole band and the valence band maximum due to the Darwin
shift. This band arrangement makes them three-dimensional topological insulators. It also allows strong interband transitions from the
s-antibonding valence band to the p-bonding bands, which have been observed in α-tin with Fourier-transform infrared spectroscopic
ellipsometry [Carrasco et al., Appl. Phys. Lett. 113, 232104 (2018)]. This manuscript presents a theoretical description of such transitions
applicable to many gapless semiconductors. This model is based on ~k �~p theory, degenerate carrier statistics, the excitonic Sommerfeld
enhancement, and screening of the transitions by many-body effects. The impact of nonparabolic bands is approximated within Kane’s
8� 8~k �~p-model by adjustments of the effective masses. This achieves agreement with experiments.

Published under an exclusive license by the AVS. https://doi.org/10.1116/6.0003278

I. INTRODUCTION

Due to relativistic effects, the energy of the s-antibonding Γ0
2

(or Γ�
7 in the double group notation) band in diamond-type semi-

conductors decreases relative to the top of the Γ0
25 (or Γþ

8 ) valence
band maximum with increasing atomic number. This is known as
the Darwin shift.1,2 (It can also be found in zinc blende semiconduc-
tors like HgTe, but the character notations of their space group T2

d
differ from the diamond group O7

h.) The difference E0 ¼ E7� � E8þ
between these two energy levels becomes negative for α-tin, where
the Γ�

7 band is situated between the Γþ
8 valence band maximum and

the Γþ
7 split-off hole band. For symmetry reasons, the bandgap of

α-tin is, therefore, exactly zero, making it a semimetal. The lower Γþ
8

band forms the heavy hole valence band, while the upper Γþ
8 band

(with the same symmetry as the light hole band in Ge) forms the
conduction band.3–9 See Fig. 1 for a schematic of the band structure.

Such inverted or gapless semiconductors have been studied
for many years.1,2 Other examples include Ge1�xSnx alloys with
high tin content10,11 and mercury chalcogenides, such as HgTe and

HgSe and some of their alloys with Cd, Mn, Fe, and Cr.1 Interest in
such materials has recently been revived, because the parity inver-
sion from Γþ

7 (odd) to Γ�
7 (even) to Γþ

8 (odd) with increasing
energy makes them topological insulators.7,12–14 Giving this manu-
script the title Excitonic absorption in topological insulators would
technically be correct, but also misleading, because none of the
special effects observed in topological insulators (except for the
parity inversion) are relevant for their interband optical absorption.

The parity inversion has an important consequence.
Interband transitions from the Γ�

7 valence band to the Γþ
8 valence

and conduction bands, shown by solid arrows in Fig. 1, lead to a
strong absorption peak in the midinfrared spectral region. Such
transitions have only recently been observed in α-tin9 and tin-rich
Ge1�xSnx alloys.10 They should also dominate the mid-infrared
spectra of other gapless semiconductors but have not yet been
reported apparently. Intervalence band transitions from Γ�

7 to Γþv
8

can only be observed in p-type gapless semiconductors or in intrin-
sic gapless semiconductors at finite temperature to create holes as
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final states for these transitions. Therefore, these transitions are
observed in experiments,9,10 but do not appear in calculated optical
spectra, see Fig. 3 in Ref. 5.

Transitions from the Γþ
7 split-off band to the Γþ

8 bands or
within the Γþ

8 bands, shown by dotted lines, are forbidden at the
Γ-point, but become allowed away from the Brillouin zone center,
because their matrix element is linear in k. This has been observed
in p-type Ge, GaAs, AlSb, and other semiconductors.15–18

A previous article by Carrasco et al.9 only presented a crude
analysis of interband transitions in gapless semiconductors, based
on the work of Kahn for Ge.16 The present work describes the
model for such transitions in more detail, including degenerate
Fermi–Dirac carrier statistics, the excitonic Sommerfeld enhance-
ment, and its screening due to free carriers. The nonparabolicity of
the band structure is considered within Kane’s 8� 8~k �~p-model
by solving the resulting cubic characteristic equation1,19 and adjust-
ing the effective masses to reproduce the~k �~p band structure. With
parabolic bands and established effective masses, the Sommerfeld
enhancement is only partially screened at 300 K and excitonic
effects lead to an increase of the absorption peak at �E0. However,
the parabolic model underestimates the strength of the absorption

peak and does not reproduce the experimental line shape. This dis-
crepancy can be fixed by adjusting the effective masses to better
match the 8� 8~k �~p band structure.

II. BAND STRUCTURE OF α-TIN

The top three valence bands and the lowest conduction band
of α-tin have the following dispersion shown by dashed lines in
Fig. 1:

E8þc kð Þ ¼ þ �h2k2

2m0m8þc
, (1)

FIG. 1. Band structure of α-tin near the Γ-point from Kane’s 8� 8~k �~p-model
(solid) and with parabolic bands (dashed). The symmetry notations in the Oh

double group and the equivalent bands for Ge (in parentheses) are also given.
Solid and dotted arrows show allowed and forbidden interband transitions,
respectively. The horizontal solid line shows the location of the Fermi level at
300 K.

FIG. 2. Contributions to the imaginary part of the dielectric function due to inter-
band transitions from Γ�

7 to Γþc
8 (dashed) and to Γþv

8 (dotted) as well as their
sum (solid) in comparison to experimental data from Ref. 9 (symbols), with a
constant background determined at 0.2 eV subtracted. Calculated for parabolic
bands without (a) and with (b) excitonic enhancement.
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E8þv kð Þ ¼ � �h2k2

2m0m8þv
, (2)

E7�v kð Þ ¼ ��E0 � �h2k2

2m0m7�v
, (3)

E7þv kð Þ ¼ �Δ0 � �h2k2

2m0m7þv
, (4)

where En is the energy of band n, k the wave vector, m0 the free
electron mass in vacuum, and �h the reduced Planck’s constant. The

effective masses are m8þc ¼ 0:024 (p-bonding electron), m8þv ¼ 0:26
(p-bonding heavy hole), m7�v ¼ 0:058 (s-antibonding hole), and
m7þv ¼ 0:04 (split-off hole), as given in Table I. These effective
masses were determined using magnetoreflection experiments.20

They are also consistent with ~k �~p-theory.21 The inverted bandgap
�E0 ¼ �E0 equals about 0.41 eV, taken as a positive value.9,10,20,22

The spin–orbit splitting Δ0 ¼ 0:8 eV is very large.20 The four con-
duction band minima at the L-point are expected to be only about 6
meV above Γ at room temperature, nearly degenerate with the Γþ

8
bands. This difference increases to about 100 meV at low tempera-
tures.23 See Fig. S1 (Ref. 43) in Ref. 9 for a sketch of the full band
structure. The energy reference level is chosen to be where the Γþ

8
valence and conduction bands touch at the Γ-point.

III. INTERBAND OPTICAL TRANSITIONS

A. Transitions into the Γþc
8 conduction band

Direct interband optical transitions with photon energy �hω are
allowed from the Γ�v

7 valence band to the Γþc
8 conduction band,

shown by the red arrow in Fig. 1. These bands have the usual cur-
vature, where the initial state band curves downward and the final
state band curves upward. The optical (reduced) mass can, there-
fore, be calculated in the usual way,21

μc ¼
m7�vm8þc

m7�v þm8þc
¼ 0:017: (5)

Note that we use the subscript c to denote the optical mass for
transitions from the Γ�

7 valence band into the Γþc
8 conduction

band. These transitions contribute to the dielectric function of
α-tin with24,25

ϵ2,c �hωð Þ ¼ Im

Ac

�hωþ iΓð Þ2 2
ffiffiffiffiffi
�E0

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�E0 � �hω� iΓ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�E0 þ �hωþ iΓ

ph i* +

f7�v �hωð Þ � f8þc �hωð Þ½ �: (6)

The amplitude prefactor Ac is given by

Ac ¼ e2
ffiffiffiffiffiffi
m0

p
3π

ffiffiffi
2

p
ϵ0�h

EPμ
3=2
c ¼ 4:918

ffiffiffiffiffiffi
eV

p
EPμ

3=2
c , (7)

where e is the electronic charge and ϵ0 the permittivity of vacuum.
The ~k �~p matrix element P is usually expressed through
EP=2P2=m0, which equals about 24 eV for α-tin.26 Γ is the broad-
ening parameter for this transition.

The second square-root term in Eq. (6) is nearly imaginary
(for small broadening and �hω . �E0) and, thus, represents the
square rootlike increase of the absorption with photon energy.
The first and third square-root terms describe the corresponding
contributions to the real part of the dielectric function for
�hω . �E0.

The last factor in Eq. (6) takes the occupation of the initial
and final states for this transition into account. The initial states are
all filled, since �E0 � kBT and, therefore, we can set f7�v �hωð Þ ¼ 1.

FIG. 3. As Fig. 2, but with effective masses adjusted to account for nonparabo-
licity without (a) and with (b) excitonic enhancement.
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However, since the bandgap of α-tin is zero, some of the final
states in the Γþc

8 conduction band will be occupied through
thermal activation (at nonzero temperature). This reduces the
strength of the absorption somewhat. This is known as Pauli block-
ing or band filling. If the last factor is unity, then the real part of ϵ
can be obtained analytically by taking the real part of the expres-
sion within angular brackets. Otherwise, ϵ1 needs to be obtained
through a numerical Kramers–Kronig transformation, because the
Fermi–Dirac factors also depend on photon energy.

The occupation number f8þc �hωð Þ of the final state is found as
follows. The photon energy equals the difference between the final
and initial band energies (at the same wave vector k for a direct
transition). From Eqs. (1), (3), and (5),

�hω ¼ Ef � Ei ¼ E8þc kð Þ � E7�v kð Þ ¼ �E0 þ �h2k2

2m0μc
: (8)

This implies

E8þc kð Þ ¼ �h2k2

2m0m8þc
¼ μc

m8þc
�hω� �E0ð Þ: (9)

The Fermi occupation factor in the conduction band for the Γ�
7

valence band to the Γþc
8 conduction band transition is, therefore,

f8þc �hωð Þ ¼ f
m7�v

m7�v þm8þc
�hω� �E0ð Þ

� �
, (10)

where f Eð Þ is the Fermi–Dirac distribution function,

f Eð Þ ¼ 1

exp E�μ
kBT

� �
þ 1

(11)

with the chemical potential μ (see more below), Boltzmann cons-
tant kB, and temperature T .

B. Transitions into the Γþv
8 valence band

Similarly, transitions from the Γ�
7 valence band to the Γþv

8
valence band, shown by the blue arrow in Fig. 1, are also allowed,
but we need to consider that both bands curve downward.

The difference between the final and initial state energies is

�hω ¼ Ef � Ei ¼ � �h2k2

2m0m8þv
þ �E0 þ �h2k2

2m0m7�v

¼ �E0 þ �h2k2

2m0

1
m7�v

� 1
m8þv

� �
: (12)

The corresponding optical mass for this Γ�v
7 to Γþv

8 transition is,
therefore,

μv ¼
m7�vm8þv

m8þv �m7�v
¼ 0:075: (13)

Transitions can only happen if the photon energy �hω is larger than
the gap �E0, because the curvature (effective mass) of the Γþv

8
valence band is smaller (larger) than that of the Γ�v

7 valence band.
The contribution to the dielectric function for this Γ�v

7 to Γþv
8 tran-

sition is then given by24,25

ϵ2,v �hωð Þ ¼ Im

Av

�hωþ iΓð Þ2 2
ffiffiffiffiffi
�E0

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�E0 � �hω� iΓ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�E0 þ �hωþ iΓ

ph i* +

f7�v �hωð Þ � f8þv �hωð Þ½ �,
(14)

with the amplitude factor similar to Eq. (7),

Av ¼ e2
ffiffiffiffiffiffi
m0

p
3π

ffiffiffi
2

p
ϵ0�h

EPμ
3=2
v ¼ 4:918

ffiffiffiffiffiffi
eV

p
EPμ

3=2
v : (15)

We again set f7�v �hωð Þ ¼ 1, since the Γ�v
7 valence band is fully

occupied. For intrinsic α-tin (without donors and acceptors) and at
zero temperature, the Γþv

8 valence band is also fully occupied and,
therefore, the transitions given by Eq. (14) cannot happen, because
the last factor in Eq. (14) vanishes. However, at finite temperatures
or in p-type α-tin, the presence of holes in the Γþv

8 valence band
will allow optical interband transitions that can contribute to the
dielectric function.

For such transitions, the final state energy is obtained with a
similar argument as in Eq. (8) as

E8þv kð Þ ¼ � m7�v

m8þv �m7�v
�hω� �E0ð Þ (16)

TABLE I. Effective density-of-states masses mn and reduced (optical) masses μn for α-tin, all taken to be positive in units of the free electron mass m0. The mass at the
L-point is for a single Lþ6 -valley. From Ref. 9 and calculated as described in the text. The exciton binding energies Rn and radii an are also listed. The bandgap �E0, the momen-
tum matrix element parameter EP, and the spin–orbit splitting Δ0 were taken from Ref. 26. The first line lists values for parabolic bands, the second one shows adjustments
made to match the~k �~p band structure from Fig. 1.

m8þc m8þv m7�v m7þv mL μc μv Rc (meV) ac (Å) Rv (meV) av (Å) �E0 (eV) EP (eV) Δ0 (eV)

(p) 0.024 0.26 0.058 0.04 0.19 0.017 0.075 0.4 750 1.8 170 0.41 23.8 0.8
(np) 0.031 0.1 0.053 0.024 0.163 0.6 540 3.8 78
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and the final state occupation factor is, therefore,

f8þv �hωð Þ ¼ f � m7�v

m8þv �m7�v
�hω� �E0ð Þ

� �
: (17)

Note the minus signs in comparison to Eq. (10). We are already
familiar with the argument of the Fermi–Dirac function from
Eq. (2) in Ref. 9, except that Maxwell–Boltzmann statistics was
used in the previous paper. It is now our goal to repeat this calcula-
tion with degenerate Fermi–Dirac statistics. Therefore, we need to
calculate the chemical potential for intrinsic α-tin.

Finally, we should note that expressions (6) and (14) are for
band-to-band transitions. Excitonic effects have been ignored. We
need to reconsider the importance of excitonic effects and screen-
ing, once the electron and hole concentrations have been calculated
from the chemical potential.

C. Other intervalence band transitions

Transitions from the Γþv
7 split-off valence band to the Γþv

8
valence band or to the Γþc

8 conduction band, shown by the long
dotted arrows in Fig. 1, are forbidden at k=0, because the matrix
element for these transitions is linear in k. They can occur,
however, for nonzero wave vectors k, similar to the intervalence
band transitions in p-type Ge, GaAs, GaSb, AlSb, etc. These transi-
tions may cause a change of the slope of ϵ2 in α-tin at an energy
equal to the spin–orbit splitting Δ0 (see Ref. 16).

Transitions from the Γþv
8 valence band to the Γþc

8 conduction
band, shown by the short dotted arrow in Fig. 1, are also forbidden
at k=0, because the matrix element is linear in k. They have been
observed in other semiconductors,15–18 but they occur at energies
much lower than �E0 in α-tin and, therefore, cannot impact the line
shape of the peak at �E0.

IV. FERMI–DIRAC INTEGRALS

To calculate the chemical potential and the electron and hole
densities for intrinsic α-tin as a function of temperature, we will
need the Fermi–Dirac integrals,27

Fn xð Þ ¼ 1
Γ nþ 1ð Þ

ð1
0

yn

exp y � xð Þ þ 1
dy, (18)

where Γ nð Þ is the Γ-function. Specifically for n ¼ 1
2 and n ¼ 3

2, we
have

F1=2 xð Þ ¼ 2ffiffiffi
π

p
ð1
0

ffiffiffi
y

p
exp y � xð Þ þ 1

dy and (19)

F3=2 xð Þ ¼ 4
3

ffiffiffi
π

p
ð1
0

y
ffiffiffi
y

p
exp y � xð Þ þ 1

dy: (20)

Note the prefactors before the integrals, which are not always
found in the older literature.

Following Ulrich et al.,27 Fermi–Dirac integrals can be calcu-
lated from standard special functions called polylogarithms,

Lim xð Þ ¼ 1
Γ mð Þ

ð1
0

tm�1

x�1 exp tð Þ � 1
dt, (21)

which are defined for all x and any integral or nonintegral order
m . 0. Using polylogarithms with negative arguments expressed as
an exponential, the Fermi–Dirac integrals can be calculated as

Fn xð Þ ¼ �Linþ1 � exp xð Þ½ �, (22)

for n . �1. Polylogarithms are called in MATLAB (Ref. 28) with
the Symbolic Math Toolbox as Li=polylog(n,x), where n is the
order and x the argument of the polylogarithm function.

For large negative arguments x � �1, one can use the
approximation,29,30

Fn xð Þ � exp xð Þ, (23)

which is valid for any order n. This approximation corresponds to
the nondegenerate (classical) limit, where the Fermi–Dirac distribu-
tion is replaced with the Maxwell–Boltzmann distribution. There
are also approximations for the completely degenerate case x � 1,
where the Fermi–Dirac integral can be replaced by a power of the
argument, for example,29,30

F1
2
xð Þ � 4

3
ffiffiffi
π

p x
3
2: (24)

For x ¼ 0, the Fermi–Dirac integral is related to Riemann’s zeta-
function29 and the Dirichlet eta-function. Unfortunately, no suit-
able expansion exists for x � 0 (see Ref. 29), which is needed for
our purposes (see below), where kBT is much greater than the mag-
nitude of the chemical potential and the energies of holes and elec-
trons in the Γþ

8 bands.

V. CALCULATION OF THE CHEMICAL POTENTIAL AND
INTRINSIC CARRER CONCENTRATION

The hole density for intrinsic (undoped) α-tin as a function of
temperature is31

p Tð Þ ¼
ð0
�1

dE gv Eð Þ 1� f Eð Þ½ �

¼
ð0
�1

dE gv Eð Þ 1
exp μ� Eð Þ=kBT½ � þ 1

, (25)

where31

gv Eð Þ ¼ m0m8þvð Þ3=2
�h3π2

ffiffiffiffiffiffiffiffiffi
�2E

p
(26)

is the density of states of holes in the Γþv
8 band for negative ener-

gies E. With the substitution x ¼ �E=kBT , the hole density
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becomes31,32

p Tð Þ¼ 1
4

2m0m8þvkBT
πh� 2

� �3=2

F1=2 � μ

kBT

� �
¼P8þv Tð ÞF1=2 � μ

kBT

� �
:

(27)

This expression assumes that the Γþv
8 hole bands are parabolic and

spherical. Nonparabolicity could be added with the F3=2 Fermi inte-
grals, but is probably not important for the Γþv

8 hole bands. To
take into account the warping of the heavy hole bands, a density of
states mass m8þv must be inserted for the holes.

The electron density is also written as a density-of-states inte-
gral as in Eq. (25), but this is more difficult to express, because of
the near degeneracy of the Γþc

8 and Lþ6 conduction band minima.
We use a multicarrier model similar to what was written for Ge,25

where electrons can also be present in several conduction band
minima at Γ and L,

n Tð Þ ¼ 4NL Tð ÞF1=2 μ� Eind
kBT

� �
þ N8þc Tð ÞF1=2 μ

kBT

� �
, (28)

NL Tð Þ ¼ 1
4

2m0mLkBT

π�h2

� �3=2

, (29)

N8þc Tð Þ ¼ 1
4

2m0m8þckBT

π�h2

� �3=2

: (30)

The density of states factors Nc Tð Þ and Pv Tð Þ have been defined in
the usual way.31,32 The prefactor 4 of the first term in Eq. (28) is the
number of nonequivalent L-valleys. mL=0.19 is, therefore, the density
of states mass for a single L-valley, see Table I. One could take the
nonparabolicity of the Γþc

8 valley into account with an F3=2 Fermi
function,23,25 but we did not implement that. Instead, we incorporate
the nonparabolicity of the Γ�

7 valence band and the Γþ
8 conduction

band with a slight modification of the effective masses to better
match the 8� 8~k �~p band structure shown in Fig. 1. Eind ¼ 6 meV
is the energy of the L-valleys above the reference level.23

We can evaluate the prefactor32

1
4

2m0kB
π�h2

� �3=2

¼ 4:8294� 1015 cm�3K�3=2 (31)

by expressing one factor �h in Joules to cancel the kilogram units,
the other one in electron volts to cancel the Boltzmann constant
expressed in eV/K.

In an intrinsic semiconductor, the charge neutrality requires
the number of electrons to be equal the number of holes. We can,
therefore, set Eq. (27) equal to Eq. (28). For each temperature T ,
this yields an equality that can be solved for the chemical potential
to yield μ Tð Þ using the MATLAB (Ref. 28) fzero() function.
Table II shows the Fermi level for intrinsic α-tin and the occupa-
tions of the various bands at several temperatures for a constant
value of the indirect gap Eind ¼ 6 meV. This could be modified by
introducing a temperature dependence.23

At room temperature, kBT is much larger than the separation
Eind between Γ- and L-minima in the conduction band. Electrons
are, therefore, mostly found in the L-minima because of their large
density of states. The hole density of states is smaller than the
L-electron density of states and, therefore, the Fermi level is nega-
tive. The overall intrinsic electron and hole density at room temper-
ature is about 3:7� 1018 cm�3. At low temperatures, electrons are
located in the Γþc

8 valley, which has a very small density of states,
smaller than that of the Γþv

8 hole band. The Fermi energy is, there-
fore, positive. The carrier concentration is only 3� 1015 cm�3 at
10 K, three orders of magnitude smaller than at room temperature.

The Γ�v
7 valence band and its shape do not enter into the cal-

culation of the chemical potential, because it is always fully occu-
pied. The nonparabolicity of the Γþc

8 conduction band, while
significant, should not matter either, because the electron density
(28) is dominated by the L-valleys at room temperature. The
impact of the L-valley nonparabolicity is probably also small, based
on Hall effect data for α-tin23 and calculations for Ge.33 The Γþv

8
heavy hole band is quite parabolic in similar semiconductors, but
warped.34 A density-of-states mass (averaged over all directions in
~k-space) must be used for this band. All things considered, our
carrier concentration and chemical potential at room temperature
are probably about as accurate as the mL and m8þv effective masses,
despite the application of parabolic bands. Our calculated value of
p ¼ 3:67� 1018 cm�3 at 300 K agrees well with electrical Hall
effect measurements.23

TABLE II. Chemical potential μ at different temperatures T for intrinsic α-tin, calculated by equating Eqs. (27) and (28). The hole and electron concentrations in the Γ and
L-valleys are also given. The Hulthén parameters g for transitions to the Γþv

8 and Γþc
8 bands obtained from Eq. (37) are also given. This calculation was performed for para-

bolic (p) and nonparabolic (np) bands.

T (K) μ (meV) p (1018 cm−3) nΓ (1018 cm−3) nL (10
18 cm−3) gv Γþv

8

	 

gc Γþc

8

	 

4 (p) 0.8 0.0004 0.0004 0 2.21 0.50
10 (p) 2 0.003 0.002 0.001 1.48 0.34
100 (p) −2 0.61 0.01 0.60 0.31 0.07
300 (p) −12.5 3.67 0.05 3.62 0.22 0.05
300 (np) −12.6 3.68 0.07 3.61 0.47 0.05
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VI. MOTT TRANSITION AND SCREENING OF EXCITONIC
EFFECTS

To determine if excitonic effects play a role in the optical
interband transitions near �E0 for intrinsic α-tin, we start by calcu-
lating the electron density at the Mott transition. The exciton
binding energy in α-tin formed by Γ�v

7 holes with Γþv
8 or Γþc

8 elec-
trons is35

Rv,c ¼ μv,c
ϵ21

RH , (32)

where RH ¼ 13:6 eV is the binding energy of the hydrogen atom
and ϵ1=24 is the static dielectric constant9 (which is the same as
the high-frequency dielectric constant for diamondlike semicon-
ductors, because there are no infrared-active phonons). The optical
masses μc,v are given in Table I. The corresponding excitonic Bohr
radii are given by

av,c ¼ ϵ1
μv,c

aH , (33)

where aH ¼ 0:529 Å is the Bohr radius of the hydrogen atom. The
exciton parameters are also given in Table I.

For the moment, we choose a Mott criterion (with a more
precise criterion given later),

rs ¼ 1
an

ffiffiffiffiffiffiffiffiffiffiffi
3

4πnM
3

r
� 1, (34)

where an is the excitonic radius given by Eq. (33). This implies a
Mott density,

nM ¼ 3
4π

a�3
n , (35)

which comes out to 4:9� 1016 cm�3 for Γþv
8 excitons and

5:7� 1014 cm�3 for Γþc
8 excitons. The intrinsic charge density of

α-tin at room temperature is much higher (3:67� 1018 cm�3, see
Table II) and, therefore, the excitonic enhancement of the Γ�

7 to
Γþv
8 and Γþc

8 transitions is at least partially screened.
To quantify this statement, we calculate the Debye–Hückel

screening wave vector,36

kD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pe2

ϵ0ϵ1kBT

s
¼

ffiffiffiffiffiffiffiffiffi
p

ϵ1T

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:021Kcm

p
, (36)

and the Hulthén parameter,37

g ¼ 12
π2ankD

¼ 12
π2an

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ0ϵ1kBT

pe2

s
: (37)

One would typically add a factor of 2 in the numerator of Eq. (36)
to account for screening of the excitonic interaction by free elec-
trons and holes,38 but at room temperature, most electrons in α-tin
are at the L-valley and they probably do not contribute to the

screening of direct excitons at the Γ-point. At room temperature
with the carrier concentration given in Table II, we find a Debye
screening wave vector of 0.0327 Å�1 (or a Debye screening length
λD ¼ 1=kD of 31 Å, much smaller than the excitonic radii, see
Table I). The screening factor g, therefore, equals 0.22 for transi-
tions to the Γþv

8 valence band and 0.05 for transitions to the Γþc
8

conduction band at 300 K. g ¼ 1 is typically associated with the
Mott criterion and, therefore, we expect the excitonic Sommerfeld
enhancements to be screened somewhat in α-tin at room tempera-
ture, compare Fig. 5 in Ref. 25.

Tanguy calculated the direct gap absorption of screened exci-
tons,39

ϵ2 �hωð Þ ¼ Im

An
ffiffiffiffiffi
Rn

p

�hωþ iΓð Þ2 ~g ~ξ �hωþ iΓð Þ
h i

þ ~g ~ξ ��hω� iΓð Þ
h i

� 2~g ~ξ 0ð Þ
h in o* +

fh �hωð Þ � fe �hωð Þ½ �,
(38)

~g zð Þ ¼ �2ψ
g
z

� �
� z
g
� 2ψ 1� zð Þ � 1

z
, (39)

~ξ zð Þ ¼ 2ffiffiffiffiffiffiffiffi
�E0�z
R

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�E0�z
R þ 4

g

q , (40)

where An is the transition amplitude defined in Eqs. (7) and (15)
and Rn the exciton binding energy. ψ zð Þ is the digamma or psi
function, i.e., the logarithmic derivative of the Γ-function, which
can be evaluated for complex arguments using the fdigamma.m
package in MATLAB.28 Despite the small Hulthén parameters g,
the Sommerfeld enhancement does not disappear completely for
the intervalence band transitions and, therefore, the simpler
band-to-band expressions (6) and (14) should not be used.25

VII. DISCUSSION AND COMPARISON WITH
EXPERIMENT

We are now able to evaluate the strength of optical transitions
ϵ2 �hωð Þ from the Γ�v

7 valence band into the Γþc
8 conduction and

Γþv
8 valence bands using Eqs. (6) and (14). We assume an inverted

gap of �E0 ¼ 0:41 eV from Ref. 9 and a broadening parameter Γ of
1 meV, which is typical for direct gap transitions in direct cubic
semiconductors.40 Because of the energy-dependent occupation
factors (10) and (17), the real part ϵ1 �hωð Þ needs to be calculated
numerically, for example, in MATLAB (Ref. 28) using Valerio
Lucarini’s add-on Tools for Data Analysis in Optics, Acoustics,
Signal Processing.41 So far, we have ignored the nonparabolicity of
the Γþc

8 conduction band, the Sommerfeld (excitonic) enhance-
ment,24 and Hulthén screening of excitons.39 The contribution to
the dielectric function from interband transitions at the Γ-point is
shown in Fig. 2(a).
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The resulting curves are very similar to those shown in Fig. 3
of Ref. 9. This indicates that the use of degenerate Fermi–Dirac sta-
tistics is not important and nondegenerate (Maxwell–Boltzmann)
statistics is sufficient to describe these interband transitions. This is
surprising since kBT is several times larger than the chemical
potential, see Table II. Therefore, the argument of the Fermi–Dirac
integral is close to zero (far from the nondegenerate limit), where
no good expansion exists.

Due to the larger reduced mass, transitions to the Γþv
8 (heavy

hole) valence band dominate over those to the Γþc
8 conduction

band. The onset of absorption occurs at �E0 ¼ 0:41 eV. The
maximum of ϵ2 ¼ 1:46 is at 0.47 eV, about kBT larger than �E0. At
lower energies, ϵ2 is reduced by the joint density of states, at higher
energies by the occupation factor. The heavy hole contribution
decreases toward larger energies (due to the decreasing occupation
factor) more quickly than the Γþc

8 contribution, which is governed
by the ω2-term in the denominator of Eq. (6). The real part ϵ1 can
be calculated from ϵ2 using Kramers–Kronig transformation, but it
does not include contributions from the vacuum (ϵ ¼ 1) and from
nonresonant transitions at higher energies.40

Equation (38) allows us to study the impact of excitonic
enhancement. For completely unscreened excitons and a broaden-
ing of Γ ¼ 1 meV (not shown), there is a strong discrete excitonic
peak just below �E0. The maximum of ϵ2 ¼ 2:5 is at 0.43 eV. As
expected, the maximum is larger than for interband transitions due
to the Sommerfeld enhancement. Also, the peak is shifted to lower
energies, since the Sommerfeld enhancement decreases for larger
energies above the bandgap.21

It is more realistic to consider the screening of excitons with
the Hulthén parameters g given in Table II, see Fig. 2(b). The
maximum ϵ2 ¼ 2:14 is now at 0.45 eV. As expected, for g ¼ 0:22,
the Sommerfeld enhancement is only partially screened and, there-
fore, ϵ2 is larger and occurs at a lower energy than for the inter-
band case shown in Fig. 2(a).

Overall, all three scenarios (excitonic transitions with full,
partial, and no screening) lead to similar results for the dielectric
function, except for the discrete exciton peak, which is only present
for unscreened excitons. Theory shows that discrete excitonic peaks
only exist for g . 1, even for small broadenings.39 All curves show
a rather steep rise of ϵ2 followed by a slow decrease. This is in stark
contrast to the experiment, which shows a sharp peak with a steep
increase and decrease.9

We also varied the value of the indirect gap Eind between
+50meV in our calculations. This changes the magnitude of the
peak somewhat, but the slow decrease toward higher photon energies
remains. Since parabolic bands with established effective masses
do not explain the experimental observations, we will discuss in
Sec. VIII how nonparabolicity corrections affect these calculations.

VIII. IMPACT OF NONPARABOLICITY

As shown in Fig. 1, the dispersion obtained using the experi-
mental effective masses listed in Table I (dashed lines) does not
match the band structure calculated using Kane’s 8� 8~k �~p-model
(solid).19 To achieve a better fit to the band structure on this scale
and to consider the nonparabolicity of the bands, we adjust the
effective masses to better fit the 8� 8 ~k �~p band structure. This

results in the following values: m8þc ¼ 0:031, m7�v ¼ 0:1, and
m7þv ¼ 0:053. The Γþc

8 conduction band mass is increased moder-
ately by 29% and the corresponding optical mass μc by 41%. The
increase of the Γ�

7 mass is much more significant. It increases by
72% and the corresponding optical mass μv by 117%.

Table II shows that the chemical potential and the intrinsic
carrier concentration do not change much as nonparabolicity cor-
rections are introduced. This was already predicted in Sec. V,
because the chemical potential depends mostly on the heavy hole
and L-electron mass, which are assumed to be parabolic.

On the other hand, the increase of the optical masses increases
the excitonic binding energy and decreases the exciton radius, espe-
cially for transitions to the heavy hole band. The Hulthén parameter
gv for transitions to Γþv

8 has more than doubled. The Sommerfeld
enhancement is screened much less. This can seen in Fig. 3.

The optical absorption from transitions to the Γþc
8 conduction

band is only increased by about 50%–60%, since the optical mass is
increased only moderately and the screening parameter gc does not
change at all.

On the other hand, the amplitude of band-to-band transitions
to the heavy hole band Γþv

8 has doubled by the introduction of
nonparabolicity. The magnitude of its absorption peak shown in
Fig. 3(a) nearly matches the experimental peak (especially if the
nonresonant background is subtracted). The peak shape, on the
other hand, is still not a good match, if the Sommerfeld enhance-
ment is neglected.

If screened excitonic contributions are included, as shown in
Fig. 3(b), then the calculated peak magnitude is twice as large as
observed in the ellipsometry experiment. The experimental peak
shape is also reproduced much better.

It might be possible to achieve even better agreement with
experiment by fine-tuning the effective mass of the Γ�

7 valence
band but we shall not pursue this here. Effective masses are influ-
enced in~k �~p theory by other “remote” bands and also by the epi-
taxial strain, which is present in our α-tin layers, which are
coherently strained on InSb or CdTe substrates.10 Future work
could also focus on including k-dependent optical dipole matrix
elements for the allowed and forbidden transitions19 and under-
standing the nonresonant background, which might be due to free-
carrier absorption or forbidden interband transitions.

IX. CONCLUSION

The contribution to the dielectric function from interband
transitions near the Γ-point in α-tin was calculated using degener-
ate Fermi–Dirac carrier statistics in the parabolic band approxima-
tion. The results are very similar to those shown in Fig. 3 of Ref. 9.
Therefore, the use of Eq. (2) in Ref. 9 with nondegenerate
Maxwell–Boltzmann statistics was justified and degenerate carrier
statistics are not important. Also, the intrinsic carrier concentration
at room temperature is very high and, therefore, excitonic effects
are weak, but still need to be considered, because the Sommerfeld
enhancement persists beyond the Mott transition. The parabolic
approximation does not lead to good agreement with experiments,
as shown in Fig. 2.

To test the importance of nonparabolicity, the effective masses
were adjusted to better match the “exact” bands calculated from
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Kane’s 8� 8~k �~p-model. This does not change the chemical
potential or the intrinsic carrier concentration at 300 K, because
they are determined by the heavy hole and L-electron masses,
which are assumed to be parabolic. On the other hand, the signifi-
cant increase of the Γ�

7 valence band mass enhances the interband
transitions, increases the exciton binding energy, reduces the
exciton radius and, therefore, also the screening, which leads to
better agreement with experiment than the parabolic model.

Additional improvements to the theory could be achieved by
increasing the number of bands included in the ~k �~p calculation,
considering the impact of k-dependent matrix elements,19 and by
variations of the effective masses due to the epitaxial strain. An
important clue can also be found in the dielectric function of InSb,42

where the impact of the ~k-dependence of the optical dipole matrix
element and the nonparabolicity of the Γ�

7 band can be studied.
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