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ABSTRACT

We investigated excitonic effects in the complex dielectric function of Ge near the E1 and E1 þ Δ1 critical points as a function of temperature.
By employing Tanguy’s theory for two-dimensional excitons [Tanguy, Solid State Commun. 98, 65 (1996)], we fitted the second derivative
of the dielectric function to a temperature series of spectroscopic ellipsometry measurements ranging from 4 to 800 K [Emminger et al.,
J. Vac. Sci. Technol. B 38, 012202 (2020)]. We analyzed the temperature dependence of the effective masses, matrix elements, and exciton
binding energies to develop a model for the dielectric function that requires no fitting parameters, apart from energy and broadening.
Our calculations not only show a remarkable agreement between theory and experiment, but also provide a model for the absorption by
two-dimensional excitons that can be adapted to other applications and materials.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0276918

I. INTRODUCTION

Basic optical processes such as absorption or emission of
photons and creation and recombination of electron–hole pairs are
discussed qualitatively in reference to experimental results in many
popular textbooks,1–3 but a quantitative comparison of theory and
experiment has long been elusive. Progress has been made recently by
describing the local electronic band structure using the k � p-theory1
and the Coulomb interaction between the electron and hole with the
Elliott–Tanguy theory of excitons.4,5 This formalism has been applied
to the direct6 and indirect7 gap absorption in Ge and the line shape of
the photoluminescence of Ge as a function of temperature.8

The present paper applies the same formalism to the promi-
nent E1 and E1 þ Δ1 peaks in the complex dielectric function of
Ge. Our results are predictive, because only known parameters
(such as bandgaps and effective masses) are used to calculate the
strength of the optical absorption. They can, therefore, be applied
universally to many different diamond and compound semicon-
ductors, including semiconductor alloys important for electronic
and optoelectronic applications.

II. TWO-DIMENSIONAL EXCITONS

The electronic band structure of Ge presents two Van Hove
singularities in the [111]-direction (Λ) of the wave vector k in the

Brillouin zone [see Fig. 1(b)].1 These critical points (CPs) arise due
to the conduction band (CB) running parallel to the valence band
(VB) over a certain range of k-vectors. Labeled as E1 and E1 þ Δ1,
these CPs are transitions occurring from the heavy-hole (hh) and
light-hole (lh) VBs to the CB, respectively. Categorized1,9 as a two-
dimensional minimum critical point M0, the literature gives the
dielectric function (DF) vs photon energy ε(E) for such CPs as10–14

ε(E) ¼ C � Beif ln (E � E1 þ iΓ), (1a)

with
d2εðEÞ
dE2

¼ Beif

E � E1 þ iΓð Þ2 : (1b)

In CP analysis, typically only Eq. (1b) is fitted to the data with
amplitude B, phase angle f, energy E1, and broadening Γ as its free
parameters.15 Variable C in Eq. (1a) is a constant. Unfortunately,
this type of analysis only provides information about the energy
and broadening for the structures of interest, while leaving the
form of the DF without an accurate description. Equation (1a) does
not yield a good description of the dielectric function or the CP
parameters.16

Conversely, in cases where the calculation of the DF has been
attempted, the description of this CP line shape has been limited to
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a qualitative discussion.17,18 A major pitfall in these calculations is
the omission of the Coulomb interaction between the electrons
excited to the CB and the holes left in the VB. These electron-hole
pairs tend to form excitons (bound together in a hydrogen-like
system). Due to the joint (JDOS) of these transitions, the excitonic
systems for E1 and E1 þ Δ1 are confined to a two-dimensional
plane. Equation (2) shows the JDOS for the E1 CP in a coordinate
system where the z axis points along the [111]-direction. Naturally,
in this coordinate system, the x and y axes would be along the
[110]- and [112]-directions, respectively,

JCV(E)/
ð
d k
8π3

δ E1 þ �h2

2

k2x þ k2y
μ?

þ k2z
μk

 !
� E

" #
: (2)

The longitudinal reduced effective mass μk in Eq. (2) is signifi-
cantly greater than the transverse reduced effective mass μ?.

18 As a
result, the JDOS effectively confines the motion of the exciton to
the x–y plane, as depicted in Fig. 1(a).

In essence, an accurate description of the aforementioned
CPs must take into account the effects of the formation of these
quasi-two-dimensional excitons. In recent years, great progress has
been made in the implementation of the GW-method and the
Bethe–Salpeter equations (BSEs) to calculate the DF of different
semiconductors.19–21 This approach accounts for excitons by
making quasi-particle energy corrections to the initial density
functional theory calculations of the band structure. It also accounts
for the Sommerfeld enhancement of excitonic absorption over the
absorption by uncorrelated electron-hole pairs. Barker et al.,20 for
instance, correctly resolve the E1 and E1 þ Δ1 CPs in the DF of GaSb.
Unfortunately, this approach requires a significant amount of comput-
ing time and provides only limited agreement when compared with
experiments. Instead, we aim to provide a closed-form expression for
the DF that can easily be implemented on a personal computer.

Culminating prior efforts of finding a solution to this
problem,22,23 Tanguy provided an expression for the complex DF
that incorporates the effects of two-dimensional Wannier excitons.24

Unlike GW-BSE, which requires large computational resources and
provides only an approximation to the DF, Tanguy’s model offers a
fully analytical solution.24 This allows for direct comparison with
experimental data without the need for extensive numerical fitting.
Still, despite Tanguy’s work being published almost three decades
ago,24 comparison of theory with experiment is lacking in the litera-
ture. In the present work, we will bridge this gap by comparing
Tanguy’s model to the DF of Ge near the E1 and E1 þ Δ1 CPs.
This model not only provides a better description of the DF than
previous attempts, but also requires no fitting parameters apart
from energy and broadening. Furthermore, having a reduced
number of fitting parameters makes this model highly applicable
to other areas of research, such as the description of band-filling
effects25,26 and ultrafast phenomena.27–29 Because of its compact
form, the model can also be applied to other semiconductor
materials of interest, such as InSb, GaAs, and Ge1�xSnx alloys.

For comparison with experiments, we used data published by
Emminger et al.,30 which comprises a temperature series of spectro-
scopic ellipsometry measurements, ranging from 4 to 800 K. We will
briefly discuss the acquisition, reduction, and modeling of the data.
We will also analyze Tanguy’s DF expression, as well as how it can
be adapted to the material of interest. The fixed parameters of the
model tend to change with temperature, hence we will discuss the
temperature dependence of both, the fixed and free parameters.
Finally, we will point out the shortcomings of the model and how
they can be improved upon.

III. EXPERIMENTAL DATA

The experimental data consist of spectroscopic ellipsometry
measurements of a wafer of bulk Ge with (100) surface orientation.
With a separation of 10 meV, the data collected ranged from
0.7 to 6.3 eV. There were a total of 32 measurements ranging from
4 to 800 K. We will not discuss the details of these measurements
any further. If interested in more information about the cleaning

FIG. 1. (a) As the longitudinal reduced mass μk is much larger than the transverse
reduced mass μ? in the CPs E1 and E1 þ Δ1, the excitons are restricted to the
plane perpendicular to the z axis. (b) Band structure of Ge in the Λ-direction,
where the E1 and E1 þ Δ1 transitions (black arrows) are located. The range of
wave vectors k where these transitions take place is labeled kmax (gray region).
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procedure, acquisition settings, and temperature control methods,
we encourage the reader to look at the original publication.30

What is relevant for our purposes is the effect of the native
oxide layer embedded in the data. As we are interested in only the
bulk material, it is necessary to correct for the oxide overlayer that
is present at the moment of the measurement. To make this oxide
correction, we can use the optical properties of GeO2 published by
Nunley et al.31 The procedure consists of simulating the pseudo-DF
using Nunley’s GeO2 and Emminger’s parametric semiconductor
oscillator models.30,31 In this manner, we construct a point-by-
point fit that extracts the DF of the bulk material and removes
any effects from the oxide layer. We achieved this with the aid of
the commercial software WVASE32, from the J. A. Woollam
Company.32 We note that the oxide layer thickness varied slightly
at each temperature. Therefore, there could be small errors in the
layer thickness estimated by this oxide correction. If the wrong
oxide thickness is used, it could lead to surface effects that will
affect the amplitude of the imaginary part of the DF. We will
expand on these surface effects in Sec. VI.

IV. TANGUY MODEL

At a two-dimensional CP with energy E1, Tanguy
24 provides

the optical dispersion for a two-dimensional exciton by incorporat-
ing broadening to both, the continuum and discrete absorption
spectra. This complex DF is given by24

ε(E) ¼ A

π(E þ iΓ)2
�
ga ξ(E þ iΓ)½ � þ ga ξ(�E � iΓ)½ � � 2ga ξ(0)½ ��,

(3)

where

A ¼ e2μ?j e � MCVj2
πε0m2

0
, ξ(z) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R

E1 � z

r
, (4a)

and ga(ξ) ¼ 2 ln (ξ)� 2ψ
1
2
� ξ

� �
: (4b)

In Eq. (4a), the amplitude A depends on the electron charge e, the
free electron mass m0, the permeability of free space ε0, the
reduced mass of the two-dimensional exciton μ?, and the transi-
tion matrix element e �MCV, whereas the argument ξ depends on
the exciton’s binding energy R and the CP energy E1. In Eq. (4b),
ψ(z) is the complex digamma function

ψ(z) ¼ d
dz

lnΓ(z) ¼ d
dz

ln
ð1
0
tz�1e�tdt

� �
, (5)

where Γ(z) is the complex gamma function. In the case of the CPs
E1 and E1 þ Δ1 of Ge, we can replace the amplitude in Eq. (3)
with17,25,26

A(E1) ¼ 4e2μ(E1)? P
2

3πε0m2
0
kmax forE1 (6a)

and A(E1þΔ1) ¼ 4e2μ(E1þΔ1)
? P

2

3πε0m2
0

kmax forE1 þ Δ1, (6b)

where μ(E1,E1þΔ1)
? are the transverse reduced masses of the CPs, P is

the average transition matrix element, and kmax is the maximum
range along the kz axis where interband transitions take place. For
details about these amplitudes, refer to the supplementary material
Sec. S2. Previous calculations of the DF for these CPs neglected the
correlation between electrons and holes, resulting in a step-like
function17,18,25,26 [see Eq. (S15) in Sec. S2 of the supplementary
material for details on this step function].

To illustrate these excitonic effects, Fig. 2 shows the comparison
between the DF for uncorrelated electron–hole pairs (blue dashed
line) and the two-dimensional excitonic line shape (black solid line).
Figure 2 also shows the two components of Eq. (3), the continuum
and discrete absorption (shown by the red and green dotted–dashed
lines, respectively). Figure 2 shows that the DF for the uncorrelated
electron–hole pairs is almost identical to the exciton continuum
absorption spectra. We also observe that the peak absorption occurs

FIG. 2. (a) Real and (b) imaginary part of the dielectric function of two-
dimensional Wannier excitons. This complex dielectric function (solid black line)
is composed of the continuum (red dotted–dashed line) and bound states
(green dotted–dashed line) of the exciton. Note the similarity between the con-
tinuum state and the optical dispersion for uncorrelated electron–hole pairs
(blue dashed line). The arbitrary values for the parameters are E1 ¼ 2:2 eV,
Γ ¼ 37 meV, and A ¼ 41:8 eV2.
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at an energy equal to E1 � R(1) for22,33,34

R(n) ¼ μ?
m0ε2st n� 1

2

� �2 Ry where n ¼ 1, 2, 3, . . . , (7)

where εst is the static dielectric constant and Ry ¼ 13:6 eV is the
Rydberg energy constant. Equation (7) gives the binding energy of
the 2D exciton, which is the same as for a 2D hydrogen-like
system.22,33,34 Figure 2 also shows how the oscillator strength in the
imaginary part of the DF is enhanced significantly by the discrete
(bound exciton) absorption. This is a typical behavior of not only
two-dimensional M0 excitons in bulk materials,1 but also of excitonic
absorption in two-dimensional materials, where the reduced dimen-
sionality enhances the Coulomb interaction due to the confinement
of the carriers.23,35,36

A. Temperature dependence of the fixed parameters

As previously stated, other than energy and broadening, Eq. (3)
combined with the amplitudes in Eq. (6), provides a model absent of
any fitting parameters for the CPs near the L-valley of Ge. The
matrix element EP ¼ P

2
=m0 and the static dielectric constant εst

have well established values in the literature.7,25,37,38 Another required
parameter is kmax. In the rotated coordinate system, the total distance
from Γ to L along the kz axis (the Λ-direction) is π

ffiffiffi
3

p
=a0. Under

visual inspection, however, the kmax value lies between 3π
ffiffiffi
3

p
=(5a0)

and 3π
ffiffiffi
3

p
=(4a0).

26,39 Therefore, for our purposes, we allowed the
kmax parameter to vary within this range, but kept it fixed across all
temperatures. Since we are interested in the temperature effects of
the DF, we can follow the procedure described by Emminger et al.6

to incorporate the temperature dependence of the lattice constant,7,40

matrix element,7 and dielectric constant1 in the following manner:

a0(T) ¼ a0(0K)þ 1:315� 10�2 Å
exp[(355:14K)=T]� 1

, (8)

EP(T) ¼ EP(0 K)
a0(0 K)

2

a0(T)
2 , (9)

εst(T) ¼ 1þ 15:6 eV
EPenn(T)

	 
2
: (10)

The term EPenn(T) in Eq. (10) is the Penn gap given by1,6

EPenn(T) ¼ 4:146 eV� (0:05 eV)
2

e(217K)=T � 1
þ 1

	 

: (11)

For the values at zero temperature, EP(0 K) ¼ 12:96 eV7,25 and
a0(0K) ¼ 5:6516 Å.40

B. Unrenormalized effective mass

Yet another required parameter is the transverse reduced mass
μ?, which is needed to calculate the exciton binding energy using
Eq. (7), as well as the amplitudes in Eq. (6). While Dresselhaus
et al. determined the effective electron mass m? ¼ 0:082 of the CB

from cyclotron resonance measurements,41 to calculate μ?, we also
require explicit values for the effective masses of the heavy and
light holes at the L-valley, for which reliable values are not avail-
able. Menéndez et al. provide the reduced masses for both CPs as7

1

μ(E1)?
¼ EP

m0

2
Eu
1
þ 1
(E1 þ Δ1)

u

	 

, (12a)

and
1

μ(E1þΔ1)
?

¼ EP
m0

1
Eu
1
þ 2
(E1 þ Δ1)

u

	 

: (12b)

These expressions come from a six-band k � p-theory model (see
supplementary material Sec. S1 A for a derivation). In Eq. (12),
however, one must be careful with the energy values of E1 and
E1 þ Δ1. Zollner et al.42 point out that to calculate the effective
mass, one must use the unrenormalized energy values, rather than
the experimental energies of the CPs. This is the meaning of the
superscripts u. The unrenormalized values of the CPs incorporate
the redshift due to thermal expansion, but not the self-energy due
to the deformation-potential electron–phonon coupling. We can
obtain the unrenormalized energy as a function of temperature
with the expression

Eu
E1,E1þΔ1

(T) ¼ Eu
E1,E1þΔ1

(0K)� 3B
@Eexp

E1,E1þΔ1

@ p

 !
T

ðT
0
α(θ)dθ, (13)

where α(T) is the temperature-dependent thermal expansion
coefficient, B ¼ 7:58� 1010 Pa is the bulk modulus,43 and
(@Eexp

E1 =@ p)T ¼ 7:5� 10�6 eV cm2 kg�1 is the pressure coefficient
of the E1 CP.44 For this calculation, we take the value of
(@E1=@ p)T � [@(E1 þ Δ1)=@ p]T . We justify this assumption by
noting that the spin–orbit splitting Δ1 is related to atomic effects
and it is, for the most part, unaffected by the distance of the
atoms within the lattice. The thermal expansion coefficient,45

α(T) ¼ 1
a0(T)

da0ðTÞ
dT

, (14)

can be calculated from the expression for the lattice constant in
Eq. (8). Finally, the unrenormalized energy at zero temperature
can be obtained by the following procedure: We first determine
experimentally the energy of the CPs as a function of tempera-
ture. These data points are then fitted with a Bose–Einstein (BE)
model14

EE1,E1þΔ1 (T) ¼ Ea � Eb 1þ 2

eθB=T � 1

� �
: (15)

Once the fitted parameters Ea, Eb, and θB are determined, we set
Eu
E1,E1þΔ1

(0 K) ¼ Ea, where the parameter Ea differs for each CP.
Since we do not know the value of Ea a priori, we used the
experimental value Eexp

E1,E1þΔ1
(0 K) from Ref. 13 as a starting point

for the fit. We then refitted the data using the updated value of
Ea obtained from the previous iteration. This process was
repeated iteratively until Ea converged to a constant value.
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C. Complete model

To encompass both CPs, we added two expressions similar to
Eq. (3) with the appropriate amplitudes and binding energies for E1

and E1 þ Δ1. We also added a constant offset εoff to the real part of

the DF, to account for additional nonresonant contributions from

other interband transitions. The complete form of our model is

ε(E) ¼ εoff þ A(E1)

E þ iΓ(E1)
� �2 ga

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R(E1)

E1 � E � iΓ(E1)

s" #
þ ga

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R(E1)

E1 þ E þ iΓ(E1)

s" #
� 2ga

ffiffiffiffiffiffiffiffiffi
R(E1)

E1

s2
4

3
5

8<
:

9=
;

þ A(E1þΔ1)

E þ iΓ(E1þΔ1)
� �2 ga

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R(E1þΔ1)

E1 þ Δ1 � E � iΓ(E1þΔ1)

s" #
þ ga

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R(E1þΔ1)

E1 þ Δ1 þ E þ iΓ(E1þΔ1)

s" #
� 2ga

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R(E1þΔ1)

E1 þ Δ1

s2
4

3
5

8<
:

9=
;: (16)

It is worth pointing out that, in the parabolic approximation of the
reduced masses of Eq. (12), the matrix element EP cancels out in
the amplitudes of Eq. (6). The resulting amplitudes have the form

A(E1) ¼ 4e2Eu
1 (E1 þ Δ1)

ukmax

3πε0 2(E1 þ Δ1)
u þ Eu

1½ � forE1 (17a)

and A(E1þΔ1) ¼ 4e2Eu
1 (E1 þ Δ1)

ukmax

3πε0 (E1 þ Δ1)
u þ 2Eu

1½ � forE1 þ Δ1: (17b)

With this definition, the ratio of the CPs amplitudes would be
A(E1)=A(E1þΔ1) / (3E1 þ Δ1)=(3E1 þ 2Δ1), or about 0.97 for a tem-
perature of 4 K.

V. RESULTS

A. Fitting procedure

To fit the energy and broadening parameters, we performed
a CP analysis by fitting the second derivative of our model in
Eq. (16) to the 2nd derivative of the experimental data. We then
compared their respective DFs. To obtain the second derivatives,
we applied a digital filter to the DF to smooth the original signal
and suppress the noise in the experimental data. We then convo-
luted the DF with the derivative of the filter to obtain the desired
DF derivative (see Sec. S4 for more information on this procedure).
For the digital filter, we used the extended Gauss (EG) filter, which
is defined in direct space as46,47

bM(x) ¼
XM
m¼0

(�1)m
ΔEm

m!

dm
dΔEm

	 

exp[�x2=(4ΔE2)]

2
ffiffiffiffiffiffiffiffiffi
πΔE

p , (18)

where we selected M ¼ 4 according to the discussion in Ref. 46.
The filter width ΔE was determined by identifying the white noise
onset in the Fourier coefficients of the data.6 In general, given that
noise increases with temperature, the selected filter width also
increased accordingly. To fit our model parameters, we minimized
the residuals between the DF derivatives of the experimental data
and the model. We performed this minimization procedure using
MATLAB’s nonlinear least-squares optimization function.48 For con-
sistency, the derivative of the model must be computed in the same

manner as the derivative of the experimental data.16 Therefore, we
convoluted Eq. (16) with the same EG filter (and same filter width
ΔE) while leaving the fitting parameters free. Figure 3 shows that
the fitted derivative of the model is in good agreement with the
experimental data.

To make the critical point analysis more thorough, we
repeated the minimization procedure with a Savitzky–Golay (SG)
digital filter.49 To generate the smoothing filter, we used MATLAB’s
SG built-in function.48 The order of the polynomial to be fitted was
selected according to the noise of the data. Again, similar to the EG
filter, the order of the polynomial needed to be adjusted at each
temperature. The frame length, on the other hand, was constrained
to 5% of the total number of data points. The results were nearly
identical to the EG digital filter. The values of the fitted parameters
varied less than 1% between the two digital filters. Hence, the
derivatives for the SG filter are not shown in Fig. 3. For a more
in-depth discussion of the fitting procedure and comparison of
the two digital filters, see Sec. S4 in the supplementary material.

B. Temperature dependence of the fitting parameters

We can use the fitted energies and broadenings of the entire
temperature series to characterize these parameters as a function
of temperature. We do this by fitting the BE model of Eqs. (15)
and (19) to the energy and broadening parameters,14

Γ(E1,E1þΔ1)(T) ¼ Γ1 þ Γ0 1þ 2
eθB=T � 1

� �
: (19)

The squares in Fig. 4 show the fitted parameters from the second
derivative analysis. Along with the BE models of the present work,
Fig. 4 also shows the BE models for these CPs from the literature
for comparison.13,14,30 It is clear from Fig. 4 that the energies of our
model are greater than in the previous characterization efforts.
This is to be expected, since the fitted absorption maximum in
our model is not the energy of the CP, but rather the first discrete
absorption peak of the exciton, which is lower than the CP energy
by the exciton binding energy. Broadening also behaves differently.
In Refs. 14, 13, and 30, the broadenings of the CPs are fitted with
Eq. (1b). In contrast, Eq. (3) incorporates broadening by convolu-
tion with a Lorentzian. Although they are difficult to compare
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quantitatively given the two extra parameters B and f, the broad-
ening of Eq. (1b) tends to be larger than for a Lorentzian oscilla-
tor. Thus, our model requires a larger broadening than the
reference values to match the experimental data. Table I shows
the fitted parameters for the BE model, along with the parameters
in the literature.

C. Dielectric function

At a temperature of 4 K, Fig. 5 shows the model DF (16) in
comparison to the experimental data. Figure 6 shows the same
comparison for temperatures from 100 to 600 K. These figures
show an outstanding agreement between the theoretical model and
the experimental DF across the entire temperature range. This level
of agreement is remarkable given that no free parameters other
than energy and broadening are fitted. Nonetheless, it is evident

from Figs. 5 and 6 that, while the model is in excellent agreement
with the data near the CPs, it misses contributions from additional
absorption processes. At lower energies, the model underestimates
the value of ε2 by about 2 units. We attempted to reduce this mis-
match by including the direct bandgap absorption of Ge. At
around 0.9 eV, the direct bandgap of Ge E0 presents itself as the
first CP contributing to the absorption. The DF near E0 is catego-
rized as a three-dimensional M0 Van Hove singularity.1 A descrip-
tion of this CP that not only accounts for the formation of
excitons, but also incorporates excitonic screening already exists in
the literature.5,50 More importantly for our purposes, this line
shape has previously been applied to Ge in a temperature series
similar to our data.6 In their approach, Emminger et al.6 used the
experimental, rather than the unrenormalized E0 CP energies for
the calculation of the effective masses. Unfortunately, even with the
corrected energies and incorporating non-parabolicity effects, E0
contributes less than 1 unit to the amplitude of ε2. Therefore, we
did not include the CP E0 in our calculations (see supplementary
material Sec. S5 more information on E0). The E0

0 and E2 CPs also
contribute to ε2 at higher energies. However, unlike the direct
bandgap E0, there is no established line shape for these CPs, hence
these contributions to the absorption are omitted as well.

FIG. 4. Bose–Einstein model fits for the energy (a) and broadening (b). Shown
by the squares are the fitted parameters, while the blue and red solid lines are
the Bose–Einstein models. For comparison, data from different references are
also shown.13,14,30

FIG. 3. Second derivative of the real (a) and imaginary (b) part of the dielectric
function. The derivatives of the experimental data (translucent lines) were calculated
using the EG digital filter in Eq. (18). The fitted second derivatives of Eq. (16) for
each temperature are shown by the solid lines.
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A more significant issue than the mismatch at high and low
energies is the deviation of ε2 at E1 (around 2.2 eV) and E1 þ Δ1

(around 2.4 eV). At the E1 CP, the ε2 amplitude of our model is
smaller than in the experimental data, whereas for E1 þ Δ1, the
model overestimates the amplitude. This could be due to an incor-
rect value of kmax, which has been fixed at 0:7π

ffiffiffi
3

p
=a0 for all our

calculations. As seen in Fig. 1(b), the range over which the
hh-band (Λ4 � Λ5-band) is parallel to the CB (Λ6-band) could be
different than for the lh-band (Λ6-band). This would lead to differ-
ent values of kmax for E1 and E1 þ Δ1. Moreover, with increasing
temperature, the bands renormalize and change their curvature
slightly, which would ultimately result in a different value of kmax

at each temperature. As the temperature increases, the agreement
in the amplitude of the model and experiment improves for both
CPs (see Fig. 6). This could be explained by the temperature
dependence of kmax. Nevertheless, a different kmax value for E1 and
E1 þ Δ1 is likely to have a small effect, considering how similar the
hh and lh bands are to each other near the L-point.

TABLE I. Fitted parameters of the Bose–Einstein model for the energy and broadening of the E1 and E1 + Δ1 critical points.

Ea (eV) Eb (eV) θBE (K) Γ1 (meV) Γ0 (meV) θBΓ (K)

E1
a 2.32 ± 0.01 0.04 ± 0.01 176 ± 54 56 ± 7 19 ± 10 276(f)

E1 (Ref. 14) 2.33 ± 0.03 0.12 ± 0.04 360 ± 120 12 ± 9 25 ± 3 376(f)
E1 (Ref. 13) 2.295 ± 0.002 0.063 ± 0.004 218 ± 14 11 ± 1 14.2 ± 0.3 218(f)
E1 (Ref. 30) 2.292 ± 0.002 0.059 ± 0.003 198 ± 10 6 ± 2 25 ± 3 341 ± 34
E1 + Δ1

a 2.52 ± 0.01 0.04 ± 0.02 165 ± 79 77 ± 8 19 ± 11 198(f)
E1 + Δ1 (Ref. 14) … … … 9 ± 8 43 ± 5 484(sic)
E1 + Δ1 (Ref. 13) 2.494 ± 0.002 0.064 ± 0.001 218(f) 22 ± 3 15.1 ± 0.6 218(f)
E1 + Δ1 (Ref. 30) 2.494 ± 0.002 0.064 ± 0.003 213 ± 9 14 ± 1 20(f) 250(f)

aPresent work.

FIG. 5. Real (a) and imaginary (b) parts of the dielectric function of Ge at 4 K.
The translucent lines are the experimental data, the fitted model with masses
from the k � p-model in Eq. (12) is shown by the solid lines, and the model with
the reduced mass as an additional free parameter is shown by the dotted–
dashed lines.

FIG. 6. Dielectric function of Ge from 100 to 600 K. The translucent lines are
the experimental data, the fitted model from the k � p-model in Eq. (12) is
shown by the solid lines, and the model with the reduced mass as an additional
free parameter by the dotted–dashed lines.
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D. Fitting the effective mass

A bigger factor in the disagreement between model and exper-
iment could be the calculated reduced masses. The amplitudes in
Eq. (17) are only valid in the six-band k � p-theory model at the
L-point, where the reduced masses are given by Eq. (12). We resort
to this definition of the masses in the absence of any known values
for the hh and lh effective masses. For the standard definition of
the reduced mass,

1

μ(E1,E1þΔ1)
?

¼ 1

m
Lþ6ð Þ

?
þ 1

m
L�4 �L�5 ,L

�
6ð Þ

?
, (20)

the amplitudes of the DF in Eq. (16) revert to their original forms
of Eq. (6). To improve the agreement between theory and experi-
ment, we can treat the reduced masses for both CPs as additional
free parameters and refit our data. To avoid inconsistencies with
the previously fitted values of broadening and energy, we divided
the fitting process into two steps. Initially, to fit the broadening
and energy, we performed a second derivative fitting while holding
the reduced masses constant and equal to their theoretical values.
Subsequently, we fitted μ(E1,E1þΔ1)

? and εoff to the DF. If any discrep-
ancies in their corresponding second derivatives appeared between
the model and experimental data, the two-step procedure was
repeated until no further change was observed.

The effective masses obtained from this new fitting procedure
can be seen in the dotted–dashed lines of Figs. 5 and 6. Although
the agreement between the model and the data improved signifi-
cantly, there is no physical basis behind the fitted reduced mass
values. Figure 7 shows the fitted masses in comparison with the
values calculated from Eq. (12). It also shows literature values of
the reduced masses at 4 K7,51 and at room temperature.52 It can be

seen that the difference between the fitted masses of the CPs is
larger than that in any reference. Furthermore, the fit suggests that
the reduced mass for E1 should be larger than the mass for
E1 þ Δ1, which is not the case according to the literature values.53

Nonetheless, it has been pointed out by Cardona that, in the
Λ-direction, but not at the L-point, linear terms proportional to k?
in the bands tend to increase the reduced mass of E1 while decreas-
ing it for E1 þ Δ1.

14,54 This trend is also seen in Fig. 7. In our calcu-
lations, we used the masses at the L-point calculated from Eq. (12).
However, this expression might not necessarily describe the masses
in the kmax-region of the band structure [gray area in Fig. 1(b)]. In
this region, Cardona states that including linear k? terms in the
band structure would increase the reduced mass μ(E1)? . We would
like to stress to the reader that, while the fitted reduced masses
improve significantly the agreement between model and data, the
strong temperature dependence seen in these fitted values should
not be overinterpreted. As discussed, these masses serve purely as
empirical parameters within the fitting procedure, and the effect of
these linear terms in the reduced masses needs a more thorough
study, perhaps in comparison with larger k � p models. In effect,
this additional fitting parameter can be used to improve the agree-
ment between model and data, but until further research clarifies
the effects of additional terms in the reduced masses of these CPs,
we are unable to justify this additional free parameter on theoretical
grounds. Still, even without treating the masses as free parameters,
we emphasize the excellent agreement between the theoretical
model and the experimental data. Put another way, while the
empirical fitting of the masses improves the match in the DF, it is
not essential for obtaining remarkable results.

VI. DISCUSSION

One possibility for the difference between the measured and
calculated DF is that near the energy of E1, there are interband
transitions that do not occur along the Λ-direction of the Brillouin
zone (in the Σ-direction, for example). While there is no CP
present in this region, there is an energy separation between the CB
and VB similar to the energy of E1. Depending on the strength of
these additional absorption processes, they could affect the ampli-
tude of each CP differently.

Additionally, surface effects could have an impact on the
quality of the agreement between model and experiment. The phys-
ical and numerical removal of the oxide layer described in Sec. III
has been proven to be effective previously.6,30,31 Hence, there is no
reason to think that our point-by-point fit has large errors, or that
temperature changes would affect this procedure significantly.
Nonetheless, it is worth noting how this oxide layer affects the
pseudo-DF εh i. As the oxide layer gets thicker, it tends to increase
the amplitude of E1 in ε2h i, while leaving the amplitude of E1 þ Δ1

constant. In other words, an underestimation of the oxide layer
thickness will give an E1 amplitude greater than it should be in the
extracted point-by-point fit for the substrate. Figure 8 shows the
DF of the point-by-point fit with different oxide layer thicknesses
compared to our model. While the model resembles closer to the
30 Å oxide layer fit, the previously mentioned procedure to estimate
the oxide thickness yielded a GeO2 layer of 11 Å. Therefore, there is
no evidence from the fitting that this layer should be as thick as 30 Å.

FIG. 7. Fitted reduced masses as a function of temperature for E1 (A) and
E1 þ Δ1 (�). The solid lines show results from Eq. (12). The dotted–dashed
and dashed lines are literature values at 4 K7,51 and room temperature,52

respectively.
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Hence, the match between our model and the overlayer fit seems to
be purely coincidental. On the other hand, different surface orienta-
tions of the bulk Ge material lead to a different surface reconstruc-
tions, which also affects interband transitions due to the different
lattice periodicity at the surface.55 These effects, however, are too
small to make a difference in the discrepancies between our model
and the experimental data (see supplementary material Sec. S6 for
data differences depending on surface orientation).

Yet another factor to consider is excitonic screening. In the
presence of excited electrons in the CB, the Coulomb interaction
between the carriers gets partially screened. In his DF expression for
three-dimensional excitons, Tanguy accounts for excitonic screening
by solving the Schrödinger equation for the Hulthén potential.50 In
contrast, such a solution for screened two-dimensional excitons does
not exist in the literature.56–59 For this reduced dimensionality
problem, recent efforts have found the binding energy for screened
excitons in two-dimensional materials (these are solutions to the
Rytova–Keldysh potential).60,61 Unfortunately, an expression of the
DF for this potential is yet to be found. Moreover, given the low
carrier densities at play, it is unlikely that including excitonic screen-
ing effects would improve our model.

Therefore, we conclude that the most probable sources of the
difference between experiment and theory are nonresonant interband
transitions and the precise values of the reduced masses of the CPs.

VII. CONCLUSION

In this work, we have demonstrated the importance of exci-
tonic effects in the optical constants of Ge near the E1 and E1 þ Δ1

CPs. By applying Tanguy’s model for two-dimensional Wannier
excitons, we provided an improved description of the DF that,
despite not agreeing perfectly with the data, describes experimental
results better than any efforts published so far. Furthermore, in the
temperature characterization of the fitted CP parameters, our
results show greater transition energies and broadenings due to the
inclusion of excitonic contributions.

Despite these advances, some discrepancies still persist in the
amplitude of the CPs which require further revision of the theory.
Specifically, future work should probe the effects of including linear
k? terms in the reduced masses of the CPs, the influence of remote
bands, and potential contributions from nonresonant interband
transitions. Moreover, extending this analysis to other semiconduc-
tor materials could help improve our calculations to refine the
model even further.

SUPPLEMENTARY MATERIAL

See the supplementary material for a discussion of the para-
bolic approximation of the effective masses and how they are
implemented to calculate the DF. Furthermore, a brief discussion
of the unrenormalized masses and how they vary with temperature.
We also discuss how the second derivatives are obtained numeri-
cally with the EG and SG digital filters. An analysis of the direct
bandgap of Ge that includes non-parabolicity terms is presented as
well. Finally, we discuss the impact of the surface orientation on
the bulk DF.
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fits with different thicknesses for the oxide correction (translucent lines).
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S1. EFFECTIVE MASSES

A. Parabolic approximation at the L-point

The E1 and E1+∆1 critical points (CPs) presented in Fig. 1b arise from interband transitions taking place from the heavy-hole
(L−

4 ⊕L−
5 -band) and light-hole (L−

6 -band) valence band (VB) to the L+
6 conduction band (CB), respectively. The symmetries

associated with these bands correspond to the set of wave function basis vectors1,17

L+
6 : |Z ↑⟩ , |Z ↓⟩ ,

L−
4 ⊕L−

5 :
1√
2
|X + iY ↑⟩ , 1√

2
|X − iY ↓⟩ , (S1)

L−
6 :

1√
2
|X + iY ↓⟩ , 1√

2
|X − iY ↑⟩ .

Just like in Sec. II, the z-axis was chosen along the Λ-direction. In this basis, and with the aid of k ·p theory, we can explicitly
calculate the matrix ⟨un0|k ·p|un′0⟩ to get an expression for the effective masses of the bands (n is the index of the band). We
note that the only non-zero momentum matrix elements are1,17

−i⟨Z|px|X⟩=−i⟨Z|pY |Y ⟩= P. (S2)

Naturally, the states in (S1) with opposite spins will not couple. Hence, the 6-band k ·p Hamiltonian will become a 3×3 matrix
represented as follows:1,17

⟨un0|k ·p|un′0⟩=

〈L+
6

∣∣k ·p
∣∣L+

6

〉 〈
L+

6

∣∣k ·p
∣∣L4
〉 〈
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6

∣∣k ·p
∣∣L−

6

〉〈
L4
∣∣k ·p

∣∣L+
6

〉
⟨L4|k ·p|L4⟩

〈
L4
∣∣k ·p

∣∣L−
6

〉〈
L−

6

∣∣k ·p
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6

〉 〈
L−

6

∣∣k ·p
∣∣L4
〉 〈

L−
6

∣∣k ·p
∣∣L−

6

〉


=


0 iP√

2
k⊥ iP√

2
k⊥

− iP√
2
k⊥ 0 0

− iP√
2
k⊥ 0 0

. (S3)

Since the only matrix elements that are nonzero are perpendicular to |Z⟩, the wave vector k reduces to k⊥ and the motion of the
carriers gets restricted to a two-dimensional plane. The full Hamiltonian is given by1,17

H0 +H̃k =


E1

ih̄P
m0

√
2
k⊥ ih̄P

m0
√

2
k⊥

− ih̄P
m0

√
2
k⊥ 0 0

− ih̄P
m0

√
2
k⊥ 0 −∆1

. (S4)

After diagonalizing the matrix (S4), we get the characteristic equation

Ẽ3 − (E1 −∆1) Ẽ2 −

(
E1∆1 +

h̄2P2k2
⊥

m2
0

)
Ẽ −

h̄2P2k2
⊥∆1

2m2
0

= 0, (S5)
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where Ẽ = E − h̄2k2/2m0 is the modified energy parameter introduced by Kane62 (where the kinetic energy of the free electron
has been subtracted). For small values of k⊥, we can solve Eq. (S5) perturbatively to get the 3 solutions (one for each band):7,51

ECB = E1 +
h̄2k2

⊥
2

[
1

m0
+

EP

m0

(
1

E1
+

1
E1 +∆1

)]
︸ ︷︷ ︸

1/m
(L+6 )

⊥

(S6)

Ehh =
h̄2k2

⊥
2

(
1

m0
− EP

m0E1

)
︸ ︷︷ ︸

1/m
(L−4 ⊕L−5 )

⊥

(S7)

Elh =−∆1 +
h̄2k2

⊥
2

[
1

m0
− EP

m0(E1 +∆1)

]
︸ ︷︷ ︸

1/m
(L−6 )

⊥

(S8)

To simplify the notation, we have made the substitution EP = P2
/m0. Systems of correlated electron-hole pairs generated at the

L-point will have a transverse reduced effective mass:17

µ
(E1)
⊥ =

 1

m
(L+6 )

⊥

− 1

m
(L−4 ⊕L−5 )

⊥

−1

=

[
EP

m0

(
2

E1
+

1
E1 +∆1

)]−1

(S9)

and µ
(E1+∆1)
⊥ =

 1

m
(L+6 )

⊥

− 1

m
(L−6 )

⊥

−1

=

[
EP

m0

(
1

E1
+

2
E1 +∆1

)]−1

(S10)

corresponding to the two CPs E1 and E1 +∆1, respectively.

B. Non-parabolicity at the L-point with small spin-orbit interaction

Instead of approximating for small values of k⊥, we can solve the characteristic Eq. (S5) exactly with Vieta’s solution for a
cubic equation. These solutions, however, are not useful for our purposes given that they cannot be inverted to get the density of
states as a function of energy. Instead, we can use the small spin-orbit (SO) approximation by letting ∆1 → 0. If we do this, the
characteristic equation becomes

Ẽ3 −E1Ẽ2 −
h̄2k2

⊥
m0

EPẼ = 0, (S11)

with one solution Ẽhh = 0, and the other two

ẼCB,lh =
E1 ±

√
E2

1 +4 h̄2k2
⊥

m0
EP

2
. (S12)

We can expand the square roots in Eq. (S12) in k2
⊥ to obtain
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)
(S13)
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⊥
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)
. (S14)

FIG. S1 shows the bands of the exact solution, the parabolic, and the small SO approximation. The CB in the small SO
approximation is almost identical to the 6-band solution. For the lh-band, the curvature of the small SO approximation is similar
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to the exact solution, however, the parabolic approximation is in better agreement to the exact solution. On the other hand,
even in the 6-band model solution, the hh-band shows the wrong curvature. The band seems almost flat, indicating a nearly
infinite transverse mass. Cardona states that including non-parabolicity terms linear in k⊥ make the transverse reduce mass for
E1 infinite.54 However, this is in the Λ-region (and not at the L-valley). Unfortunately, this solution does not resemble what we
see in k ·p-theory calculations with higher number of bands.25 Further calculations probing not only the bottom of the L-valley,
but also the Λ-direction away from the L-valley are needed.
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FIG. S1: Band structure of Ge at the L-valley. The perpendicular k⊥-vector is shown in atomic units where a0 = 0.53 Å.
The thick solid lines represent the exact solution to the 3× 3 Hamiltonian in Eq. (S4), the thin solid lines show the parabolic
approximation, and the dot-dashed lines are the small spin-orbit approximation.

S2. DIELECTRIC FUNCTION OF GE

Previous attempts to describe the CPs of interest give the line shape of the DF as a step function17

ε
(E1)
2 =

(
1

4πε0

)
16kmaxe2P2

µ
(E1)
⊥

3m2
0E2 H(E1 −E), (S15a)

ε
(E1+∆1)
2 =

(
1

4πε0

)
16kmaxe2P2

µ
(E1+∆1)
⊥

3m2
0E2 H(E1 +∆1 −E), (S15b)

where H is the Heaviside step function, kmax is the maximum range in the k-axis where transitions take place, and P is the
average momentum matrix element.25,26 The real part ε1 can be calculated from the expression for ε2 with a Kramers-Kronig
transformation. Alternatively, Humlíček gives the full expression for the DF while adding broadening to Eq. (S15) as18

ε
(E1)(E) =−

(
1

4πε0

)
16kmaxe2P2

µ
(E1)
⊥

3m2
0πE2 ln

[
2(E1 − iΓ−E)

E1 − iΓ

]
, (S16a)

ε
(E1+∆1)(E) =−

(
1

4πε0

)
16kmaxe2P2

µ
(E1+∆1)
⊥

3m2
0πE2 ln

[
2(E1 +∆1 − iΓ−E)

E1 +∆1 − iΓ

]
. (S16b)

Eqs. (S16) give the DF for uncorrelated electron-hole pairs shown by the blue dashed lines in Fig. 2.



S4

In the following, we briefly describe how to derive Eq. (S15a). We start by computing the amplitude in Eq. (3) for the E1 CP
of Ge from the expression for the imaginary part of the dielectric tensor1,63

ε2(E)µν =

(
1

4πε0

)
4π2e2h̄2

m2
0E2 ∑

CV
⟨V|pµ |C⟩ ⟨C|pν |V⟩

∫ dk
4π3 δ (EC(k)−EV(k)− h̄ω). (S17)

Since we are dealing with a cubic system, only the diagonal components of the tensor are non-zero. Therefore, we can replace
the dielectric tensor with the dielectric function by averaging the contributing components ε2 = (εxx + εyy + εzz)/3. Moreover,
from k ·p theory, the matrix elements reduce to17

∑
CV

⟨V|pµ |C⟩ ⟨C|pν |V⟩= | ⟨C|Px|V⟩|2︸ ︷︷ ︸
P2

/2

+
∣∣⟨C|Py|V⟩

∣∣2︸ ︷︷ ︸
P2

/2

+ | ⟨C|Pz|V⟩|2︸ ︷︷ ︸
0

= P2
, (S18)

hence we can replace the matrix element in Eq. (S17) with the average transition matrix element P. Finally, we multiply the DF
by 4 to account for the L-valley degeneracy. The result is

ε2(E) =
(

1
4πε0

)
4π2e2h̄2

m2
0E2

(
4P2

3

)∫ dk
4π3 δ (EC(k)−EV(k)− h̄ω). (S19)

To solve the integral in Eq. (S19), we replace it with the JDOS in Eq. (2) and switch to cylindrical coordinates. In the new
coordinate system, the DF looks like

ε2(E) =
(

1
4πε0

)
16π2e2P2h̄2

3m2
0E2

∫∫∫ kρ dkρ dkϕ dkz

4π3 δ

(
E1 +

h̄2k2
ρ

2µ⊥
−E

)
. (S20)

The integral
∫

dkϕ = 2π is trivial. To integrate over kρ , we make the substitution u = h̄2k2
ρ/2µ⊥, which transform the integral

∫
∞

0
kρ dkρ δ

(
E1 +

h̄2k2
ρ

2µ⊥
−E

)
→ µ⊥

h̄2

∫
∞

0
duδ (E1 +u−E) . (S21)

Its solution yields the Heaviside step function H(E1 −E). Finally, the integral over kz needs to be limited to the range where the
transitions take place. We call this kmax. The final result for E1 is

ε
(E1)
2 =

A
E2 H(E1 −E), with A =

4e2P2
µ
(E1)
⊥

3πε0m2
0

kmax, (S22)

which is simply Eq. (S15a). Notice the similarity between the amplitudes in Eq. (S22) and Eq. (4a). These amplitudes are the
same if we simply replace the transition matrix element e ·MCV → P2kmax/3 and multiply by the valley degeneracy (multiply
by 4 for L-valley).

S3. UNRENORMALIZED ENERGIES

To get the unrenormalized energies of the CPs, we will follow the procedure by Zollner et al.42 where they give the unrenor-
malized value for the direct bandgap E0 as

Eu
0 (T ) = Eu

0 (T = 0 K)−3B
(

∂Eexp
0

∂ p

)
T

∫ T

0
α(θ)dθ , (S23)

where the superscript u stands for unrenormalized, B is the bulk modulus, α(T ) is the temperature-dependent thermal expansion
coefficient, and p is the pressure. For our purposes, we will replace the unrenormalized energy at zero temperature with the
fitted parameter Ea in the Bose-Einstein model of Eq. (15). The fitted parameters Ea, Eb, and θB in Table I are obtained by
fitting the experimental CP energies of Table SI. Fig. S2 (b) shows the experimental energy of the E1 and E1 +∆1 CPs as a
function of temperature (dot-dashed lines). To subtract the thermal effect, we use the thermal expansion coefficient given by Eq.
(14). Menéndez et al. obtained the values in Eq. (8) by fitting the experimental thermal expansion data from Ma and Tse.40 As
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an alternative to Eq. (8), we could also use a more sophisticated expression for the thermal expansion coefficient provided by
Roucka et al. as64

α(T ) =
4kB

a3
0B

[
2
3

γTA

(
ΘTA

T

)2 eΘTA/T(
eΘTA/T −1

)2 + γLA

(
T

ΘLA

)3 ∫ ΘLA/T

0

x4ex

(ex −1)2 dx+ γopt

(
Θopt

T

)2 eΘopt/T(
eΘopt/T −1

)2

]
, (S24)

where a0 = 5.6568 Å is the lattice constant,65 γ is the Grüneisen parameter, and Θ is the Debye temperature. The subscripts LA,
TA, and opt stand for the longitudinal acoustic, transverse acoustic, and optical modes, respectively. As seen in Fig. S2 (a), the
more complicated expression in Eq. (S24) yields an almost identical result to Eq. (14). Therefore, we settle on using Eq. (8) for
this work. Fig. S2 (a) also shows experimental thermal expansion coefficients from the literature.66,67

The result of the unrenormalized energy in Eq. (S23) is shown in Fig. S2 (b) (solid lines). For this calculation, we take the
value of (∂E1

/
∂ p )T ≈ [∂ (E1 +∆1)

/
∂ p ]T . We justify this assumption by noting that the SO shift ∆1 is related to atomic effects

and it is, for the most part, unaffected by the distance of the atoms within the lattice. Finally, Fig. S2 (c) shows the exciton
binding energies for both CPs in the left axis (solid lines), as well as the reduced masses on the right axis (dashed lines).
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FIG. S2: (a) Thermal expansion coefficient from Eq. (14)36 (blue solid line) and Eq. (S24)64 (green solid line) compared to
experimental data (⃝).66,67 (b) The experimental values for E1 and E1 +∆1 (blue and red dot-dashed line, respectively) are
shown along with their respective unrenormalized energy (red and blue solid lines, respectively). (c) On the left axis is the
binding energy of the excitons of the critical points (black and red solid lines). On the right axis is the transverse reduced
effective masses (green and blue dot-dashed lines).

S4. FITTING PROCEDURE

To suppress the noise of the experimental data, we used a direct space convolution of the experimental DF with a digital filter.
The convolution f between f (x) and b(x) has the following property:

f (x) =
∫

∞

−∞

dx′ f (x− x′)b(x′) =
∫

∞

−∞

dx′ f (x′)b(x− x′). (S25)

Note that, in light of Eq. (S25), operations such as d f (x)
/

dx produce the same outcome whether they act on f (x− x′) or
b(x− x′). To compute the second derivative of the experimental data, we take full advantage of this property by differentiating
the digital filter (an analytical function) instead of the experimental data (a set of discrete points). To perform the convolution,
we used MATLAB’s built-in function conv(u,v), where u and v are the vectors being convoluted. For the fitting procedure, we
created a residual vector function with five free parameters [E1, ∆1, Γ(E1), Γ(E1+∆1), and εoff]. The two components of this vector
function consisted of the real and imaginary part of the experimental 2nd derivative of the DF minus the corresponding parts of
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TABLE SI: Value of the fitting parameters and filter width ∆E for the extended Gauss digital filter. The step size selected was 1
meV from 1.0 to 3.2 eV (2201 points). (f) indicates a fixed parameter.

T ∆E (meV) E1 (eV) E1 +∆1 (eV) Γ(E1) (meV) Γ(E1+∆1) (meV) εoff
4 K 12.0 2.2793±0.0009 2.4779±0.002 75±1 96±2 6(f)

100 K 14.5 2.2599±0.0008 2.4600±0.002 79±1 103±2 6(f)
200 K 17.5 2.2187±0.0009 2.4176±0.002 89±1 119±2 7(f)
300 K 21.5 2.1674±0.0009 2.3638±0.002 101±1 136±2 7(f)
400 K 27.5 2.1167±0.0006 2.3147±0.002 115±1 157±2 8(f)
500 K 27.5 2.0656±0.0007 2.2642±0.003 128±1 175±2 8(f)
600 K 25.0 2.0172±0.0009 2.2170±0.003 142±1 193±3 8(f)
700 K 33.0 1.968±0.001 2.1683±0.004 155±1 212±4 8(f)
800 K 35.0 1.917±0.002 2.1182±0.006 171±2 243±6 9(f)

TABLE SII: Value of the fitting parameters and order of polynomial n for the Savitzky-Golay digital filter. The frame length was
constrain to 5% of the number of points (11 points). (f) indicates a fixed parameter.

T n E1 (eV) E1 +∆1 (eV) Γ(E1) (meV) Γ(E1+∆1) (meV) εoff
4 K 7 2.279±0.002 2.478±0.006 76±3 96±6 6(f)

100 K 7 2.260±0.002 2.460±0.006 80±2 103±5 6(f)
200 K 7 2.219±0.003 2.418±0.005 89±3 119±7 7(f)
300 K 5 2.167±0.003 2.364±0.005 102±2 137±5 7(f)
400 K 5 2.117±0.002 2.315±0.005 116±2 157±6 8(f)
500 K 5 2.066±0.002 2.264±0.007 129±2 175±6 8(f)
600 K 4 2.017±0.002 2.217±0.008 142±3 193±9 8(f)
700 K 3 1.968±0.003 2.17±0.01 155±3 212±12 8(f)
800 K 3 1.917±0.006 2.12±0.02 171±6 234±18 9(f)

the numerical derivative of the model:

residual(E1,∆1,Γ
(E1),Γ(E1+∆1),εoff,E) =

Re
{

d2εexp(E)
dE2

}
−Re

{
d2εmodel(E1,∆1,Γ

(E1),Γ(E1+∆1),εoff,E)
dE2

}
Im
{

d2εexp(E)
dE2

}
− Im

{
d2εmodel(E1,∆1,Γ

(E1),Γ(E1+∆1),εoff,E)
dE2

}
. (S26)

After creating the residual vector function (S26), we minimized it with the MATLAB function lsqnonlin(fun,x0,lb,ub),
where the input fun is the function to be minimized, x0 is the vector with the initial guess for the fitting parameters, lb, and ub
are the vectors with the lower and upper bounds for the fitting parameters, respectively.

A. Extended Gaussian digital �lter

The extended Gaussian (EG) digital filter of Eq. (18) for M = 4 has the form46,47

b4(x) =
1

12288∆E
√

π

(
15120− 10080x2

∆E2 +
1512x4

∆E4 − 72x6

∆E6 +
x8

∆E8

)
exp
(
− x2

4∆E2

)
. (S27)

However, since we are interested in the 2nd derivative of the data, we can compute the second derivative of Eq. (S27) and perform
the convolution with εexp(E) afterward.

d2b4(x)
dx2 =

1
49152∆E3

√
π

(
−110880+

188496x2

∆E2 − 45936x4

∆E4 +
3608x6

∆E6 − 106x8

∆E8 +
x10

∆E10

)
exp
(
− x2

4∆E2

)
. (S28)

To select the filter width ∆E, we Fourier-transform the experimental data and plot the natural logarithm of the amplitude Cn
of the coefficients as seen Fig. S3 (a). We then eliminate the higher order coefficients (noise) and retain the lower ones which
preserve the information of the original signal. The same cutoff of the coefficients is also applied to the Fourier transform of
the EG filter B4(n), shown in Fig. S3 (a) as well. In this figure, we show the Fourier coefficients of the experimental data as a
function of the order of coefficients n at 200 K, along with the Fourier transform of the extended Gaussian filter B4(n) for two
different filter widths. For this particular measurement, we selected the cutoff at the 31st coefficient. The reader might find this
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cutoff too conservative and that such a large filter width could suppress a portion of the signal. To address these concerns, we
repeated the fitting procedure with the cutoff at the 41st coefficient [see the cyan dash-dotted line in Fig. S3 (a)]. We find that
including higher-order coefficients increases noise but does not change the fitted energy and broadening parameters beyond their
uncertainty. Therefore, we settled with the larger filter width. The dark circles in Fig. S3 (b) show the EG derivatives for this
measurement. One of the advantages of this method is the increase in the number of points available in the derivative. In our
case, the EG filter produces 2201 derivative points, resulting from the chosen energy step size of 1 meV over the range from 1.0
to 3.2 eV. This is in contrast to the Savitsky-Golay (SG) derivative [shown by the red and blue lines in Fig. S3 (b)], where the
derivative is limited to the number of points of the original signal. Once the filter width has been selected, we can minimize the
residual function in Eq. (S26) to fit the energy and broadening parameters. Table SI shows the fitted parameters for this method.

B. Savitzky-Golay digital �lter

To obtain the SG digital filter, we employed the built-in MATLAB function sgolay(m,fl). This function gives a matrix of
a finite impulse response smoothing filter. The input m is the polynomial order and fl is the frame length. We used 11 points
for the frame length, which is approximately 5% of the total number of data points (this number must be odd). The order of
the polynomial is listed in Table SII for each temperature series. Once we have generated the SG filter, we can obtain the nth

derivative by convolving the experimental data with the (n+1)th column of the filter matrix. The solid lines in Fig. S3 (b) show
the SG derivatives for the experimental data at 200 K. Table SII shows the final values of the fitted parameters with the SG filter.
Notice the similarity of the fitted values for energy and broadening between the two filters.
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function at 200 K. The same plot also shows the Fourier transform of the extended Gaussian filter (⃝) for different filter widths.
(b) 2nd derivative of the dielectric function calculated with the extended Gauss filter (⃝) and with the Savitzky-Golay filter
(solid).

S5. DIRECT BANDGAP

The lineshape of the E0 CP was presented previously by Emminger et al. as6

ε(E) =
A
√

R
π(E + iΓ)2 {g̃ [ξ (E + iΓ)]+ g̃ [ξ (−E − iΓ)]−2g̃ [ξ (0)]} , (S29)

with g̃(ξ ) =−2ψ

(
g
ξ

)
− ξ

g
−2ψ (1−ξ )− 1

ξ
, ξ (z) =

2√
E0−z

R +
√

E0−z
R + 4

g

, and A =
e2√m0√
2πε0h̄2 µ

3/2
h

EP

3
.

This model is quite similar to Eq. (3), since it also takes into account excitonic (and screening) contributions to the CP. We can
improve Eq. (S29) by including non-parabolicity contributions to the effective mass at the Γ-point. By following the procedure
in Ref. 42 we use the small spin-orbit (SO) coupling approximation to get an analytical expression for the CB effective mass
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FIG. S4: (a) In addition to the parabolic approximation (thin solid line), we show the exact solution (thick solid line) and the
small spin-orbit approximation (dot-dashed) to the 8-band model of the band structure of Ge. (b) Imaginary part of the dielectric
function at 4 K in the parabolic approximation (solid) and including non-parabolicity linear terms in αε (dashed) and quadratic
terms in βε2 (dot-dashed) of the density of states mass. (c) Parabolic (solid) and non-parabolic (dashed, dot-dashed) models
extended up to 3 eV.

and, therefore, the electron density of states (DOS) mass. If we consider an 8-band model (CB, hh, lh, and SO band), our k ·p
Hamiltonian looks like62

H0 +H̃k =


E0 0 − h̄k

m0
iP 0

0 − 2∆0
3

2∆0
3 0

h̄k
m0

iP 2∆0
3 − 2∆0

3 0
0 0 0 0

. (S30)

We can construct an exact solution of the band energies by solving the characteristic equation to this eigenvalue problem. Similar
to Eq. (S5), the exact solutions to Eq. (S30) are not useful for our purposes because they cannot be inverted to get the DOS as
a function of energy. Instead, we assume that the spin-orbit (SO) coupling is small and approximate ∆0 → 0. As a result, this
approximation makes the center terms in the Hamiltonian matrix (S30) zero and gives two degenerate solutions of zero (the hh-
and SO-band) and two non-zero solutions (the CB and lh-band). In Fig. S4 (a), we can see that in the small SO approximation,
the CB fits reasonable well to the exact solution of the band structure (at least in our 8-band 4× 4 Hamiltonian model). Since
there are two zero solutions in the small SO approximation, the hh- and SO-VB are degenerate and lie on top of the exact solution
of the hh-band. The effective mass of the electron in CB and the hole in the lh-band are, therefore, given as

me =
E0

EP +E0
, mlh =

E0

EP −E0
.

However, the band structure in Fig. S4 (a) clearly shows that the small SO approximation does not present a good match with
the exact solution of the lh-band. For this reason, we will only consider non-parabolicity effects in the CB, while leaving the VB
in its parabolic approximation form. Hence, we will only consider me to calculate the DOS mass42

me,DOS = me
[
(1+αeε+βeε

2)(1+2αeε+3βeε
2)2]1/3

, (S31)

where42

αe =
E2

P
E0(E0 +EP)2 , βe =− 2E3

P
E0(E0 +EP)4 , (S32)
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and ε is the energy above the band minimum E0. Including α and β into the DOS effective mass has the effect of overestimating
ε2. This can be seen in Fig. S4 (b). To compensate this, we would have to consider the k-dependence of the matrix element EP,
which should bring ε2 closer to the experimental value (we do not pursue this here).1,62 Still, independently of the approximation,
the amplitude of ε2 is around one between 1.5 and 3 eV. Therefore, including E0 in the Tanguy line-shape would not be enough
to match the experimental data in the E1 and E1 +∆1 region.

S6. SURFACE EFFECTS

To showcase the dielectric function for different surface orientations, we measured Ge substrates with (100), (110), and (111)
surface orientations. We then follow the procedure explained in Sec. III to remove the effects of the oxide layer from the data.
The (110) surface orientation had an estimated oxide layer thickness of about 28 Å, whereas the (100) and (111) surfaces had
a similar oxide layer thickness of about 25 Å. The resulting point-by-point fits are shown in Fig. S5. It can be seen that the
difference between the samples is negligible. Therefore, we find it unlikely that these surface-related effects are responsible for
the discrepancies between theory and experiment observed in our model for the dielectric function near the E1 and E1 +∆1 CPs.
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FIG. S5: Real (a) and imaginary (b) parts of the dielectric function of Ge from a point-by-point fit for three substrates with (100),
(110), and (111) surface orientations (black, blue, and red, respectively).
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