First-order perturbation theory

The Hamiltonian H for an electron (with mass my and momentum operator p) in one spatial
dimension exposed to a potential V' () is given by
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We assume that the potential is periodic with periodicity L, i.e., V (z +nL) =V (x) for any
integer n. Felix Bloch has shown that the wave function 1 for such a periodic potential can
be written in the form

W (2) = ey (2) (2)
as a product of a plane wave with a momentum-dependent function uy, (z) that has the same
periodicity as the potential, i.e.,

ug (x +nL) = ug (x). (3)

The wave vector k is related to the momentum eigenvalue p by p = hk, where h is the reduced
Planck’s constant. Assume that the solution of the Hamiltonian (1) for k=0 is known and
given by the normalized wave function ¥y = ug with energy eigenvalue E,. The solution
is non-degenerate.

Problems:

1. By plugging the Bloch wave function (2) into the Hamiltonian (1), show that the function
ug, must satisfy the equation

V| g (z) = B (k) ug (2) (4)

where E (k) is the energy eigenvalue of the Hamiltonian (1) for the momentum p = hk.

2. Since we know the solution ¢y with energy Ej for the case of vanishing momentum k=0,
treat the k-dependent terms as a small perturbation. Within first-order perturbation
theory and keeping terms to second order in k, calculate the energy E (k) for small values
of k. Use the definition P = (g |p| 1) for the momentum matrix element.

Note 1: Treat everything in one dimension to keep the notation simple. (This works just
as well in three dimensions.)
Note 2: I might also add that this problem has no practical applications. In practice, the
matrix element P is usually zero and one must go to second order degenerate perturbation
theory to get useful results.



Solution:

1. Plugging the Bloch wave function (2) into the Hamiltonian (1) yields the equation
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Hv (x) = He*uy, (z) = %ei’muk (z) + Vekouyy, (z). (1)
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The momentum operator is p = —ihd/dx. The product rule for differentiation yields
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The Schrédinger equation therefore takes the form
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where E (k) is the energy corresponding to the momentum p = hk. If we cancel the complex
exponential on both sides, we see that the function uy () must satisfy the equation
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Given the definition p = —ihd/dx of the momentum operator, this is equivalent to
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2. Within first-order perturbation theory with a perturbation Hamiltonian H' and a non-degenerate
solution v of the unperturbed Hamiltonian, the energy correction is AE = (1o |H'| ¢g). In our

case
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The energy eigenvalue of the Hamiltonian is therefore
h’k?  hkP
E (k)= Eo+ + — (8)
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