
First-order perturbation theory

The Hamiltonian Ĥ for an electron (with mass m0 and momentum operator p̂) in one spatial
dimension exposed to a potential V (x) is given by

Ĥ =
p̂2

2m0

+ V. (1)

We assume that the potential is periodic with periodicity L, i.e., V (x+ nL) = V (x) for any
integer n. Felix Bloch has shown that the wave function ψ for such a periodic potential can
be written in the form

ψ (x) = eikxuk (x) (2)

as a product of a plane wave with a momentum-dependent function uk (x) that has the same
periodicity as the potential, i.e.,

uk (x+ nL) = uk (x) . (3)

The wave vector k is related to the momentum eigenvalue p by p = h̄k, where h̄ is the reduced
Planck’s constant. Assume that the solution of the Hamiltonian (1) for k=0 is known and
given by the normalized wave function ψ0 = u0 with energy eigenvalue E0. The solution ψ0

is non-degenerate.

Problems:

1. By plugging the Bloch wave function (2) into the Hamiltonian (1), show that the function
uk must satisfy the equation[

p̂2

2m0

+
h̄

m0

kp̂+
h̄2k2

2m0

+ V

]
uk (x) = E (k)uk (x) , (4)

where E (k) is the energy eigenvalue of the Hamiltonian (1) for the momentum p = h̄k.

2. Since we know the solution ψ0 with energy E0 for the case of vanishing momentum k=0,
treat the k-dependent terms as a small perturbation. Within first-order perturbation
theory and keeping terms to second order in k, calculate the energy E (k) for small values
of k. Use the definition P = ⟨ψ0 |p̂|ψ0⟩ for the momentum matrix element.

Note 1: Treat everything in one dimension to keep the notation simple. (This works just
as well in three dimensions.)
Note 2: I might also add that this problem has no practical applications. In practice, the
matrix element P is usually zero and one must go to second order degenerate perturbation
theory to get useful results.



Solution:

1. Plugging the Bloch wave function (2) into the Hamiltonian (1) yields the equation

Hψ (x) = Heikxuk (x) =
p̂2

2m0
eikxuk (x) + V eikxuk (x) . (1)

The momentum operator is p̂ = −ih̄d/dx. The product rule for differentiation yields

p̂eikxuk (x) = −ih̄ d
dx

[
eikxuk (x)

]
=

= −ih̄
[
ikeikxuk (x) + eikx

d

dx
uk (x)

]
= −ih̄eikx

[
ikuk (x) +

d

dx
uk (x)

]
. (2)

p̂2eikxuk (x) = p̂

{
−ih̄eikx

[
ikuk (x) +

d

dx
uk (x)

]}
=

= −ih̄ d
dx

{
−ih̄eikx

[
ikuk (x) +

d

dx
uk (x)

]}
=

= −h̄2 d
dx

{
eikx

[
ikuk (x) +

d

dx
uk (x)

]}
=

= −h̄2
{
ikeikx

[
ikuk (x) +

d

dx
uk (x)

]
+ eikx

[
ik
d

dx
uk (x) +

d2

dx2
uk (x)

]}
=

= −h̄2eikx
[
−k2uk (x) + 2ik

d

dx
uk (x) +

d2

dx2
uk (x)

]
=

= −h̄2eikx
[
−k2 + 2ik

d

dx
+

d2

dx2

]
uk (x) . (3)

The Schrödinger equation therefore takes the form

Hψ (x) = Heikxuk (x) = − h̄2

2m0
eikx

[
−k2 + 2ik

d

dx
+

d2

dx2

]
uk (x)+V e

ikxuk (x) = E (k) eikxuk (x) ,

(4)
where E (k) is the energy corresponding to the momentum p = h̄k. If we cancel the complex
exponential on both sides, we see that the function uk (x) must satisfy the equation[

h̄2k2

2m0
− ikh̄2

m0

d

dx
− h̄2

2m0

d2

dx2
+ V

]
uk (x) = E (k)uk (x) . (5)

Given the definition p̂ = −ih̄d/dx of the momentum operator, this is equivalent to[
p̂2

2m0
+

h̄

m0
kp̂+

h̄2k2

2m0
+ V

]
uk (x) = E (k)uk (x) . (6)

2. Within first-order perturbation theory with a perturbation Hamiltonian Ĥ ′ and a non-degenerate
solution ψ0 of the unperturbed Hamiltonian, the energy correction is ∆E = ⟨ψ0 |H ′|ψ0⟩. In our
case

∆E (k) =

〈
ψ0

∣∣∣∣ h̄m0
kp̂+

h̄2k2

2m0

∣∣∣∣ψ0

〉
=
h̄kP

m0
+
h̄2k2

2m0
. (7)

The energy eigenvalue of the Hamiltonian is therefore

E (k) = E0 +
h̄2k2

2m0
+
h̄kP

m0
. (8)


