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Abstract

Assuming a local response is a commonly used approximation in calculating the di-
electric tensor. Terms that appear beyond this approximation are collectively called
spatial dispersion. These terms depend on the wavevector of the propagating light. We
focus on the quadratic term, specifically in achiral cubic crystals where the symmetry
forbids the linear term. The fact that cubic crystals are isotropic within the local response
approximation allows us to assess the weak spatial dispersion.

We analyzed Si crystals with (001), (011), and (111) surface orientations, and CaF2
crystal with (111) orientation. We fitted the acquired linear birefringence data to obtain
the spectral functions of the dielectric tensor.

We also measured the azimuthal angle dependence of linear birefringence at oblique
angles of incidence for a single wavelength. The results for CaF2 qualitatively agree with
published literature [1]. The results for Si exhibit strong dependence on the thickness
of the native oxide layer. We were able to fit the acquired linear retardance using the
spectral function from the normal incidence measurement. We are not aware of any
publication the Si results could be compared against.
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odlišná. Proto bylo nutné vytvořit disperzní model s komponenty závislosti na velikosti vlnového vektoru vyššího řádu
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této funkce v členech, které jsou lineární na vlnovém vektoru. Je logické, že v případě kubických krystalů s nechirální
symetrií kubický člen deformačního tenzoru bude manipulovat s rezonančními frekvencemi všech komponent ode-
zvové funkce, tedy i s rezonančními frekvencemi odpovídající příčným módům šíření světla v anizotropním prostředí.
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1. V prvním kroku bude nutné formulovat tenzorový počet zahrnující sudé komponenty rozvoje závislosti na vlnovém
vektoru.
2. V rámci tohoto vektorového počtu zobecnit disperzní model opticky aktivních harmonických oscilátorů, tak aby byl
schopen popsat dvojlom ve studovaných prostředích.
3. Výsledky srovnat s experimentálními daty [3] naměřenými pomocí zobecněné elipsometrie na krystalických křemí-
kových destičkách s orientací povrchu (110) v prošlém i odraženém světle.
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Models Fulfilling Three Fundamental Conditions, Journal of Applied Physics 127 (2020) 223101.
[3] S. Bian, R. Ossikovski, A. Canillas, G. Jellison, and O. Arteaga, “Spatial dispersion in silicon”, Phys. Rev. B, vol.
109, p. 035 201, 3, 2024, doi: 10.1103/PhysRevB.109.035201
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Introduction

In natural materials, the wavelength of a probing electromagnetic wave is often assumed
to be much larger than interatomic distances [2]. This approximation greatly simplifies
calculations, but even on common materials such as silicon, we can observe small devia-
tions from the expected symmetries [3, 4]. Terms that appear beyond this approximation
are collectively called spatial dispersion.

A concrete example is what happened to the 157 nm optical litography, where the
discovery of spatial dispersion effects in CaF2 and BaF2 led to a major effort to correct
the resulting aberations [1, 5].

This thesis focuses on the theory of spatial dispersion and its application to polari-
metric measurements on silicon and CaF2.

The first chapter serves as a general introduction into the theory of linear optical
response. We go step by step through the fundamental derivation whilst staying away
from the local response approximation. This aproach leads us to a wavevector dependent
response. One could do an one-line ad hoc series expansion of the dielectric response
that would lead us to the same result. We, however, like to provide a little bit of insight
into the nature of spatial dispersion.

In the second chapter we take a closer look at cubic crystals, speciffically the achiral
ones, which do not exhibit any gyrotropy. We translate the symmetries of these systems
into the symmetries of the dielectric response. We porpose two simple spatial dispersion
models in the transparent spectral range. We also outline how to modify traditional
computation methods so that they account for spatial dispersion.

The third chapter provides an overview of the experimental methods used. We also
describe the samples which were used in this study.

The fourth chapter concerns the experimental results and is divided into two parts. In
the first part, we study the spectral dependence of the dielectric tensor and evaluate the
validity of the proposed models. In the second part, we analyze the angular dependence
of the linear birefringence stemming from spatial dispersion.

1





1 Dielectric response with spatial dispersion

The main objective of this chapter is to give a basic understanding of the linear dielectric
response of a material to external electromagnetic field. We recall the frequently used
optical constants and revise them in order to include small anisotropic terms which
are typically neglected. The beginning of this chapter gives a basic definition of the
electromagnetic susceptibility. The approach begins with a general description and
incrementally incorporates more specific assumptions, leading to the linear optical
response of semiconductors.

1.1 Electromagnetic field

The electromagnetic field is completely described by the electric field E and magnetic
induction B. It can be equivalently described in terms of the scalar Φ and vector potential
A which are linked to the fields by equations

E(r, t) = −∇Φ(r, t)− ∂

∂t
A(r, t), (1.1a)

B(r, t) = ∇× A(r, t). (1.1b)
The potentials are not unique. A transformation by a scalar field Λ can be introduced as

Φ → Φ − ∂tΛ and A → A +∇Λ, (1.2)

which does not change any measurable quantities, i. e. it preserves equations (1.1). In
the following we will use Λ such that ∇ · A = 0. This condition does not determine Λ
unambigously. Even now we can still add another scalar function Λ̃ that satisfies the
Laplace equation ∆Λ̃. This time we choose Λ̃ for which Φ = 0. In other words, we will
use the Coulomb gauge.

Inside amaterial medium, however, particles can behave like electric dipoles or create
magnetic dipole moments. This results in new contributions to the electromagnetic fields
which are referred to as dielectric polarization P and magnetization M, respectively.
When working with matter, it is convenient to define auxiliary fields called electric
induction D and magnetic field H by subtracting the material response

D(r, t) = ϵ0E(r, t) + P(r, t), (1.3a)

H(r, t) =
1
µ0

B(r, t)− M(r, t). (1.3b)

The new fields simplify Maxwell’s equations in a way that only free charges and free
currents remain as sources. The remaining task is then to find a relation between the
auxiliary and the actual fields.

3



1. Dielectric response with spatial dispersion

Most of non-magnetic materials show no or only a negligible magnetization at optical
frequencies, and hence we will put H = B/µ0. In fact, in an infinite medium there is, in
general, no clear boundary between polarization current and magnetization current.
This issue was thorougly discussed by Landau et. al. in [6].

1.2 Minimal coupling

In optical experiments, the probing light has a very low electromagnetic field compared
to fields bewteen particles of matter [6]. We will treat the external fields as a time
dependent perturbation. The total Hamiltonian of the system of matter particles and
the field can be divided into three parts

ℋ̂ = ℋ̂M,0 + ℋ̂F,0 + ℋ̂int, (1.4)
where ℋ̂0 = ℋ̂F,0 + ℋ̂M,0 is the Hamiltonian of a non-interacting system and ℋ̂int con-
tains the interaction of particleswith the electromagnetic field.Note that theHamiltonian
ℋ̂ acts on a Hilbert space HM ⊗HF (everything matter related will carry subscript "M"
and electromagnetic field related will be subscripted with "F"). The action of ℋ̂M,0 on
the subspace HF is trivial (identity). The same holds for ℋ̂F,0 acting on HM.

To derive the interaction operator we are going to consider minimal coupling of a
particle to the electromagnetic field [7]. It describes the interaction term by replacing
the momentum operator with the canonical momentum, p̂ → p̂ − qÂ, which is the
conjugate variable of position. The symbol q denotes the charge of the particle. From
this we can easily find the interaction term of the matter Hamiltonian

ℋ̂M,0 + ℋ̂int = ∑
n

p̂2
n

2mn
+ V̂ + ℋ̂int

= ∑
n

1
2mn

(
p̂n − qn Â

)2
+ V̂,

(1.5)

where V̂ includes all interactions between particles and depends only on their posi-
tions rn. Using the Coulomb gauge1 we get

ℋ̂int = ∑
n

1
2mn

(
p̂n − qn Â

)2 − ∑
n

p̂2
n

2mn

= −∑
n

qn

mn
p̂n · Â + ∑

n

q2
n

2mn
Â · Â

= − Ĵ · Â + ∑
n

q2
n

2mn
Â · Â,

(1.6)

1. It is straightforward to show that Â commutes with p̂ from the Coulomb gauge, ∇ · A = 0, and the
position representation of p̂ = −ih̄∇.

4



1. Dielectric response with spatial dispersion

where we have defined the total current operator Ĵ = −∑n
qn
mn

p̂n. Using the symmetric
Weyl ordering [7], we can also define the current-density operator at position r, ĵ(r), as [8]

ĵ(r) = −∑
n

qn

2mn
[p̂nδ(r − r̂n) + δ(r − r̂n)p̂n] . (1.7)

1.3 Kubo formula

In this section, we describe how matter responds to small applied fields. The resulting
linear response functions are called Kubo formulae.

Throughout this chapter we will work in theHeisenberg picture. This means that quan-
tum state vectors |n⟩ are constant in time and operators corresponding to observables
evolve in time according to the Hamitlonian ℋ̂ as

𝒪̂(t) = e
i
h̄ ℋ̂t𝒪̂e−

i
h̄ ℋ̂t, (1.8)

as theHamiltonian is the generator of infinitesimal translation in time. Operatorswithout
explicit time dependence are thought as evaluated at time t = 0 or, equivalently, as
operators in Schrödinger picture. The exponential of an operator is understood as Taylor
series of the exponential function.

At finite temperatures, the system does not stay in the ground state but rather tends
to a thermodynamic equilibrium. This generally incoherent combination of states is
conveniently described by the density matrix ρ. In the absence of interactions ℋ̂int,

ρ̂0 =
1
z

e−β(ℋ̂0−µN̂), z = Tr
(

e−β(ℋ̂0−µN̂)
)

, (1.9)

where z is called the grand partition function [9], N̂ is the particle number operator, and
µ the chemical potential. The symbol Tr (...) = ∑n ⟨n| ... |n⟩ denotes the trace and is
independent of the chosen basis {|n⟩} of the respective Hilbert space H. The factor β is

β =
1

kBT
(1.10)

with kB the Boltzmann constant and T the thermodynamic temperature.
After slowly switching on the interaction2 ℋ̂int, the system changes its state to a

different equilibrium. This change is represented by a small perturbation ∆ρ which
depends on time,

ρ̂(t) = ρ̂0 + ∆ρ̂(t). (1.11)

2. It is important that the interaction is turned on slowly so that the system has time to adapt to the
change and stays in thermodynamic equilibrium. Otherwise it would be very cumbersome or even
impossible to assign a density matrix to the system and make any predictions [8].
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1. Dielectric response with spatial dispersion

One can derive the time evolution of the operator ∆ρ̂ by using the equation of motion
[8]

∆ρ̂(t) =
∫ t

−∞

[
ℋ̂int(t′), ρ̂0

]
dt′, (1.12)

where higher order terms, which lead to non-linear response, were already neglected.
Recalling equation (1.3a), we will try to find the polarization field inside a medium

as a linear response to the external electromagnetic field3. Any observable quantity,
in our case the dielectric polarization P, is the expectation value of the corresponding
operator [10]

P(r, t) =
〈
P̂(r)

〉
(t) = Tr

[
ρ̂(t)P̂(r, t)

]
, (1.13)

where ⟨...⟩ denotes the statistical mean value prescribed by the second equality. After
inserting (1.11) and (1.12) and neglecting higher order terms, we get to the relation〈

P̂(r)
〉
(t) =

〈
P̂(r)

〉
0 −

i
h̄

∫ ∞

−∞

〈[
P̂(r, t), ℋ̂int(t′)

]〉
0 ϑ(t − t′) dt′. (1.14)

Making use of the equation (1.6) and neglectiong the higher order term in A,〈
P̂(r)

〉
(t) =

〈
P̂(r)

〉
0 +

i
h̄

∫ ∞

−∞
dt′

∫
R3

dr′
〈[

P̂(r, t), ĵ(r′, t′) · Â(r′, t′)
]〉

0 ϑ(t − t′), (1.15)

where ϑ(t) denotes the Heaviside step function. Note, that the angle brackets ⟨...⟩0 =
Tr (ρ̂0...) = ∑n,m ⟨n, m| ρ̂0... |n, m⟩ represent the mean value in the thermodynamic equi-
librium without interaction. The states indeed describe matter as well as the electro-
magnetic field, |n, m⟩ = |n⟩M ⊗ |m⟩F, as a combination of non-interacting states. And
since ℋ̂M,0 and ℋ̂F,0 act trivially on HF and HM respectively, we are able to split the two
systems〈

P̂α(r)
〉
(t) =

〈
P̂α(r)

〉
0 +

+
i
h̄

∫ ∞

−∞
dt′

∫
R3

dr′
〈[

P̂α(r, t), ĵβ(r′, t′)
]〉

M,0
ϑ(t − t′)

〈
Âβ(r′, t′)

〉
F,0 . (1.16)

We have introduced greek letters to mark 3-vector components. Summation over indices
is implicitly understood if upper and lower index is repeated4. The average of the
electromagnetic field operator is apparently the vector porential

〈
Â(r, t)

〉
F,0 = A(r, t).

Because of the homogeneity of time and the cyclic property of the trace one can easily
show that the average of the commutator depends only on the time difference t − t′ as〈[

P̂(r, t − t′), ĵ(r′, 0)
]〉

M,0. We introduce a tensor

Παβ(r, r′, t − t′) =
i
h̄

〈[
P̂α(r, t − t′), ĵβ(r′, 0)

]〉
M,0

ϑ(t − t′), (1.17)

3. All linear response correlation functions are intrinsic properties of the non-interacting system [8].
4. Note that throughout this workwe do not distinguish between upper and lower indices. Their position
is only for conveniecne.

6



1. Dielectric response with spatial dispersion

make a temporal Fourier transform of (1.16), and realize that according to (1.1a) and the
Coulomb gauge E(r, ω) = iωA(r, ω), so〈

P̂α(r)
〉
(ω) =

〈
P̂α(r)

〉
0δ(ω) +

∫
R3

dr′ε0χαβ(r, r′, ω)Eβ(r′, ω), (1.18)

with
ε0χαβ(r, r′, ω) =

Παβ(r, r′, ω)

i(h̄ω + i0+)
, (1.19)

which is theKubo formula for electric susceptibility. The symbol ε0 denotes the permittivity
of vaccuum. We have added a small positive imaginary frequency i0+ in order to ensure
causality of the response [8].

1.4 Connection to optical conductivity

Optical conductivity σ is defined as the relation between local electric field and the
electric current density

jα(r, ω) =
∫

R3
dr′σαβ(r, r′, ω)Eβ(r′, ω). (1.20)

By following similar steps to the above, it can be shown that the optical conductivity is
[8]

σαβ(r, r′, ω) =
i
ω

[
Π̃αβ(r, r′, ω) +

n0e2

m
δαβδ(r − r′)

]
, (1.21)

where Π̃αβ written in the time domain,

Π̃αβ(r, r′, t) = − i
h̄

〈[
ĵα(r, t), ĵβ(r′, 0)

]〉
M,0

ϑ(t), (1.22)

is the current-current correlation function.
At finite temperatures and in thermodynamic equilibrium, it may be of interest to

define the thermal representation as a transformation into imaginary time t → τ = it [8,
9]

Π̃αβ(r, r′, τ) = −1
h̄

〈
T
{

ĵα(r, τ) ĵβ(r′, 0)
}〉

M,0
. (1.23)

where T {...} is the time ordering operator5. The time evolution of a thermal operator is

𝒪̂(τ) = 𝒪̂(it) = e
τ
h̄ ℋ̂𝒪̂e−

τ
h̄ ℋ̂. (1.24)

5. T
{
𝒪̂1(τ)𝒪̂2(0)

}
= 𝒪̂1(τ)𝒪̂2(0)ϑ(−iτ)± 𝒪̂2(0)𝒪̂1(τ)ϑ(iτ)where "+" is for boson-like operators and

"−" for fermionic operators [9].
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1. Dielectric response with spatial dispersion

From classical mechanics, we know that electric charges moving inside a medium
induce electric current. The mean electric current density is then induced by the flow of
charge density. This might be due to two processes: electric polarization changing in
time and/or inhomogeneous magnetization. Mathematically

j = ∇× M +
∂

∂t
P. (1.25)

For an infinite non-magnetic medium the separation to the magnetic and electric part is,
in general, ambiguous [6, 11]. In this case, the common choice is to set magnetization
to zero M = 0 and declare that all changes of the charge density are due to changes in
polarization, i. e. j = ∂tP. This relation can be derived for operators too and in thermal
representation we get [8]

ĵ(τ) = i
∂

∂τ
P̂(τ). (1.26)

Let us take (1.26) and insert it into (1.23)

Π̃αβ(r, r′, τ) = − i
h̄

〈
T
{

∂

∂τ
P̂α(r, τ) ĵβ(r′, 0)

}〉
M,0

. (1.27)

The average and the partial derivative can be interchanged since the averaging is through
states in thermodynamic equilibrium. Next, we will convert this expression intoMatsub-
ara representation [8, 9]

Π̃αβ(r, r′, iνn) =
∫ h̄β

0
dτ Π̃αβ(r, r′, τ)eiνn

τ
h̄ , (1.28)

where νn = 2πn/β with n ∈ Z is the bosonic Matsubara freqency. We apply this on (1.27)
and use integration by parts

ih̄Π̃αβ(r, r′, iνn) =
∫ h̄β

0
dτ

〈
T
{

∂

∂τ
P̂α(r, τ) ĵβ(r′, 0)

}〉
M,0

eiνn
τ
h̄

=

[〈
T
{

P̂α(r, τ) ĵβ(r′, 0)
}〉

M,0
eiνn

τ
h̄

]h̄β

0
− iνnΠαβ(r, r′, iνn),

(1.29)

where we have recognized the polarization-current correlation function from (1.17)

Παβ(r, r′, iνn) =
∫ h̄β

0
dτ

1
h̄

〈
T
{

P̂α(r, τ) ĵβ(r′, 0)
}〉

M,0
eiνn

τ
h̄ , (1.30)

8



1. Dielectric response with spatial dispersion

which is directly related to the electric susceptibility χαβ. We can further simplify relation
(1.29) by realizing that eiνnβ = e0 = 1 and that[〈

T
{

P̂α(r, τ) ĵβ(r′, 0)
}〉

M,0

]h̄β

0

=
〈

T
{

P̂α(r, h̄β) ĵβ(r′, 0)− P̂α(r, 0) ĵβ(r′, 0)
}〉

M,0

=
〈

T
{

P̂α(r, 0+) ĵβ(r′, 0)− ĵβ(r′, 0+)P̂α(r, 0)
}〉

M,0

=
〈[

P̂α(r), ĵβ(r′)
]〉

M,0
,

(1.31)

where f (0+) is understood as the limit limε→0+ f (ε) for some function f . In the last step,
we used the cyclic property of the trace. Inserting this back into (1.29), we find that

Παβ(r, r′, iνn) = − ih̄
iνn

Π̃αβ(r, r′, iνn) +
1

iνn

〈[
P̂α(r), ĵβ(r′)

]〉
M,0

. (1.32)

The usual frequency dependence is recovered from the Matsubara repsresentation by
substituing iνn → h̄ω + i0+. The small imaginary energy is added in order to ensure
convergence and to obrain the retarded (causal) response function.

Looking back at (1.3a), the dielectric tensor εαβ is defined as a linear relation between
E and D, which can be written in simplified notation as Dα = ε0εαβEβ. We have already
found the electric susceptibility as the tensor ensuring a linear relation between E and
P. It is then straightforward to get

εαβ(r, r′, ω) = δ(r − r′)δαβ + χαβ(r, r′, ω). (1.33)

Using equation (1.19) and the recently-derived relation between the correlation func-
tions (1.32),

εαβ(r, r′, ω) = δ(r − r′)δαβ +
Παβ(r, r′, ω)

i(h̄ω + i0+)

= δ(r − r′)δαβ +
−ih̄

i(h̄ω + i0+)2

[
Π̃αβ(r, r′, ω) +

i
h̄

〈[
P̂α(r), ĵβ(r′)

]〉
M,0

]
.

(1.34)
Compared to (1.21), we see that [8]

εαβ(r, r′, ω) = δ(r − r′)δαβ − h̄
σαβ(r, r′, ω)

i(h̄ω + i0+)
, (1.35)

i
h̄

〈[
P̂α(r), ĵβ(r′)

]〉
M,0

=
n0e2

m
δαβδ(r − r′). (1.36)

9



1. Dielectric response with spatial dispersion

1.5 Long wavelength limit

Let us consider the characteristic distances in standard optical measurements.
We will refer to an infinite medium with spatially periodic structure as a crystal. It is

invariant under some set of translations which depend on its symmetry group. Usually,
the spatial period is of the order of interatomic distances6 a ∼ 5 Å.

When carrying out optical measuremets in practice, the wavelength λ of light used
ranges from approximately 100nm up to about 1mm [ref..]. The spatial period of the
crystal is much smaller than the wavelength of the probing light, |q|a ∼ a/λ ≪ 1.
Hence, the translation symmetry may be considered as continuous and the crystal as
homogeneous.

Recall that the susceptibility χαβ(r, r′, t) is an intrinsic property of the unperturbed
system in thermodynamic equilibrium. If we assume the crystal to be homogeneous,
the susceptibility depends only on the difference (r − r′). Moreover, we will consider
that there is no macroscopic7 polarization inside the system in equilibrium

〈
P̂(r)

〉
0 = 0.

This way we can take a spatial Fourier transform of (1.18)

Pα(q, ω) = χαβ(q, ω)Eβ(q, ω), (1.37)

where
χαβ(q, ω) =

Παβ(q, ω)

i(h̄ω + i0+)
(1.38)

and the correlation function written in the time domain

Παβ(q, t) =
1
Ω

∫
R3

d(r − r′)eiq·(r−r′)Παβ(r − r′, t) (1.39)

The symbol Ω denotes the volume of the crystal. The dielectric tensor (1.34) is then

εαβ(q, ω) = δαβ +
Παβ(q, ω)

i(h̄ω + i0+)
, (1.40)

and using the results from the previous section 1.4,

εαβ(q, ω) = const. · δαβ +
−h̄Π̃αβ(q, ω)

(h̄ω + i0+)2 (1.41)

It can be shown [8] that for the macroscopic response in the time domain

Π̃αβ(q, t) = −Ω
i
h̄

〈[
ĵα(−q, t), ĵβ(q, 0)

]〉
M,0

ϑ(t). (1.42)

Since the current-density operator ĵ is Hermitian, it holds that ĵ(−q) = ĵ†
(q).

6. In contrast tometamaterials where characteristic distances can get much greater. This issue is, however,
beyond the scope of this work.
7. On scales comparable to the wavelength λ.

10



1. Dielectric response with spatial dispersion

1.6 Spatial dispersion

As mentioned in the previous section 1.5, the energy dispersion of light ω = 2πc/λ
with wavelength in the optical range does not reach zero frequency. Consequently, we
will not be interested in the static dielectric response εαβ(q, 0). This enables us to write
for the imaginary part of the dielectric tensor

Im εαβ(q, ω > 0) =
1

ω2Im
[
−h̄Π̃αβ(q, ω)

]
. (1.43)

In addition, the pole at ω = 0 corresponds to free charge carriers. In our case of a
semiconductor there are no free carriers in the equilibrium state without external fields.

Let us take a closer look at the current-current correlation function. For a better
understanding, it may be useful to express the function in the Lehmann spectral representa-
tion. We will denote the orthonormal eigenfunctions of ℋ̂M,0, that span the entire Hilbert
space HM, as |ψn⟩ and their corresponding eigenvalues as En. Without loss of generality
we will also skip the subscript "M" as all operators and states are strictly matter-related.

Both the current-density operator (1.7), and the non-interacting Hamiltonian ℋ̂0
conserve the number of particles. It is therefore sufficient to use the canonical ditribution
ρ̂0 = exp(−βℋ̂0)/z, and the canonical partition fuction z = Tr(ρ̂0) instead of the grand
canonical counterparts defined by (1.9).

Making once more use of the thermal notation

−h̄Π̃αβ(q, τ) =
1
Ω

〈
T
{

ĵα(−q, τ) ĵβ(q, 0)
}〉

0

=
1

Ω z ∑
n
⟨ψn| e−βℋ̂0T

{
ĵα(−q, τ) ĵβ(q, 0)

}
|ψn⟩ ,

(1.44)

where the τ-dependence of the current-density operator is given by (1.24). Since |ψn⟩ is
the eigenbasis of ℋ̂0, the sum is

∑
n

e−βEn ⟨ψn|
[
e

τ
h̄ ℋ̂0 ĵα(−q)e−

τ
h̄ ℋ̂0 ĵβ(q)ϑ(−iτ) +

+ ĵβ(q)e
τ
h̄ ℋ̂0 ĵα(−q)e−

τ
h̄ ℋ̂0ϑ(iτ)

]
|ψn⟩ . (1.45)

Using the completeness of the eigenbasis

∑
m,n

e−βEn e
τ
h̄ (En−Em) ⟨ψn| ĵα(−q) |ψm⟩ ⟨ψm| ĵβ(q) |ψn⟩ ϑ(−iτ)+

+ ∑
m,n

e−βEn e
τ
h̄ (Em−En) ⟨ψn| ĵβ(q) |ψm⟩ ⟨ψm| ĵα(−q) |ψn⟩ ϑ(iτ), (1.46)

11



1. Dielectric response with spatial dispersion

or better

∑
m,n

e
τ
h̄ (En−Em) ⟨ψn| ĵα(−q) |ψm⟩ ⟨ψm| ĵβ(q) |ψn⟩

[
e−βEn ϑ(−iτ) + e−βEm ϑ(iτ)

]
. (1.47)

Notice that we have to evaluate the following integral when transforming to Matsub-
ara representation (1.28)∫ h̄β

0
dτ eiνℓ τ

h̄ e
τ
h̄ (En−Em)

[
e−βEn ϑ(−iτ) + e−βEm ϑ(iτ)

]
. (1.48)

The second term in the square bracket is identically zero on the intgration interval.
Provided that that νℓ = 2πℓ/β is the bosonic Matsubara frequency, the integral gives

e−βEn

∫ h̄β

0
dτ eiνℓ τ

h̄ e
τ
h̄ (En−Em) = h̄

e−βEm − e−βEn

Em − En + iνℓ
. (1.49)

Putting everything together, the tensor Π̃αβ in Matsubara representation reads

−h̄Π̃αβ(q, iνℓ) =
h̄

Ω z ∑
m,n

⟨ψn| ĵα(−q) |ψm⟩ ⟨ψm| ĵβ(q) |ψn⟩
e−βEm − e−βEn

Em − En + iνℓ
. (1.50)

We are going to express the tensor in the eigencoordinates of the crystal. This means
that all the off-diagonal elements are zero8 The transformation back to real frequency
domain is, as usual, done by analytical continuation iνℓ → h̄ω + i0+,

−h̄Π̃αα(q, ω) =
h̄

Ω z ∑
m,n

∣∣⟨ψm| ĵα(q) |ψn⟩
∣∣2 e−βEm − e−βEn

Em − En + h̄ω + i0+
, (1.51)

where the index α is fixed. The imaginary part can be obtained by Sochocki–Plemelj
theorem9 which yields the dielectric tensor in (1.43) as

Im εαα(q, ω) = − π

ω2
h̄
Ω

[
1

1 + nB(h̄ω)

]
×

× ∑
m,n

∣∣∣⟨ψn|
(

ĵα
)†

(q) |ψm⟩
∣∣∣2 e−βEm

z
δ(h̄ω − En + Em) , (1.52)

8. The dielectric tensor in a non-absorbing medium is Hermitian [6], in which case there is always a
basis in which it is diagonal. Generally, however, the real and imaginary parts must not be simultaneously
diagonalizable.
9. The theorem states that

1
x + i0+

= 𝒫
(

1
x

)
− iπδ(x),

where 𝒫 denotes the Cauchy principal value. Of course this is understood to be under the integral sign.
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1. Dielectric response with spatial dispersion

where nB(h̄ω) = (eβh̄ω − 1)−1 is the Bose-Einstein distribution. The imaginary part
of the dielectric function describes absorption processes. Inside the sum, the term
δ(h̄ω − (En − Em)) ensures that only prosesses that conserve energy are allowed. The
factor e−βEm /z tells us about the occupation of the initial state |ψm⟩. Finally, the matrix

element
∣∣∣⟨ψn|

(
ĵα
)†

(q) |ψm⟩
∣∣∣2 gives the probability of the transition ψm → ψn. This

transition might be forbidden due to symmetries of the intial and final states.
The matrix elements of

(
ĵα
)† are contingent of the eigenbasis {|ψn⟩}. In other words,

the result depends on the chosen model. There had been made calculations for e. g.
the Oscillator model [2] or the Penn model [12]. Even without a specific model, some
conclusions can be drawn. Let us take a generic matrix element ⟨ψn|

(
ĵα
)†

(q) |ψm⟩ and
insert the current density operator (1.7) in q-representation,

−∑
ℓ

qℓ
2mℓ

⟨ψn|
(

e−iq·r̂ℓ p̂α
ℓ + p̂α

ℓ e−iq·r̂ℓ
)
|ψm⟩ . (1.53)

Do not confuse the charge of ℓ-th partice qℓ with thewavevector q. The vector coordinates
are labeled with a greek superscript. A common practice is to take the limit |q| → 0,
which is meaningful for optical frequencies. We will rather keep also the first terms of
the Taylor series of the exponential,

− ∑
ℓ

qℓ
2mℓ

⟨ψn|
[(

1̂ − iq · r̂ℓ −
1
2
(q · r̂ℓ)2 + ...

)
p̂α
ℓ +

+ p̂α
ℓ

(
1̂ − iq · r̂ℓ −

1
2
(q · r̂ℓ)2 + ...

)]
|ψm⟩ . (1.54)

This can be separated into terms that depend on different powers of elements of the
wavevector q. The first few are

1. independent of q, which is connected with the dipole transition10

−∑
ℓ

qℓ
mℓ

⟨ψn| p̂α
ℓ |ψm⟩ , (1.55a)

2. linearly dependent on q, which is connected with the quadrupole transition [2]

i ∑
ℓ

qℓ
2mℓ

⟨ψn|
(

r̂β
ℓ p̂α

ℓ + p̂α
ℓ r̂β

ℓ

)
|ψm⟩ qβ, (1.55b)

3. quadratically dependent on q which is connected with the octupole transition
[ref..]

∑
ℓ

qℓ
4mℓ

⟨ψn|
(

r̂β
ℓ r̂γ

ℓ p̂α
ℓ + p̂α

ℓ r̂β
ℓ r̂γ

ℓ

)
|ψm⟩ qβqγ. (1.55c)
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1. Dielectric response with spatial dispersion

Thus, the matrix element of the current-density operator
(

ĵα
)† as a function of the

external field wavevector can be can be expressed as a series

⟨ψn|
(

ĵα
)†

(q) |ψm⟩ =
(

T(0)
)α

+
(

T(1)
)αβ

qβ +
(

T(2)
)αβγ

qβqγ + ..., (1.56)

where T(n) is a tensor of order (n + 1).
By analogy, the whole transition probability

∣∣∣⟨ψn|
(

ĵα
)†

(q) |ψm⟩
∣∣∣2, as well as the

imaginary part of the dielectric tensor (1.52), can be decomposed into a series with
respect to the wavevector q

Im εαβ(q, ω) = Im
(

ε(0)(ω)
)αβ

+ Im
(

ε(1)(ω)
)αβγ

qγ + Im
(

ε(2)(ω)
)αβγδ

qγqδ + ...,
(1.57)

where ε(n) is a tensor of order (n + 2). The real part of the dielectric tensor is obtained
by employing Kramers-Kronig relations

Re εαβ(q, ω) = δαβ +
1
π
𝒫
∫ ∞

−∞
dω′ Im εαβ(q, ω′)

ω′ − ω
. (1.58)

The symbol 𝒫 indicates that the integral is evaluated in the sense of the Cauchy principal
value. We immediately see, that if the imaginary part of the dielectric tensor Im εαβ

is diagnal in some basis, then the real part Re εαβ is also diagonal in the same basis.
Moreover, the wavevector dependence is preserved since it is treated as an separate
variable independent of the frequency ω.

In the following, we will use the notation

εαβ(q, ω) = εαβ(ω) + igαβγ(ω)qγ + aαβγδ(ω)qγqδ. (1.59)

Evidently, the 0th order term in the wavevector expansion corresponds to the long-
wavelength limit |q| → 0 in which εαβ(q, ω) = εαβ(ω) is the classical dielectric tensor
given solely by the dipole transitions inside the crystal (1.55a). The next term linear in
components of q corresponds to quadrupole transitions (1.55b), and gαβγ is often called
the gyration tensor [13, 14]. In the quadratic term, the aαβγδ contains quadrupole (1.55b),
as well as octupole transitions (1.55c). It is commonly refered to as the spatial dispersion
tensor (SD tensor) [15], in spite of the fact that spatial dispersion is the complete q-
vector dependence. More generally, it is the non-local response of the crystal to external
electromagnetic field. Nevertheless, for the sake of consistency, we will stick to this
nomenclature.

10. For Heisenberg operators and a Hamiltonian of the form ℋ̂0 = ∑n
p̂2

n
2mn

+ V̂(r̂0, r̂1, ..., r̂n), the equation
of motion of the position operator r̂α

n provides 1
ih̄
[
r̂α

n, ℋ̂0
]
= 1

mn
p̂α

n. For eigenstates |ψn⟩ of the Hamiltonian
ℋ̂0, it is easily seen that ⟨ψm| p̂α

ℓ |ψn⟩ ∝ ⟨ψm| r̂α
ℓ |ψn⟩ which is related to the dipole matrix element.
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1. Dielectric response with spatial dispersion

To conclude the chapter, the takeawaymessage is that the non-local response (spatial
dispersion) corresponds to quadrupole and higher order transitions (1.55) inside the
material caused by external electromagnetic field [2]. This can be translated into power
series of the dieletric tensor in componets of the wavevector (1.59). From now on we
will not worry much about the internal structure of the transitions, but simply about
the wavevector dependence.
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2 Model

In the previous chapter, we showed how the q-vector dependency emerges from the non-
local behavior of the response function. Here we will make a deeper analysis of cubic
crystals and the particular form the dielectric tensor takes due to crystal symmetries of
the cubic lattice (the geometry of the system). A modification of this concept to more
complex crystalographic groups is simple and straightforward.

The following section will be devoted to simple, and rather empirical, dispersion
models that we compared against our experimental data.

Afterwards, we will move into more practical parts and briefly discuss the issues
related to real crystals. In particular, a method of accounting for finite dimensions of
real crystals will be described.

The last section will focus on the implementation of the model with the use of a
computation technique called Berreman formalism. We will point out the modifications
that need to bemade due to q-vector dependence of the response,which is not considered
in the original formulation.

2.1 Symmetries of the dielectric tensor

From the physics standpoint, the response of the crystal must follow some rules. This
restricts the dielectric tensor to a specific form. The first requirement is the preservation
of reciprocity [6, 11], which states, that

ε(q, ω) = εT(−q, ω). (2.1a)

Secondly, we will assume a lossless medium, or, more precisely, we will use a fre-
quency range where the medium does not absorb light. This means that the dielectric
tensor is Hermitian [6, 13]

ε(q, ω) = ε†(q, ω). (2.1b)
The symbols "T" and "†" stand for the transpose and the Hermitian conjugate, respec-
tively.

Combining these two equations (2.1), it is not hard to show that the even terms
in the q-expansion are real and symmetric, and the odd terms are purely imaginary
and antisymmetric. This can be translated into the antisymmetry of the gyration tensor
gαβγ(ω) and the symmetry of the SD tensor aαβγδ(ω) in the first two indices α, β. More-
over, equations (1.55) show that the SD tensor is symmetric also in the last two indices1
γ, δ. As a consequence, it has only six independent components. Moreover, crystals
posess additional (spatial?) symmetries, so the number of independent parameters is
further reduced.

1. More precisely, it can always be symmetrized.
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2. Model

Table 2.1: Assingnment of indices to rewrite the SD tensor aαβγδ(ω) into Voigt nota-
tion [15–17]. The tuples in the first row correspond to the symmetric pairs of indices
(αβ) == (βα) and (γδ) == (δγ) respectively.

(11) (22) (33) (23) == (32) (13) == (31) (12) == (21)
↓ ↓ ↓ ↓ ↓ ↓
1 2 3 4 5 6

Another property that we have already used is the translation symmetry. Specifically,
we declared the discrete translation symmetry to be continuous wthin the long wave-
length limit. Now we are going to make use of the point group symmetries. We will
assume that the equilibrium state posesses all the symmetries of the Hamiltonian. In
other words, there is no spontaneous symmetry breaking of the ground state. A typical
example are ferromagnetic materials, where the spin-rotational symmetry is broken.

A three-dimensional crystal lattice, i. e. the pattern of equilibrium positions of
atoms/molecules, can be classified into seven point groups: triclinic, monoclinic, or-
thorombic, tetragonal, trigonal, hexagonal, and cubic. Only the latter is the subject of
our interest. Taking into account the complete structure of the crystal, the cubic point
grup is further divided into five crystallographic classes, the Tetrahedral clsses 23 (T),
m3̄ (Th), 4̄3m (Td), and the Octahedral classes 432 (O), m3̄m (Oh). All cubic classes are
non-polar, but only three of them are achiral, namely m3̄m, 4̄3m, and m3̄.

Returning to the equation (1.59), we now see why the second (gyrotropic) term
linear in q must be identically zero for crystals belonging to one of the three achiral
cubic classes. The reason is that all of them are centrosymmetric point groups and this
term is clearly antisymmetric under point inversion (changes its sign if the direction of
light is inverted). The gyrotropic term is of the order of 𝒪(|q|). The SD term is much
smaller since it scales with 𝒪(|q|2). We will focus on these three achiral classes because
we want to study the SD tensor aαβγδ which is overwhelmed by the gyration tensor in
the remaining two classes.

It turns out to be convenient to express the tensor in a matrix form using the Voigt
notation, since aαβγδ is symmetric in te first two and in the last two indices. This is
performed by the assignment captured in table 2.1. The tensor product is then calculated
as a matrix multiplied by the vector (q2

1 q2
2 q2

3 2q2q2 2q1q3 2q1q2)
T from the right

side. The symmetries of the five cubic classes result in only two distinct forms if the SD
tensor, wich have the same structure as the photoelastic tensor [1, 2, 16]. In the case of
the class m3̄ it depends on four parameters. The explicit frequency-dependence will be
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2. Model

sometimes ommited in this chapter to simplify the notation
a11 a12 a13 0 0 0
a13 a11 a12 0 0 0
a12 a13 a11 0 0 0
0 0 0 a44 0 0
0 0 0 0 a44 0
0 0 0 0 0 a44

 , (2.2a)

but for the m3̄m and 4̄3m cubic classes, due to the four-fold symmetry of the [001]
directions, a13 = a12 and so the SD tensor corresponds to the matrix

a11 a12 a12 0 0 0
a12 a11 a12 0 0 0
a12 a12 a11 0 0 0
0 0 0 a44 0 0
0 0 0 0 a44 0
0 0 0 0 0 a44

 . (2.2b)

We would like to point out that, although the derivation was made for a real tensor,
it can be analytically continued into complex values, so that it preserves the symmetries
of the real one. It might, however, happen that the real and imaginary parts cannot be
diagonalized simultaneously.

2.2 Real crystal corrections

Up to now we have been avoiding some problems of real crystals. In this section we
touch upon the topic of adjusting boundary conditions when spatial dispersion is taken
into account. We do not mention issues like strain, surface rougness and absporption as
they are irrelevant for our experimental results.

2.2.1 Boundary conditions

At the end of section 1.1 we have mentioned that in an infinite medium the border
between electric and magnetic material properties is somewhat blurry. We have argued
that because of this ambiguity and the insignficant magnetic response of non-magnetic
materials, the material properties may be completely described by the dielectric tensor.
It also allowed us to circumvent the problem of boundary conditions.

Clearly, waiving the requirement of unboundedness of ideal crystals breaks the trans-
lation symmetry. Furthermore, it causes severe complications when solving eqations at
interfaces. As wewill see in section 2.4.1, even with an approximate solution, one usually
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2. Model

has to impose some additional boundary conditions (ABCs) [18]. Let us note that this
problem does not arise if the dielectric tensor is assumed to be local εαβ(r, r′) ∝ δ(r − r′).

Nevertheless, sometimes there are ways of separating the magnetic and electric
current densities. This allows then the use of the classical boundary conditions derived
for the local response [19–21]. In this work, we are using the method presented by
Ossikovski and Arteaga in [15]. They reformulated the dielectric and permeability
tensors in a way that the electric and magnetic parts are decoupled. The correctness is
argued by comparisson of eigenmodes calculated by the Fresnel equation (see e. g. [15,
21]) and by the Berreman’s method [20] (see section 2.4).

This method uses the Fedorov’s transformation [14, 22] which transforms the electric
induction D and magnetic field H using a vector Q. In the case of spatial dispersion it
is chosen to be of magnetic nature Qα = ãm

αβ Bβ, where ãm is called the magnetic SD
tensor [15]. The transformation reads

H ′(q, ω) = H(q, ω) + ωãm(ω)B(q, ω), (2.3a)

D′(q, ω) = D(q, ω)− q × [ãm(ω)B(q, ω)] , (2.3b)

where the primed quantities are the transformed ones. The Fedorov’s transformation
leaves the Ampére’s law unchanged. One may think of the transformation as a redistribu-
tion between magnetization and polarization current densities.

The electric andmagnetic fields E and B are also not affected by the transformation. If
the definition of the magnetic permeability B(q, ω) = µ0µ(ω)H(q, ω) and the equation
(2.3a) are combined, we get the new (inverse) permeability(

µ′)−1
(ω) = µ−1(ω) + µ0 ω ãm(ω). (2.4)

For the case of electric field, we combine the defining eqution for the dielectric tensor
D(q, ω) = ε0ε(q, ω)E(q, ω), the equation (2.3b), and the Faraday’s law q × E(q, ω) =
ωB(q, ω) in order to get the new dielectric tensor implicitly

ε′(q, ω)E(q, ω) = ε(q, ω)E(q, ω)− 1
ωε0

q × {ãm(ω) [q × E(q, ω)]} . (2.5)

Noticing that the cross product can be viewed as matrix multiplication with the use of
the completely antisymmetric Levi-Civita tensor 2 ϵαβγ and using the associative property
of matrix multiplication, the expression for the new dielectric tensor can be writen
explicitly (

ε′
)αβ

(q, ω) = εαβ(q, ω)− am
αβγδ (ω)qγqδ, (2.6)

2. For any two vectors u, v the cross product can be written as (u × v)α = ϵαβγuβvγ, where ϵ012 = 1
and the other elements are determined by antisymmetry in each two indices.
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where we defined
am

αβγδ =
1

ωε0
ϵαγζ ãm,ζηϵηδβ. (2.7)

Equation (2.6) can be comapred to the dielectric tensor (1.59)with all the symmetries
from the previous section 2.1 taken into account

(
ε′
)αβ

(q, ω) = εαβ(ω) + aαβγδ(ω)qγqδ − am
αβγδ (ω)qγqδ

= εαβ(ω) + ae
αβγδ (ω)qγqδ.

(2.8)

The newly defined tensor ae
αβγδ = aαβγδ − am

αβγδ is referred to as the electric SD tensor.
Using the same symmetry arguments as before, it is easy to see that the magnetic

permeability in cubic crystals must be isotropic, as the magnetic SD tensor ãm(ω) is
independent of the wavevector3. As a consequencne, ãm

αβ (ω) = µ̃(ω)δαβ, with µ̃(ω)
being a scalar function. On the whole, the magnetic tensor am

αβγδ defined by (2.7) can
be as well transcribed using Voigt notation

2a44



0 −1 −1 0 0 0
−1 0 −1 0 0 0
−1 −1 0 0 0 0
0 0 0 1

2 0 0
0 0 0 0 1

2 0
0 0 0 0 0 1

2

 , (2.9)

where we have to equate µ̃(ω) = 2ε0ωa44(ω). The transformed inverse permeability
according to (2.4) becomes

(
µ′)αβ

(ω) =

[
1 + 2

ω2

c2 a44(ω)

]
δαβ, (2.10)

since before the Fedorov’s transformation the permeability tensor is equal to the identity
µαβ(ω) = δαβ, and c = 1/

√
µ0ε0 is the speed of light.

Returning to the electric part, if we insert the expressions (2.9) and (2.2a) (or (2.2b)
respectively) into (2.8), the newly defined dielectric tensor takes a diagonal form

ε′(q, ω) =

ε(ω) + ∆ε11(q, ω) 0 0
0 ε(ω) + ∆ε22(q, ω) 0
0 0 ε(ω) + ∆ε33(q, ω)

 , (2.11)

3. Just like the permittivity is isotropic in the absence of spatial dispersion.
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where the elements are dependent on the elements if the SD tensor aαβγδ. In the case of
the less symetric cubic class m3̄, the ∆εαα elements can be written as

∆ε11(q, ω) = a11|q|2 − (a11 − a12 − 2a44)q2
2 − (a11 − a13 − 2a44)q2

3,

∆ε22(q, ω) = a11|q|2 − (a11 − a12 − 2a44)q2
3 − (a11 − a13 − 2a44)q2

1,

∆ε33(q, ω) = a11|q|2 − (a11 − a12 − 2a44)q2
1 − (a11 − a13 − 2a44)q2

2.

(2.12)

In the case of classes m3̄m, and 4̄3m, where a13 = a12,
∆ε11(q, ω) = (a11 + 2a44)|q|2 + (a11 − a12 − 2a44)q2

1,

∆ε22(q, ω) = (a11 + 2a44)|q|2 + (a11 − a12 − 2a44)q2
2,

∆ε33(q, ω) = (a11 + 2a44)|q|2 + (a11 − a12 − 2a44)q2
3.

(2.13)

It is hard to overlook the frequently occuring linear combinations of SD tensor elements,
so we introduce the abbreviations p1 = c2

ω2 (a11 − a12 − 2a44) and p2 = c2

ω2 (a11 − a13 −
2a44).

Apparently, there is an isotropic, as well as anisotropic contribution to the dielectric
tensor stemming from spatial dispersion. The isotropic part of (ε′)αβ (q, ω), depending
on the point group, is[

ε(ω) + a11|q|2
]

δαβ, or
[
ε(ω) + (a11 + 2a44)|q|2

]
δαβ. (2.14)

The former is for symmetry class m3̄, and the latter for m3̄m and 4̄3m classes. We
would like to point out that when doing highly precise and accurate measurements of
the absolute refractive index under the assumption of isotropy (performing a spatial
average), one is reallymeasuring the quantity from (2.14), not the ε(ω) directly.However,
as spatial dispersion is small, we may expect the average refractive index n(ω) to be
close to

√
ε(ω). In fact, our experiments are not sensitive to the absolute refractive index.

Hence, from now on, we will relabel the scalar functions inside the square bracket in
equation (2.14), dependent on |q|2, as ε(ω) = n2(ω). For the same reasonwewill regard
the transformed permeability to be the same as the initial one (µ′)αβ (ω) = µαβ(ω) =
δαβ.

On the other hand, ellipsometry is rather sensitive to changes in refractive indices
for different polarizations, i. e. to the anisotropic part of the dielectric tensor that in
(2.12) and (2.13) are the terms proportional to the parameters p1 and p2. Within the
macroscopic approach, the size of the wavevector is proportional to the refractive index
of the medium, which in our case can be writen as4 |q|2 = n2(ω)ω2/c2 = ε(ω)ω2/c2.

4. Amore precise approachwould be to take thewave-equation,which can be derived from theMaxwell’s
equations [6, 21], q × (q × E(q, ω)) + ω2

c2 ε(q, ω)E(q, ω) = 0 and find the eigenpolarizations π and their
corresponding refractive indices nπ that, in general, are different for different directions of propagation.
Then, the wavevector corresponding to the eigenpolarization π would have a magnitude implicitly given
by |qπ |2 = n2

π(qπ , ω)ω2/c2.
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It is also useful to separate the direction and frequency dependence by introducing the
unit vector in the direction of the wave propagation, q̂α = qα/|q|, which should not
be confused with an operator. The resulting forms of the dielectric and permeability
tensors are neatly captured in Table 2.2. In the following we shall use the transformed
tensors and leave out the prime symbol.

Table 2.2: The transformed linear response tensor functions to be used for mod-
eling exmerimental data. They are expressed for different cubic crystallographic
classes and are valid in the absorption-free spectral region. The parameters p1(ω) =
c2

ω2 [a11(ω)− a12(ω)− 2a44(ω)] and p2(ω) = c2

ω2 [a11(ω)− a13(ω)− 2a44(ω)] affect the
strength of the anisotropy caused by spatial dspersion. The unit vector (not an operator)
q̂ = q/|q| points in the direction of light propagation.

ε(q, ω) = ε(ω)1+ µ(ω)

m3̄m, 4̄3m ε(ω)

p1q̂2
1 0 0

0 p1q̂2
2 0

0 0 p1q̂2
3

 1 0 0
0 1 0
0 0 1



m3̄ ε(ω)

−p1q̂2
2 − p2q̂2

3 0 0
0 −p1q̂2

3 − p2q̂2
1 0

0 0 −p1q̂2
1 − p2q̂2

2

 1 0 0
0 1 0
0 0 1



2.3 Dispersion model

It is widely known that the optical response functions can be described by the harmonic
oscillator model (Sellmeier formula) with great accuracy in the frequency range where the
material is transparent [23].

We make a slight modification to this model which turns out to be analogous to the
modified harmonic oscillator model used to describe optical activity in isotropic media
[24, 25]. We show here only the form for the classes m3̄m and 4̄3m as the other one is
irrelevant for our experiments. A similar model can be derived for classes with lower
symmtry.

Starting from the expression for the imaginary part of the dielectric tensor (1.52)
rewritten in a fairly abbreviated form

Im εαβ(q, ω) = ∑
mn

Mα
nm(−q, ω)Mβ

mn(q, ω) δ(h̄ω − En + Em) , (2.15)

where we assumed that the matter particles are non-interacting fermions, so |ψn⟩ are
singe-particle wavefunctions. In the low temperature limit, the equilibrium state is the

23



2. Model

ground state and we choose it to be the zero-energy level E0 = 0. Then

Im εαβ(q, ω) = ∑
n ̸=0

Mα
n0(−q, ω)Mβ

0n(q, ω) δ(h̄ω − En) . (2.16)

Recall that in the chapter 1, we made a multipole expansion (equations (1.55)). This
corresponds to expansion of Mα

nm(q) in the wavevector components

Mα
nm(q, ω) =

(
M(0)

nm(ω)
)α

+
(

M(1)
nm(ω)

)αβ
qβ +

(
M(2)

nm(ω)
)αβγ

qβqγ + . . . . (2.17)

A huge simplification lies in the assumption that the matrix elements are the same for
all frequencies Mα

nm(q, ω) = Mα
nm(q), q. v. [2].

Keeping only the quadratic termof the dielectric tensor in components of thewavevec-
tor leads to

Im εαβ(q, ω) = ∑
n ̸=0

(Nαβ
n + Sαβγδ

n qγqδ)
1

En
δ(h̄ω − En) , (2.18)

where Nn/En and Sn/En are combinations of M(0)
n0 , M(0)

0n , M(1)
n0 , M(1)

0n , M(2)
n0 , M(2)

0n , and
are connected with the strength of the n-th harmonic oscillator. By Kramers-Kronig
relations (1.58),

Re εαβ(q, ω) = δαβ +
2
π ∑

n ̸=0

(Nαβ
n + Sαβγδ

n qγqδ)

E2
n − (h̄ω)2 . (2.19)

Taking into account all the symmetries from section 2.1 and comparing the result to the
dielectric tensor from table 2.2

ε(q, ω) = ε(ω)1 + γ(ω)|q|2
q̂2

1 0 0
0 q̂2

2 0
0 0 q̂2

3

 , (2.20a)

γ(ω)|q|2 ≈ γ(ω)
ω2

c2 ε(ω) = ε(ω)p1(ω), (2.20b)

we can deduce the spectral functions. Recall, that q̂ is the unit vector in the direction of
light propagation. We also defined the spectral function γ(ω), which is more practical
than p1(ω) in terms of dispersion models. The reason is that we have to keep the
wavevector and frequency dependence separated, since the Kramers-Kronig relations
and sum rules are defined for a fixed value of the wavevector.

As mentioned previously, |q|2 ≈ n2(ω) ω2/c2 ≈ ε(ω) ω2/c2. The ε(ω) and γ(ω)
functions are explicitly written as sum of Harmonic oscillators

Re ε(ω) = 1 +
2
π ∑

n

Nn

ω2
n − ω2 , Im ε(ω) = ∑

n

Nn

En
δ(h̄ω − En) ,

Reγ(ω) =
2
π ∑

n

Sn

ω2
n − ω2 , Imγ(ω) = ∑

n

Sn

En
δ(h̄ω − En) ,

(2.21)
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where n now denotes individual excitations, harmonic oscillators, with excitation energy
En = h̄ωn. The factor h̄−2 was absorbed into the dimensionless constant Sn. The sum
rules [26] applied to these functions read∫ ∞

0
dω ωIm ε(ω) = ∑

n
Nn > 0,∫ ∞

0
dω ωImγ(ω) = ∑

n
Sn = 0.

(2.22)

2.4 Berreman’s formalism

Maxwell’s equations represent a set of linear differential equations for the electromag-
netic field. It is the property of linearity that allowed the american physicist D. W.
Berreman to formulate a matrix formalism which describes the propagation of light
through stratified anisotropic media. The formalism enables us to obtain reflection and
transmission coefficients. At the same time, it presents a recipe on how to implement it
in numerical computations.

Berreman, however, did not account for spatial dispersion, and so we need to make
slight adjustments compared to the original work [20]. Additionaly, we will show what
to change in case of thick layers in which light from a real source cannot be assumed
coherent anymore.

2.4.1 Coherent multiple reflections

The original derivation starts with the macroscopic Maxwell’s equations, in particular
Ampére’s and Faraday’s laws, using the fields E, D, B, and H without any external
sources. Then, constitutive relations are used to exclude the fields D and B. Note, that the
formalism allows cross terms, called optical-rotation tensors, which are the proportionality
constants for D ∝ B and H ∝ E. In our case there are no such cross terms, only the
dielectric and permittivity tensors. So, for the sake of brevity, we shall omit them and
also put µαβ(ω) = δαβ.

We define the problem as restricted to the plane of incidence, say xz, with the surface
normal oriented in the z direction. The main idea is to find eigenvectors that propagate
inside individual layers, and then connect the fields at the interfaces. It can be shown,
that the central equation is

ω

c


−q̂1

ε31
ε33

1 − q̂2
1

1
ε33

−q̂1
ε32
ε33

0
ε11 − ε13ε31

ε33
−q̂1

ε13
ε33

ε12 − ε13ε32
ε33

0
0 0 0 1

ε21 − ε23ε31
ε33

−q̂1
ε23
ε33

ε22 − ε23ε32
ε33

− q̂2
1 0




E1
H2
E2

−H1

 = q3


E1
H2
E2

−H1

 , (2.23)
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where q̂1 = sin(AOI) is the sine of the initial angle of incidence5 which is constant
across plane-parallel layers. The abbreviated form can be written as

ω

c
∆ψ = q3ψ. (2.24)

Without spatial dispersion, the matrix ∆ is, at most, dependent on the z-coordinate,
but constant over some finite interval (zi, zi + δi) that represents one layer. The physical
interpretation is that ∆ is the generator of translation of vector ψ in the z-direction

ψ(zi + δi) = ei ω
c δi∆(z)ψ(z). (2.25)

One then finds the solutions to the eigenproblem (2.24) and obtains four eigenvectors
ψα and corresponding eigenvalues q3,α, two of which are forward propagating modes
q3,α > 0, and two are backward propagating modes q3,α < 0. It obvoiusly holds that
ψα(zi + δi) = exp(iωδi q3,α/c)ψα(z). The normalized eigenvectors can be stacked into
a 4 × 4 matrix

Ψ =

ψ0

ψ1

ψ2

ψ3

 . (2.26)

This matrix Ψ can be thought of as a transformation into the basis of eigenmodes of
the layer. The propagation through a layer of thickness d is governed by the matrix (cf.
equation (2.25))

L(d) = ei ω
c d∆ = ΨK(d)Ψ−1, where Kαα(d) = ei ω

c d q3,α (2.27)

is a diagonal matrix. For N layers, the total transfer matrix is calculated as

Ψ−1
outLN(dN)...L1(d1)Ψin. (2.28)

Usually, Ψin = Ψout are the vacuum solutions.

A note on solving the eigenproblem with non-local response functions

When spatial dispersion is not neglected, the dielectric tensor ε(q, ω) and hence the
matrix ∆ depends not-trivially on the wavevector6. The eigenproblem (2.24) turns out
to be a real problem because the characteristic polynomial

det
[ω

c
∆(q)− q31

]
= 0 (2.29)

5. The initial medium is assumed to be vacuum. Otherwise it should be replaced by n0 sin(AOI) where
n0 is the refractive index of the initial medium.
6. It definitely depends on frequency ω as well, but this is of no importance here as everything is
evaluated for a fixed value of ω.
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has nowmore than four solutions. A common approach is to impose additional boundary
conditions (ABCs) that exclude some of the solutions. One of the first to introduce ABCs
was Pekar in [18].

We will rather use a numerical approach where the issue of ABCs can be cleverly
worked around. Observe, that spatial disersion may be treated as a perturbation and so
for the unknown eigensolutions qα in the zeroth approximation ∆(qα) ≈ ∆(0). This is
used to find the first approximate set of solutions q′

α which are iteratively plugged back
into ∆(q′

α) and the eigenproblem (2.29) is again solved for a fixed ∆. It has to be done for
each of the four wavevectors q′

α separately. Fortunately, the process separates into four
independent branches, corresponding to four eigensolutions, which can be computed
concurrently. The iteration is then repeated until a sufficient precision is achieved7. The
process can be captured by a scheme 2.1.

 𝟙 

 𝟙 

 𝟙  𝟙 

 𝟙  𝟙 

 𝟙  𝟙 

 𝟙 

Figure 2.1: Scheme for iterative calculation of the ∆ matrix and its eigenvalues. It is
assumed that the q-dependence is weak. We have stopped with q′′n in our calculations.

We are using only the first correction assuming that the wavevectos of eigenmodes
are very close (in size as well as direction) to the ones computed for a local response.
We would like to remind you, that for systems with cubic symmetry, the local response
is isotropic. Therefore, after the first iteration, we get two doubly degenerate solutions,
one for the forward travelling wave, and one for the backward. In the next iteration, we
only have to solve the eigenproblem twice, but then obtain the four distinct solutions.

7. It is not certain if the algorithm will converge at all. Also, one has to be careful, once created the
branches, not to replace qα in the αth branch by some different qβ during the computation process.
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2.4.2 Incoherent multiple reflections

When measuring layers with a thickness much bigger than the coherence length of the
light source, the previous formalism is not suitable. A practical method was described
for instance in [27–29].

The process goes as follows: First we separate the interface matrices and propagation
matrices. Then each of them is decomposed into smaller 2× 2 matrices corresponding to
forward/backward propagating modes and to reflected/transmitted modes. After that,
these coherent reflection and transmission matrices are transformed into incoherent, so
that when finally summing multiple reflections, the different parts of the beam do not
interfere.

Starting with the total transfer matrix for a single layer of thickness d (cf. eqation
(2.28)) and inverting it

Ψ−1
in L(−d)Ψout, (2.30)

where we have used the fact that L−1(d) = L(−d)which is obvious from (2.27). For the
following it is important that the eigenvalues are sorted so that the first two are forward
propagating modes q3,α > 0 for α ∈ {0, 1} and last two are backward propagating ones
q3,α < 0 for α ∈ {2, 3}.

We define three matrices that describe the boundary conditions

B0,fwd = Ψ−1
in L(−d) =

(
B00

0,fwd
)(

B01
0,fwd

)(
B10

0,fwd
)(

B11
0,fwd

) ,

B0,back = L(d)Ψin =

(
B00

0,back
)(

B01
0,back

)(
B10

0,back
)(

B11
0,back

) ,

B1,fwd = L(−d)Ψ−1
out =

(
B00

1,fwd
)(

B01
1,fwd

)(
B10

1,fwd
)(

B11
1,fwd

) ,

(2.31)

where Bij are 2 × 2 submatrices and the indices "fwd" and "back" label the forward and
backward travelling beams. The reflection and transmission dynamic matrices are a
combination of these submatrices

T0,fwd =
(

B00
0,fwd

)−1
, R0,fwd = B10

0,fwdT0,fwd,

T0,back =
(

B11
0,back

)−1
, R0,back = B01

0,backT0,back,

T1,fwd =
(

B00
1,fwd

)−1
, R1,fwd = B10

1,fwdT1,fwd,

(2.32a)
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and the propagation dynamic matrices Pfwd and Pback are connected to the diagonal
matrix K(d) from (2.27) as

K(d) =

(
Pfwd

−1
)(

0
)

(
0

)(
Pback

) . (2.32b)

This means that the propagation dynamic matrices are diagoal as well with values on the
diagonal correspondig to phase shifts of the forward and backward travelling modes.

So far, everything is coherent and the total coherent transmission T and reflection
R matrices can be reconstructed by the classical geometric series that after summation
give the result

T = T1,fwdPfwd [1 − R0,backPbackR1,fwdPfwd]
−1 T0,fwd,

R = R0,fwd + T0,backPbackR1,fwdPfwd [1 − R0,backPbackR1,fwdPfwd]
−1 T0,fwd.

(2.33)

The trasformation to incoherent matrices is done by transitioning from the electro-
magnetic fields to description by intensities I ∝ |E|2. As a result, the information about
the absolute phase is lost and different parts of light cannot interfere[19, 30]. A thorough
derivation can be found in the book [31]. Here wemerely list the transforming equations
taken from this reference for the sake of completeness.

Each of the 2 × 2 complex-valued dynamic matrices from equations (2.32) are
mapped to the 4 × 4 real valued so-called Mueller matrices M by the prescription for
individual elements

M00 =
1
2

(
|D00|2 + |D01|2 + |D10|2 + |D11|2

)
M01 =

1
2

(
|D00|2 − |D01|2 + |D10|2 − |D11|2

)
M01 =

1
2

(
|D00|2 + |D01|2 − |D10|2 − |D11|2

)
M11 =

1
2

(
|D00|2 − |D01|2 − |D10|2 + |D11|2

)
M02 = Re(D01D*

00 + D11D*
10) M20 = Re(D10D*

00 + D11D*
01)

M03 = −Im(D01D*
00 + D11D*

10) M30 = Im(D10D*
00 + D11D*

01)

M12 = Re(D01D*
00 − D11D*

10) M21 = Re(D10D*
00 − D11D*

01)

M13 = −Im(D01D*
00 − D11D*

10) M31 = Im(D10D*
00 − D11D*

01)

M23 = −Im(D11D*
00 − D10D*

01) M32 = Im(D11D*
00 + D10D*

01)

M22 = Re(D11D*
00 + D10D*

01) M33 = Re(D11D*
00 + D10D*

01)

(2.34)

for any dynamic matrix D. We will denote the Mueller matrices corresponding to
dynamicmatrices in calligraphic font, for example𝒟 = M(D). For the dynamicmatrices
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it holds that they are directly transformed, 𝒯0,fwd = M(T0,fwd), ℛ0,fwd = M(R0,fwd),
𝒫fwd = M(Pfwd), and so on. But, in contrast with (2.33), the total transmission and
reflection Mueller matrices are calculated as

𝒯 = 𝒯1,fwd𝒫fwd [1 −ℛ0,back𝒫backℛ1,fwd𝒫fwd]
−1 𝒯0,fwd,

ℛ = ℛ0,fwd + 𝒯0,back𝒫backℛ1,fwd𝒫fwd [1 −ℛ0,back𝒫backℛ1,fwd𝒫fwd]
−1 𝒯0,fwd.

(2.35)

Clearly, the mapping (2.34) does not preserve linearity and hence 𝒯 ̸= M(T), and
ℛ ̸= M(R).

Finally, we would like to point out, that a surface layer with coherent multiple
reflections can be simply added by substituing Ψin → ΨinLℓ(dℓ), where Lℓ(dℓ) is the
propagation matrix of the layer with thickness dℓ. An analogous substitution can be
made for the back side Ψout → ΨoutLℓ(dℓ).

2.4.3 No multiple reflections

Sometimes, there is a need to completely remove higher-order reflections from the
calculations. This may happen if the light gets absorbed so that the second- and next-
order reflections are orders of magnitude weaker than the primary signal. Another
possibility is that the beam is refracted and deviated, so that it does not hit the detector
slit. This occurs mainly when measuring thick samples with a large refractive index at a
large AOI [28].

In this case, the transmission and reflection matrices become

T = T1,fwdPfwdT0,fwd,
R = R0,fwd,

(2.36)

and for Mueller matrices
𝒯 = 𝒯1,fwd𝒫fwd𝒯0,fwd,

ℛ = ℛ0,fwd.
(2.37)

Note that the map M(·) from (2.34) preserves matrix multiplication8 and therefore
it now holds that 𝒯 = M(T) and ℛ = M(R).

Finally, we would like to emphasize that the main advantage of Mueller matrices
is that they are operating on light intensities I ∝ |E|2, which can be easily directly
measured as opposed to the quickly varying electric and magnetic field intensities used
in Berreman formalism.

8. The transformation to Mueller matrices can be written as M(D) = A (D ⊗ D*)A−1, where A is some
constant unitary matrix and the symbol "⊗" denotes the Kronecker product [27, 29]. Despite the Kronecker
product being a bilinear map, the map M(·) is not linear. It holds, however, that (A ⊗ B)(C ⊗ D) =
(AC)⊗ (BD) for any matrices A, B, C, and D [28]. Hence, M(·) preserves multiplication.
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3 Experimental methods

This chapter aims to provide details of the experiments that we have carried out. We
employed Mueller matrix ellipsometry (polarimetry). Therefore, the first section is a
brief introduction into the Mueller calculus.

In the second section, we explain the experimental setup of the reflection and trans-
mission measurements and introduce the instruments used. All presented measure-
ments were performed in the optical laboratory at the University of Barcelona.

In the last part we report technical parameters about samples that were used in the
study.

3.1 Mueller matrices

In chapter 2, we briefly mentioned Mueller matrices. They mediate the transformations
between two intensity vectors, also called the Stokes vectors, defined as

S =


Itot

Ix − Iy
I45 − I135
IR − IL

 . (3.1)

Its elements are time-averaged intensities of different polarizations [19]. The orientations
subscripts x, y, 45∘, and 135∘ mark intensities of linearly polarized light in the given
direction w.r.t. the coordinate axes. Subscripts L and R denote left- and right-handed
circular polarizations. Finally, Itot is the total intensity, for which it holds that I2

tot ≤
(Ix − Iy)2 + (I45 − I135)

2 + (IR − IL)
2. The equality is satisfied if the light is completely

polarized.
In practice, Mueller matrices are mostly used to represent optical elements of some

experimental setup, especially measured samples. The change of the incoming light
described by a Stokes vector Sin to the outgoing light Sout is written as

Sout = MSin. (3.2)

Often, however, we are rather interested in the properties of the material, not the
sample as a whole. In this case, it is preferable to use the differential Mueller matrix
[32–34], which we will denote as m. It is defined as the matrix logarithm of the Mueller
matrix. The differential Mueller matrix has seven unique elements if the material is
non-depolarizing [34, 35],

m = log M =


−κ −LD −LD′ CD
−LD −κ CB LB′

−LD′ −CB −κ −LB
CD −LB′ LB −κ

 . (3.3)
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3. Experimental methods

The meaning of the individual elements is captured in the table 3.1. Note, that the
elements have a meaning only for bulk propagation [36]. Nevertheless, it is possible to
define analogous quantities for the entire sample too.

Table 3.1:Elements of the differentialMuellermatrix (3.3). λ is thewavelength, d the path
length in a medium, n is the refractive index, k the extinction coefficient. The subscripts
x, y, 45, and 135 stand for directions of linar polarizations w.r.t. the coordinate system. L
and R denote left- and right-handed circular polarization, respectively. Definitions are
taken from [36, 37].

κ = 2π
λ (kx + ky)d isotropic amplitude absorption

LB = 2π
λ (nx − ny)d horizontal linear birefringence projection

LB′ = 2π
λ (n45 − n135)d 45∘ linear birefringence projection

CB = 2π
λ (nL − nR)d circular birefringence

LD = 2π
λ (kx − ky)d horizontal linear dichroism projection

LD′ = 2π
λ (k45 − k135)d 45∘ linear dichroism projection

CD = 2π
λ (kL − kR)d circular dichroism

The isotropic amplitude absorption describes the decrease of the overall intensity
Itot. The birefringences describe the phase shift (different propagation speed) of two
orthogonal polarizations. Finally, the dichroisms express the difference of attenuations
of two orthogonal polarizations. Clearly, if the material is completely non-absorbing,
its differential Mueller matrix can have only three elements different from zero, the
birefringences.

Another special case is when the studied material does not exhibit optical activity or
any kind of gyrotropy. Then, circular birefringence is zero. Hence, when dealing with
cubic crystals from the crystallographic groups m3̄m, 4̄3m, and m3̄ in the absorption-free
wavelength range, only the linear birefringences LB and LB′ are of interest.

In the absence of absorption and gyrotropy, the (linear) retardance (LR) is given by
LR =

√
LB2 + LB′2. If the reference frame coincides with the optic axis, it expresses the

difference of the refractive indices of the ordinary and extraordinary waves [36]. The
linear retardance of achiral cubic crystals is shown in figure 3.1. We can clearly see the
four-fold symmetry of the [001] direction and the three-fold symmetry of the [111]
direction. Moreover, there is no birefringence in these two directions, and the maximum
retardance is in the [011] direction.

For completeness, we are showing also the directional dependence and projections
of LR in the case of the less symmetric group m3̄ in figure 3.2. Clearly, the drection
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3. Experimental methods

[010]

[100]

[001]

(a) bulk LR (b) LR from [001] (c) LR from [111]

Figure 3.1: Linear retardance (LR) due to spatial dispersion of a crystal belonging to the
m3̄m or 4̄3m crystallographic groups. (a) is the directional dependence of the LR inside
the crystal. The mapping of LR viewed from the direction [001] for constant values of
cos(AOI) is depicted in (b). The same, but viewed from the direction [111] is in (c).

[001] has a lower (two-fold) symmetry compared to the groups m3̄m and 4̄3m. The
lacking symmetry is the reason why the dielectric tensor of group m3̄ depends on two
parameters.

3.2 Spectroscopic polarimetry

The main principle of ellipsometry/polarimetry is to measure the polarization of light
that is reflected from or propagated through the sample. For that, we need a light source
with an optical system that is capable of creating different polarizations, and a light
detector that has an optical system for analyzing light polarizations. Depending on the
ability of the polarization state generator (PSG) and the polarization state analyzer
(PSA), different combination of the Mueller matrix components can be measured.

The simplified experimental setup is shown in figure 3.3, and is common to all our
transmission measurements. The PSG generates light with a well-defined polarization
state. It travels through the samplewhere it gets reflected and refracted, so its polarization
state changes. The change is then analyzed by the PSA. As we mentioned in section 3.1,
there is no birefringence in the [001] and [111] directions. However, if the sample with
one of these two surface orientations is tilted, then the linear retardance (LR) becomes
finite. Rotating the sample around its surface normal, i. e. around the four- and three-fold
symmetric axis, the LR shows the respective symmetry.

In our study, we used two home-built instruments which measure the complete
Mueller matrix. Both have the PSG and the PSA composed of a polarizer and a com-
pensator. The first of them utilizes Fresnel rhombs as compensators, and we will label
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[010]

[100]

[001]

(a) bulk LR (b) LR from [001] (c) LR from [111]

Figure 3.2: Linear retardance (LR) due to spatial dispersion of a crystal belonging to
the m3̄ crystallographic group. The ratio of the parameters defining the SD tensor was
chosen as p2/p1 = 0.6. (a) is the directional dependence of the LR inside the crystal. The
LR viewed from the direction [001] for fixed values of cos(AOI) is depicted in (b). The
same, but viewed from the direction [111] is in (c).

rotation around
sample normal

sample
tilt angle (AOI)

PSG PSA

Figure 3.3: Basic polarimetric cofiguration of transmission measurements. PSG is the
polarization state generator, and PSA is the polarization state analyzer.
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3. Experimental methods

the istrument as FRE. We used it fr spectral transmission measurements in the infrared
range where the upper wavelenght limit 1150 nm is restricted by the CCD spectrometer.
For further details see [38].

The second instrument has compensators composed of two photoelastic modulators
on each side, hence we will call it 4PEM. It was used in the near ultraviolet transmission
measurements and for reflection measurements in [17]. More about this instrument can
be found in [39, 40].

3.3 Samples

All the samples with their characteristics, and the instruments used in this study are
listed in table 3.2. We measured samples made of silicon (Si) and calcium fluoride

Table 3.2:Experimental data information.Measurementswere performed in transmission
(T) and reflection (R). In the case of transmission, refractive index (RI) data were taken
from the indicated literature. In the case of reflection measurement, the processed data
were provided by the authors of the cited article. All Si samples are double side polished.

material surface
orientation

thickness
[µm]

experiment
type instrument wavelength

(range) [nm]
RI/data
source

Si (001) 525(5) T FRE 1000 [23]

Si (111) 404(5) T FRE 1000 [23]

Si (011)† 503(5)
T
R

FRE
4PEM

(995, 1490)
(190, 799)

[23]
[17]

CaF2 (111) 500 T 4PEM 260 [41]
† In the transmission measurement 20 samples were measured.

(CaF2). Both crystals are cubic and belong to the m3̄m point group. The silicon wafers
are all double side polished and the CaF2 sample is a 5 × 5mm square monocrystal.
Their thicknesses were measured using a micrometer. The presented Si (001) wafer and
CaF2 thicknesses were taken from the manufacturer. In the case of Si (011) we made
an average of 20 samples with the same nominal thickness, therefore, also an average
thickness was used.

We performed the polarimetric measurements in tranmission (T). The ellipsometric
reflection measurements (R) were made and analyzed by Bian et. al. [17]. In our analysis
we used the average refractive index from literature [23, 41].
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4 Results and discussion

This chapter reports the results of our analysis and is divided into two parts. The first
one discusses the spectral dependence of spatial dispersion, where we have tested our
proposed dispersion model on experimental data. The second one deals with the spatial
variation of the measured linear birefringence, which, due to the symmetry, clearly
originates in spatial dispersion.

In the ideal case, experimental Mueller matrices coincide with the Mueller matrix
of the sample Ms. However, in reality there is also a response from the PSG and PSA
optics (MG and MA), that cannot be always totally elliminated by callibration. The real
measurement gives the measurable quantity is Mtot,

Mtot = MAMSMG. (4.1)

With each measurement, we made an additional measurement without a sample ("back-
ground measurement"), that gives the instrument response

MI = MAMG. (4.2)

Evidently, in general, we are not able to directly assess MS. However, if we assume
that the matrices of the instrument are close to identity and that they approximately
commute, then we might express the differential Mueller matrix (3.3) of the sample in
terms of Mtot and MI,

mS = log
(

M−1
A MtotM−1

G

)
≈ log Mtot − log MA − log MG

≈ log Mtot − log MI.

(4.3)

This correctionwasmade for all our presentedmeasurements. In the case of transmission,
we have assumed that the dielectric tensor is real-valued.

4.1 Spectral analysis

Twenty silicon wafers with surface orientation (011) were measured in transmission at
normal incidence using the FRE in the wavelength range (995, 1490) nm. The experi-
mental Mueller matrices were processed and the obtained birefringences LB and LB′

were translated into LR =
√

LB2 + LB′2. This quantity was fitted for each wavelength
separately with the form of the response tensors from table 2.2, taking into account
incoherent multiple reflections inside the sample. From this, we were able to get the
absolute value of the p1 parameter as a function of wavelength.
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Figure 4.1: The parameter p1 obtained from measurements of slicon in the transparent
region with multiple reflections calculated incoherently (IMR), and disregarding multi-
ple reflections (WMR) and fitted with the two-term harmonic oscillator model (a). The
real and imaginary parts of p1 from reflection measurement fitted with the Universal
dispersion model (b).

The refractive index of silicon in the transparent region can be described by a two-
term Sellmeier formula with great accuracy. The same applies to the real part of the
permittivity function Re ε(ω). We used this fact and extended the classical Sellmeier
formula to the modified harmonic oscillator model presented in section 2.3. Assum-
ing real functions, the dispersion model from combining (2.21) and (2.20b) with two
excitations is

ε(E) = 1 +
2
π

[
N1

E2
1 − E2

+
N2

E2
2 − E2

]
,

p1(E) =
2
π

[
SE2

E2
1 − E2

− SE2

E2
2 − E2

]
,

(4.4)

where we have already made use of the sum rule for the transition strengths ∑n Sn = 0
(see equation (2.22)), and absorbed the factor h̄2 into Nn and S. The result is shown in
figure 4.1. The fitted value is S = −(1.5021 ± 0.0006) · 10−4 for the incoherent multiple
reflectionmodel and S = −(1.7981± 0.0007) · 10−4 in case of themodelwithoutmultiple
reflections. We see that the modified harmonic oscillator model does not faithfully
capture the dispersion of p1. Reasons for the discrepancy may range from improper
callibration to an oversimplified model. As for now, we have not resolved tis issue.

Subiao Bian kindly provided us with the reflection data of silicon (011) published
in [17]. We fitted them simultaneously with the optical constants using the software
newAD2 [42]. The optical constants from far infrared to vacuum ultraviolet (0.01 -
10 eV) were generated using the Advanced dispersion model at room temperature
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4. Results and discussion

[43]. They were fitted with the Universal dispersion model with a splitted bandgap
using two effective phonons [23]. This way we were able to precisely describe the
indirect band gap of crystalline silicon. The interbnd electron excitations were modeled
by a combination of Gaussian peaks and the Campi-Coriosso model. In addition, we
used a model of the Urbach tail for the subgap absorption. Multiphonon excitations
were modeled by Gaussian peaks. Spatial dispersion was considered only for electron
interband excitations.

4.2 Spatial analysis

The spatial dependence of linear retardance was measured in transmission mode as
indicated in figure 3.3. The azimuthal rotation of the sample around its normal is fully
automatized. Silicon samples were measured at the wavelength 1000 nm, using the FRE
at different angles of incidence. The upper limit of the angle of incidence is given by the
sample holder.

We have already mentioned, that linear retardance of the m3̄m group has the largest
magnitude in the direction [011] (see section 3.1 and figures therein). We measured
20 wafers of Si (011) and by fitting the linear retardance we obtained the value of |p1|.
Clearly, it is model-dependent. In our study, we have first tried themodel which accounts
for multiple reflecitons summed incoherently, and then tried the model that takes
only the primary (non-reflected) beam. The completely coherent model is in our case
inapplicable, as the ratio sample thickness/wavelength is too big and the interference
pattern cannot be resolved. The first model yields |p1| = (9.066 ± 0.038) · 10−6. From
the second model, we got a slightly bigger value of |p1| = (1.085 ± 0.005) · 10−5.

The effects of the surface layer is significant at oblique angles, in contrast to normal
incidence.Wemeasured the thickness of the silicon oxide layer by reflection ellipsometry
on the FRE and with the help of the WVASE software [44]. The results are presented
in table 4.1. It was not possible to fit the experimental data of Si (001) and Si (111)

Table 4.1: Measured thicknesses of the native silicon oxide layer of both sides of the used
samples. Values were obtained by reflection ellipsometry.

Si (001) Si (011) Si (111)

front 2.2(4) nm 2.4(7) nm 2.5(4) nm

back 2.3(4) nm 1.8(2) nm 3.8(7) nm

measured at oblique AOI without accounting the surface layer. We added a coherent
SiO2 layer as indicated in section 2.4.2. It simulates the native layer on both sides of the
sample, and assumes the same, but variable thickness.
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Figure 4.2: Linear retardance at 1000 nm of silicon with surface orientation (001) mea-
sured at angle of incidence 20∘. Data are fitted with the model of incoherent multiple
reflections. The p1 value was fixed from the Si (011) measurement. The fitted value of
the native oxide layer is (3.843±0.065) nm.

Table 4.2: Values of fitted parameters and the χ2 for comparisson of two models: the inco-
herent multiple reflection (IMR), and the model without multiple reflections (WMR).

sample model |p1| SiO2 thickness χ2

Si (011) IMR
WMR

(9.066 ± 0.037) · 10−6

(1.085 ± 0.005) · 10−5 N/A 182.307399
182.307401

Si (001) IMR
WMR N/A (3.843 ± 0.065) nm

(3.842 ± 0.066) nm
5.3825
5.2953

Si (111) IMR
WMR N/A (2.99 ± 0.30) nm

(2.80 ± 0.31) nm
14.869
14.909

CaF2 (111)

IMR
WMR
IMR†

WMR†

(2.66 ± 0.09) · 10−7

(2.68 ± 0.08) · 10−7

−(2.408 ± 0.071) · 10−7

−(2.371 ± 0.072) · 10−7

N/A

19.588
19.612
92.224
91.878

† In this case we fitted directly LB and LB’, so we are sure p1 has the correct sign.

When fitting the surface layer thickness, it correlates significantly with the p1 value.
At normal incidence, there is practically no effect of the layer. So we used the previously
obtained p1 value from Si (011), and tried to fit only the SiO2 thickness. The results for
the model of incoherent reflections are shown in figures 4.2 and 4.3.

The model without multiple reflections gives almost the same results. We provide a
numerical comparisson in table 4.2. Wewere not able to find any literature for comparing
the silicon measurements.
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Figure 4.3: Linear retardance (LR) at 1000 nm of silicon with surface orientation (111)
measured at an angle of incidence (AOI) (a) 15∘, (b) 20∘, (c) 15∘, and (d) 30∘. Experimental
data are fitted with the model of incoherent multiple reflections. The p1 value was taken
from normal incidence measurement of (011) silicon. The fitted value of the native oxide
layer is (2.98 ± 0.30) nm.
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The calciumfluoride samplewasmeasured at thewavelength 260 nmusing the 4PEM.
We had only one sample available with the orientation (111). Compared to silicon, CaF2
has no native surface layer. It shows, however, a significantly smaller birefringence. We
can see from the results, that the three-fold symmetry of the LR is no longer visible.

The difference of refractive indices ∆n = n<011> − n<001> for CaF2 was reported by
Burnett et. al. [1]. At the wavelength 253.65 nm they measured
∆n = −(0.55 ± 0.07) · 10−7. In our case the difference can be obtained from p1 as

∆n = n
√

1 + p1 − n. (4.5)

Taking the last two results from 4.2, where directly LB and LB′ were fitted, we ged the
refractive index difference at the wavelength 260 nm as ∆n = −(1.763 ± 0.052) · 10−7

for the IMR model and ∆n = −(1.953 ± 0.053) · 10−7 for the WMR model.
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Figure 4.4: The individual fits of linear retardance (LR) and linear birefringence (LB) of
a CaF2 sample at 260 nm. The angle of incidence is 10∘ in (a) and (b), 20∘ in (c) and (d),
30∘ in (e) and (f). Experimental data corresponding to one AOI are the same, but fitted
at different levels.

43





5 Conclusion

We derived the dielectric tensor as a linear response function to the external electromag-
netic field. We showed how spatial disprsion emerges from the multipole expansion of
the vector potential.

We chose cubic crystals for a closer study because, without spatial dispersion (SD),
they have an isotropic response and have no intrinsic birefringence which would make it
signifcantly harder to measure the weak birefringence comming from SD. In particular,
achiral cubic crystals are of our interest since the dielectric tensor contains no term
odd in the components of the wavevector, i. e. there is no gyrotropy. We showed that
in the limit of weak SD (|q|a ≪ 1, where a is a characteristic spatial dimension), the
wavevector-dependent dielectric tensor depends only on one (classes m3̄m, 4̄3m) or two
(class m3̄) additional parameters, the spectral functions p1(ω) and p2(ω).

We have presented a method for reformulation of the response functions can be
reformulated so that no additional boundary conditions need to be imposed. This
was used to derive the 4 × 4 Berreman matrix formalism for light propagation. We
emphasized the differences between the usual formalism and the one modified for
spatial dispersion.

We introduced a dispersion model that is an analogue of the Harmonic oscillator
model, (Sellmeier formula), commonly used in the transparent spectral region. We have
tested the proposed model on experimental data from a double side polished silicon
wafer. The theoretical functions show a steeper dispersion than we have obtained from
polarimetric measurements of birefringence 4.1. On the other hand, we were able to fit
the spectral functions from reflectionmeasurements by employing a similarmodification
of the Universal dispersion model as we did for the Harmonic oscillator.

Concerning the directional dependence of SD, we successfully measured the three-
and the four-fold symmetry of the crystallographic directions [001] and [111], respec-
tively. We focused on studying howmultiple reflections affect the value of the parameter
p1, and how it is affected by the native oxide layer on the silicon surface. Although there
are no significant differences when accounting for multiple relections inside the sample
or discounting all reflections, we incline to the model with incoherent reflections.

The oblique angle measurements of CaF2 give very weak response in agreement
with our expectations. For the silicon we still cannot explain the discrepancy between
the theory and experiment. Silicon is slightly more challenging because (a) there is a
native oxide layer that does affect the birefringence, and (b) the refractive index of silicon
is relatively high, which requires a large angle of incidence to deviate from the isotropic
directions [001] or [111].

There is no doubt that our experiments measure SD, since no other effect can result
in a three- and four-fold symmetric anistropy in the linear retardance. At this point, we
cannot prove our theory wrong. There are still many things that deserve more attention.
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