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S1. EFFECTIVE MASSES

A. Parabolic approximation at the L-point

The E1 and E1+∆1 critical points (CPs) presented in Fig. 1b arise from interband transitions taking place from the heavy-hole
(L−

4 ⊕L−
5 -band) and light-hole (L−

6 -band) valence band (VB) to the L+
6 conduction band (CB), respectively. The symmetries

associated with these bands correspond to the set of wave function basis vectors1,17

L+
6 : |Z ↑⟩ , |Z ↓⟩ ,

L−
4 ⊕L−

5 :
1√
2
|X + iY ↑⟩ , 1√

2
|X − iY ↓⟩ , (S1)

L−
6 :

1√
2
|X + iY ↓⟩ , 1√

2
|X − iY ↑⟩ .

Just like in Sec. II, the z-axis was chosen along the Λ-direction. In this basis, and with the aid of k ·p theory, we can explicitly
calculate the matrix ⟨un0|k ·p|un′0⟩ to get an expression for the effective masses of the bands (n is the index of the band). We
note that the only non-zero momentum matrix elements are1,17

−i⟨Z|px|X⟩=−i⟨Z|pY |Y ⟩= P. (S2)

Naturally, the states in (S1) with opposite spins will not couple. Hence, the 6-band k ·p Hamiltonian will become a 3×3 matrix
represented as follows:1,17

⟨un0|k ·p|un′0⟩=

〈L+
6

∣∣k ·p
∣∣L+

6

〉 〈
L+

6

∣∣k ·p
∣∣L4
〉 〈

L+
6

∣∣k ·p
∣∣L−

6

〉〈
L4
∣∣k ·p

∣∣L+
6

〉
⟨L4|k ·p|L4⟩

〈
L4
∣∣k ·p

∣∣L−
6

〉〈
L−

6

∣∣k ·p
∣∣L+

6

〉 〈
L−

6

∣∣k ·p
∣∣L4
〉 〈

L−
6

∣∣k ·p
∣∣L−

6

〉


=


0 iP√

2
k⊥ iP√

2
k⊥

− iP√
2
k⊥ 0 0

− iP√
2
k⊥ 0 0

. (S3)

Since the only matrix elements that are nonzero are perpendicular to |Z⟩, the wave vector k reduces to k⊥ and the motion of the
carriers gets restricted to a two-dimensional plane. The full Hamiltonian is given by1,17

H0 +H̃k =


E1

ih̄P
m0

√
2
k⊥ ih̄P

m0
√

2
k⊥

− ih̄P
m0

√
2
k⊥ 0 0

− ih̄P
m0

√
2
k⊥ 0 −∆1

. (S4)

After diagonalizing the matrix (S4), we get the characteristic equation

Ẽ3 − (E1 −∆1) Ẽ2 −

(
E1∆1 +

h̄2P2k2
⊥

m2
0

)
Ẽ −

h̄2P2k2
⊥∆1

2m2
0

= 0, (S5)
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where Ẽ = E − h̄2k2/2m0 is the modified energy parameter introduced by Kane62 (where the kinetic energy of the free electron
has been subtracted). For small values of k⊥, we can solve Eq. (S5) perturbatively to get the 3 solutions (one for each band):7,51

ECB = E1 +
h̄2k2

⊥
2

[
1

m0
+

EP

m0

(
1

E1
+

1
E1 +∆1

)]
︸ ︷︷ ︸

1/m
(L+6 )

⊥

(S6)

Ehh =
h̄2k2

⊥
2

(
1

m0
− EP

m0E1

)
︸ ︷︷ ︸

1/m
(L−4 ⊕L−5 )

⊥

(S7)

Elh =−∆1 +
h̄2k2

⊥
2

[
1

m0
− EP

m0(E1 +∆1)

]
︸ ︷︷ ︸

1/m
(L−6 )

⊥

(S8)

To simplify the notation, we have made the substitution EP = P2
/m0. Systems of correlated electron-hole pairs generated at the

L-point will have a transverse reduced effective mass:17

µ
(E1)
⊥ =

 1

m
(L+6 )

⊥

− 1

m
(L−4 ⊕L−5 )

⊥

−1

=

[
EP

m0

(
2

E1
+

1
E1 +∆1

)]−1

(S9)

and µ
(E1+∆1)
⊥ =

 1

m
(L+6 )

⊥

− 1

m
(L−6 )

⊥

−1

=

[
EP

m0

(
1

E1
+

2
E1 +∆1

)]−1

(S10)

corresponding to the two CPs E1 and E1 +∆1, respectively.

B. Non-parabolicity at the L-point with small spin-orbit interaction

Instead of approximating for small values of k⊥, we can solve the characteristic Eq. (S5) exactly with Vieta’s solution for a
cubic equation. These solutions, however, are not useful for our purposes given that they cannot be inverted to get the density of
states as a function of energy. Instead, we can use the small spin-orbit (SO) approximation by letting ∆1 → 0. If we do this, the
characteristic equation becomes

Ẽ3 −E1Ẽ2 −
h̄2k2

⊥
m0

EPẼ = 0, (S11)

with one solution Ẽhh = 0, and the other two

ẼCB,lh =
E1 ±

√
E2

1 +4 h̄2k2
⊥

m0
EP

2
. (S12)

We can expand the square roots in Eq. (S12) in k2
⊥ to obtain

ECB = E1 +
h̄2k2

⊥
2m0

+
E1

2

1+

√
1+

4h̄2k2
⊥

m0

EP

E2
1

≈ E1 +
h̄2k2

⊥
2m0

(
1+

EP

E1
−

h̄2k2
⊥

2m0

E2
P

E3
1
+2

h̄4k4
⊥

2m2
0

E3
P

E5
1

)
(S13)

Elh =
h̄2k2

⊥
2m0

+
E1

2

1−

√
1+

4h̄2k2
⊥

m0

EP

E2
1

≈
h̄2k2

⊥
2m0

(
1− EP

E1
+

h̄2k2
⊥

2m0

E2
P

E3
1
−2

h̄4k4
⊥

2m2
0

E3
P

E5
1

)
. (S14)

FIG. S1 shows the bands of the exact solution, the parabolic, and the small SO approximation. The CB in the small SO
approximation is almost identical to the 6-band solution. For the lh-band, the curvature of the small SO approximation is similar
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to the exact solution, however, the parabolic approximation is in better agreement to the exact solution. On the other hand,
even in the 6-band model solution, the hh-band shows the wrong curvature. The band seems almost flat, indicating a nearly
infinite transverse mass. Cardona states that including non-parabolicity terms linear in k⊥ make the transverse reduce mass for
E1 infinite.54 However, this is in the Λ-region (and not at the L-valley). Unfortunately, this solution does not resemble what we
see in k ·p-theory calculations with higher number of bands.25 Further calculations probing not only the bottom of the L-valley,
but also the Λ-direction away from the L-valley are needed.
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FIG. S1: Band structure of Ge at the L-valley. The perpendicular k⊥-vector is shown in atomic units where a0 = 0.53 Å.
The thick solid lines represent the exact solution to the 3× 3 Hamiltonian in Eq. (S4), the thin solid lines show the parabolic
approximation, and the dot-dashed lines are the small spin-orbit approximation.

S2. DIELECTRIC FUNCTION OF GE

Previous attempts to describe the CPs of interest give the line shape of the DF as a step function17

ε
(E1)
2 =

(
1

4πε0

)
16kmaxe2P2

µ
(E1)
⊥

3m2
0E2 H(E1 −E), (S15a)

ε
(E1+∆1)
2 =

(
1

4πε0

)
16kmaxe2P2

µ
(E1+∆1)
⊥

3m2
0E2 H(E1 +∆1 −E), (S15b)

where H is the Heaviside step function, kmax is the maximum range in the k-axis where transitions take place, and P is the
average momentum matrix element.25,26 The real part ε1 can be calculated from the expression for ε2 with a Kramers-Kronig
transformation. Alternatively, Humlíček gives the full expression for the DF while adding broadening to Eq. (S15) as18

ε
(E1)(E) =−

(
1

4πε0

)
16kmaxe2P2

µ
(E1)
⊥

3m2
0πE2 ln

[
2(E1 − iΓ−E)

E1 − iΓ

]
, (S16a)

ε
(E1+∆1)(E) =−

(
1

4πε0

)
16kmaxe2P2

µ
(E1+∆1)
⊥

3m2
0πE2 ln

[
2(E1 +∆1 − iΓ−E)

E1 +∆1 − iΓ

]
. (S16b)

Eqs. (S16) give the DF for uncorrelated electron-hole pairs shown by the blue dashed lines in Fig. 2.
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In the following, we briefly describe how to derive Eq. (S15a). We start by computing the amplitude in Eq. (3) for the E1 CP
of Ge from the expression for the imaginary part of the dielectric tensor1,63

ε2(E)µν =

(
1

4πε0

)
4π2e2h̄2

m2
0E2 ∑

CV
⟨V|pµ |C⟩ ⟨C|pν |V⟩

∫ dk
4π3 δ (EC(k)−EV(k)− h̄ω). (S17)

Since we are dealing with a cubic system, only the diagonal components of the tensor are non-zero. Therefore, we can replace
the dielectric tensor with the dielectric function by averaging the contributing components ε2 = (εxx + εyy + εzz)/3. Moreover,
from k ·p theory, the matrix elements reduce to17

∑
CV

⟨V|pµ |C⟩ ⟨C|pν |V⟩= | ⟨C|Px|V⟩|2︸ ︷︷ ︸
P2

/2

+
∣∣⟨C|Py|V⟩

∣∣2︸ ︷︷ ︸
P2

/2

+ | ⟨C|Pz|V⟩|2︸ ︷︷ ︸
0

= P2
, (S18)

hence we can replace the matrix element in Eq. (S17) with the average transition matrix element P. Finally, we multiply the DF
by 4 to account for the L-valley degeneracy. The result is

ε2(E) =
(

1
4πε0

)
4π2e2h̄2

m2
0E2

(
4P2

3

)∫ dk
4π3 δ (EC(k)−EV(k)− h̄ω). (S19)

To solve the integral in Eq. (S19), we replace it with the JDOS in Eq. (2) and switch to cylindrical coordinates. In the new
coordinate system, the DF looks like

ε2(E) =
(

1
4πε0

)
16π2e2P2h̄2

3m2
0E2

∫∫∫ kρ dkρ dkϕ dkz

4π3 δ

(
E1 +

h̄2k2
ρ

2µ⊥
−E

)
. (S20)

The integral
∫

dkϕ = 2π is trivial. To integrate over kρ , we make the substitution u = h̄2k2
ρ/2µ⊥, which transform the integral

∫
∞

0
kρ dkρ δ

(
E1 +

h̄2k2
ρ

2µ⊥
−E

)
→ µ⊥

h̄2

∫
∞

0
duδ (E1 +u−E) . (S21)

Its solution yields the Heaviside step function H(E1 −E). Finally, the integral over kz needs to be limited to the range where the
transitions take place. We call this kmax. The final result for E1 is

ε
(E1)
2 =

A
E2 H(E1 −E), with A =

4e2P2
µ
(E1)
⊥

3πε0m2
0

kmax, (S22)

which is simply Eq. (S15a). Notice the similarity between the amplitudes in Eq. (S22) and Eq. (4a). These amplitudes are the
same if we simply replace the transition matrix element e ·MCV → P2kmax/3 and multiply by the valley degeneracy (multiply
by 4 for L-valley).

S3. UNRENORMALIZED ENERGIES

To get the unrenormalized energies of the CPs, we will follow the procedure by Zollner et al.42 where they give the unrenor-
malized value for the direct bandgap E0 as

Eu
0 (T ) = Eu

0 (T = 0 K)−3B
(

∂Eexp
0

∂ p

)
T

∫ T

0
α(θ)dθ , (S23)

where the superscript u stands for unrenormalized, B is the bulk modulus, α(T ) is the temperature-dependent thermal expansion
coefficient, and p is the pressure. For our purposes, we will replace the unrenormalized energy at zero temperature with the
fitted parameter Ea in the Bose-Einstein model of Eq. (15). The fitted parameters Ea, Eb, and θB in Table I are obtained by
fitting the experimental CP energies of Table SI. Fig. S2 (b) shows the experimental energy of the E1 and E1 +∆1 CPs as a
function of temperature (dot-dashed lines). To subtract the thermal effect, we use the thermal expansion coefficient given by Eq.
(14). Menéndez et al. obtained the values in Eq. (8) by fitting the experimental thermal expansion data from Ma and Tse.40 As
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an alternative to Eq. (8), we could also use a more sophisticated expression for the thermal expansion coefficient provided by
Roucka et al. as64

α(T ) =
4kB

a3
0B

[
2
3

γTA

(
ΘTA

T

)2 eΘTA/T(
eΘTA/T −1

)2 + γLA

(
T

ΘLA

)3 ∫ ΘLA/T

0

x4ex

(ex −1)2 dx+ γopt

(
Θopt

T

)2 eΘopt/T(
eΘopt/T −1

)2

]
, (S24)

where a0 = 5.6568 Å is the lattice constant,65 γ is the Grüneisen parameter, and Θ is the Debye temperature. The subscripts LA,
TA, and opt stand for the longitudinal acoustic, transverse acoustic, and optical modes, respectively. As seen in Fig. S2 (a), the
more complicated expression in Eq. (S24) yields an almost identical result to Eq. (14). Therefore, we settle on using Eq. (8) for
this work. Fig. S2 (a) also shows experimental thermal expansion coefficients from the literature.66,67

The result of the unrenormalized energy in Eq. (S23) is shown in Fig. S2 (b) (solid lines). For this calculation, we take the
value of (∂E1

/
∂ p )T ≈ [∂ (E1 +∆1)

/
∂ p ]T . We justify this assumption by noting that the SO shift ∆1 is related to atomic effects

and it is, for the most part, unaffected by the distance of the atoms within the lattice. Finally, Fig. S2 (c) shows the exciton
binding energies for both CPs in the left axis (solid lines), as well as the reduced masses on the right axis (dashed lines).
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FIG. S2: (a) Thermal expansion coefficient from Eq. (14)36 (blue solid line) and Eq. (S24)64 (green solid line) compared to
experimental data (⃝).66,67 (b) The experimental values for E1 and E1 +∆1 (blue and red dot-dashed line, respectively) are
shown along with their respective unrenormalized energy (red and blue solid lines, respectively). (c) On the left axis is the
binding energy of the excitons of the critical points (black and red solid lines). On the right axis is the transverse reduced
effective masses (green and blue dot-dashed lines).

S4. FITTING PROCEDURE

To suppress the noise of the experimental data, we used a direct space convolution of the experimental DF with a digital filter.
The convolution f between f (x) and b(x) has the following property:

f (x) =
∫

∞

−∞

dx′ f (x− x′)b(x′) =
∫

∞

−∞

dx′ f (x′)b(x− x′). (S25)

Note that, in light of Eq. (S25), operations such as d f (x)
/

dx produce the same outcome whether they act on f (x− x′) or
b(x− x′). To compute the second derivative of the experimental data, we take full advantage of this property by differentiating
the digital filter (an analytical function) instead of the experimental data (a set of discrete points). To perform the convolution,
we used MATLAB’s built-in function conv(u,v), where u and v are the vectors being convoluted. For the fitting procedure, we
created a residual vector function with five free parameters [E1, ∆1, Γ(E1), Γ(E1+∆1), and εoff]. The two components of this vector
function consisted of the real and imaginary part of the experimental 2nd derivative of the DF minus the corresponding parts of
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TABLE SI: Value of the fitting parameters and filter width ∆E for the extended Gauss digital filter. The step size selected was 1
meV from 1.0 to 3.2 eV (2201 points). (f) indicates a fixed parameter.

T ∆E (meV) E1 (eV) E1 +∆1 (eV) Γ(E1) (meV) Γ(E1+∆1) (meV) εoff
4 K 12.0 2.2793±0.0009 2.4779±0.002 75±1 96±2 6(f)

100 K 14.5 2.2599±0.0008 2.4600±0.002 79±1 103±2 6(f)
200 K 17.5 2.2187±0.0009 2.4176±0.002 89±1 119±2 7(f)
300 K 21.5 2.1674±0.0009 2.3638±0.002 101±1 136±2 7(f)
400 K 27.5 2.1167±0.0006 2.3147±0.002 115±1 157±2 8(f)
500 K 27.5 2.0656±0.0007 2.2642±0.003 128±1 175±2 8(f)
600 K 25.0 2.0172±0.0009 2.2170±0.003 142±1 193±3 8(f)
700 K 33.0 1.968±0.001 2.1683±0.004 155±1 212±4 8(f)
800 K 35.0 1.917±0.002 2.1182±0.006 171±2 243±6 9(f)

TABLE SII: Value of the fitting parameters and order of polynomial n for the Savitzky-Golay digital filter. The frame length was
constrain to 5% of the number of points (11 points). (f) indicates a fixed parameter.

T n E1 (eV) E1 +∆1 (eV) Γ(E1) (meV) Γ(E1+∆1) (meV) εoff
4 K 7 2.279±0.002 2.478±0.006 76±3 96±6 6(f)

100 K 7 2.260±0.002 2.460±0.006 80±2 103±5 6(f)
200 K 7 2.219±0.003 2.418±0.005 89±3 119±7 7(f)
300 K 5 2.167±0.003 2.364±0.005 102±2 137±5 7(f)
400 K 5 2.117±0.002 2.315±0.005 116±2 157±6 8(f)
500 K 5 2.066±0.002 2.264±0.007 129±2 175±6 8(f)
600 K 4 2.017±0.002 2.217±0.008 142±3 193±9 8(f)
700 K 3 1.968±0.003 2.17±0.01 155±3 212±12 8(f)
800 K 3 1.917±0.006 2.12±0.02 171±6 234±18 9(f)

the numerical derivative of the model:

residual(E1,∆1,Γ
(E1),Γ(E1+∆1),εoff,E) =

Re
{

d2εexp(E)
dE2

}
−Re

{
d2εmodel(E1,∆1,Γ

(E1),Γ(E1+∆1),εoff,E)
dE2

}
Im
{

d2εexp(E)
dE2

}
− Im

{
d2εmodel(E1,∆1,Γ

(E1),Γ(E1+∆1),εoff,E)
dE2

}
. (S26)

After creating the residual vector function (S26), we minimized it with the MATLAB function lsqnonlin(fun,x0,lb,ub),
where the input fun is the function to be minimized, x0 is the vector with the initial guess for the fitting parameters, lb, and ub
are the vectors with the lower and upper bounds for the fitting parameters, respectively.

A. Extended Gaussian digital �lter

The extended Gaussian (EG) digital filter of Eq. (18) for M = 4 has the form46,47

b4(x) =
1

12288∆E
√

π

(
15120− 10080x2

∆E2 +
1512x4

∆E4 − 72x6

∆E6 +
x8

∆E8

)
exp
(
− x2

4∆E2

)
. (S27)

However, since we are interested in the 2nd derivative of the data, we can compute the second derivative of Eq. (S27) and perform
the convolution with εexp(E) afterward.

d2b4(x)
dx2 =

1
49152∆E3

√
π

(
−110880+

188496x2

∆E2 − 45936x4

∆E4 +
3608x6

∆E6 − 106x8

∆E8 +
x10

∆E10

)
exp
(
− x2

4∆E2

)
. (S28)

To select the filter width ∆E, we Fourier-transform the experimental data and plot the natural logarithm of the amplitude Cn
of the coefficients as seen Fig. S3 (a). We then eliminate the higher order coefficients (noise) and retain the lower ones which
preserve the information of the original signal. The same cutoff of the coefficients is also applied to the Fourier transform of
the EG filter B4(n), shown in Fig. S3 (a) as well. In this figure, we show the Fourier coefficients of the experimental data as a
function of the order of coefficients n at 200 K, along with the Fourier transform of the extended Gaussian filter B4(n) for two
different filter widths. For this particular measurement, we selected the cutoff at the 31st coefficient. The reader might find this
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cutoff too conservative and that such a large filter width could suppress a portion of the signal. To address these concerns, we
repeated the fitting procedure with the cutoff at the 41st coefficient [see the cyan dash-dotted line in Fig. S3 (a)]. We find that
including higher-order coefficients increases noise but does not change the fitted energy and broadening parameters beyond their
uncertainty. Therefore, we settled with the larger filter width. The dark circles in Fig. S3 (b) show the EG derivatives for this
measurement. One of the advantages of this method is the increase in the number of points available in the derivative. In our
case, the EG filter produces 2201 derivative points, resulting from the chosen energy step size of 1 meV over the range from 1.0
to 3.2 eV. This is in contrast to the Savitsky-Golay (SG) derivative [shown by the red and blue lines in Fig. S3 (b)], where the
derivative is limited to the number of points of the original signal. Once the filter width has been selected, we can minimize the
residual function in Eq. (S26) to fit the energy and broadening parameters. Table SI shows the fitted parameters for this method.

B. Savitzky-Golay digital �lter

To obtain the SG digital filter, we employed the built-in MATLAB function sgolay(m,fl). This function gives a matrix of
a finite impulse response smoothing filter. The input m is the polynomial order and fl is the frame length. We used 11 points
for the frame length, which is approximately 5% of the total number of data points (this number must be odd). The order of
the polynomial is listed in Table SII for each temperature series. Once we have generated the SG filter, we can obtain the nth

derivative by convolving the experimental data with the (n+1)th column of the filter matrix. The solid lines in Fig. S3 (b) show
the SG derivatives for the experimental data at 200 K. Table SII shows the final values of the fitted parameters with the SG filter.
Notice the similarity of the fitted values for energy and broadening between the two filters.
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FIG. S3: (a) Natural logarithm of the Fourier coefficient amplitude Cn of the real (red) and imaginary (blue) parts of the dielectric
function at 200 K. The same plot also shows the Fourier transform of the extended Gaussian filter (⃝) for different filter widths.
(b) 2nd derivative of the dielectric function calculated with the extended Gauss filter (⃝) and with the Savitzky-Golay filter
(solid).

S5. DIRECT BANDGAP

The lineshape of the E0 CP was presented previously by Emminger et al. as6

ε(E) =
A
√

R
π(E + iΓ)2 {g̃ [ξ (E + iΓ)]+ g̃ [ξ (−E − iΓ)]−2g̃ [ξ (0)]} , (S29)

with g̃(ξ ) =−2ψ

(
g
ξ

)
− ξ

g
−2ψ (1−ξ )− 1

ξ
, ξ (z) =

2√
E0−z

R +
√

E0−z
R + 4

g

, and A =
e2√m0√
2πε0h̄2 µ

3/2
h

EP

3
.

This model is quite similar to Eq. (3), since it also takes into account excitonic (and screening) contributions to the CP. We can
improve Eq. (S29) by including non-parabolicity contributions to the effective mass at the Γ-point. By following the procedure
in Ref. 42 we use the small spin-orbit (SO) coupling approximation to get an analytical expression for the CB effective mass
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FIG. S4: (a) In addition to the parabolic approximation (thin solid line), we show the exact solution (thick solid line) and the
small spin-orbit approximation (dot-dashed) to the 8-band model of the band structure of Ge. (b) Imaginary part of the dielectric
function at 4 K in the parabolic approximation (solid) and including non-parabolicity linear terms in αε (dashed) and quadratic
terms in βε2 (dot-dashed) of the density of states mass. (c) Parabolic (solid) and non-parabolic (dashed, dot-dashed) models
extended up to 3 eV.

and, therefore, the electron density of states (DOS) mass. If we consider an 8-band model (CB, hh, lh, and SO band), our k ·p
Hamiltonian looks like62

H0 +H̃k =


E0 0 − h̄k

m0
iP 0

0 − 2∆0
3

2∆0
3 0

h̄k
m0

iP 2∆0
3 − 2∆0

3 0
0 0 0 0

. (S30)

We can construct an exact solution of the band energies by solving the characteristic equation to this eigenvalue problem. Similar
to Eq. (S5), the exact solutions to Eq. (S30) are not useful for our purposes because they cannot be inverted to get the DOS as
a function of energy. Instead, we assume that the spin-orbit (SO) coupling is small and approximate ∆0 → 0. As a result, this
approximation makes the center terms in the Hamiltonian matrix (S30) zero and gives two degenerate solutions of zero (the hh-
and SO-band) and two non-zero solutions (the CB and lh-band). In Fig. S4 (a), we can see that in the small SO approximation,
the CB fits reasonable well to the exact solution of the band structure (at least in our 8-band 4× 4 Hamiltonian model). Since
there are two zero solutions in the small SO approximation, the hh- and SO-VB are degenerate and lie on top of the exact solution
of the hh-band. The effective mass of the electron in CB and the hole in the lh-band are, therefore, given as

me =
E0

EP +E0
, mlh =

E0

EP −E0
.

However, the band structure in Fig. S4 (a) clearly shows that the small SO approximation does not present a good match with
the exact solution of the lh-band. For this reason, we will only consider non-parabolicity effects in the CB, while leaving the VB
in its parabolic approximation form. Hence, we will only consider me to calculate the DOS mass42

me,DOS = me
[
(1+αeε+βeε

2)(1+2αeε+3βeε
2)2]1/3

, (S31)

where42

αe =
E2

P
E0(E0 +EP)2 , βe =− 2E3

P
E0(E0 +EP)4 , (S32)
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and ε is the energy above the band minimum E0. Including α and β into the DOS effective mass has the effect of overestimating
ε2. This can be seen in Fig. S4 (b). To compensate this, we would have to consider the k-dependence of the matrix element EP,
which should bring ε2 closer to the experimental value (we do not pursue this here).1,62 Still, independently of the approximation,
the amplitude of ε2 is around one between 1.5 and 3 eV. Therefore, including E0 in the Tanguy line-shape would not be enough
to match the experimental data in the E1 and E1 +∆1 region.

S6. SURFACE EFFECTS

To showcase the dielectric function for different surface orientations, we measured Ge substrates with (100), (110), and (111)
surface orientations. We then follow the procedure explained in Sec. III to remove the effects of the oxide layer from the data.
The (110) surface orientation had an estimated oxide layer thickness of about 28 Å, whereas the (100) and (111) surfaces had
a similar oxide layer thickness of about 25 Å. The resulting point-by-point fits are shown in Fig. S5. It can be seen that the
difference between the samples is negligible. Therefore, we find it unlikely that these surface-related effects are responsible for
the discrepancies between theory and experiment observed in our model for the dielectric function near the E1 and E1 +∆1 CPs.
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FIG. S5: Real (a) and imaginary (b) parts of the dielectric function of Ge from a point-by-point fit for three substrates with (100),
(110), and (111) surface orientations (black, blue, and red, respectively).
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