
Excitonic e�ects at the temperature-dependent E1 and E1 +∆1 critical

points of Ge
C. A. Armenta∗ and S. Zollner

Department of Physics, New Mexico State University, MSC 3D, P. O. Box 30001, Las Cruces, NM 88003-8001,
USA

(*Electronic mail: cobhc14@nmsu.edu.)

(Dated: 3 June 2025)

We investigated excitonic effects in the complex dielectric function of Ge near the E1 and E1 +∆1 critical points as a
function of temperature. By employing Tanguy’s theory for two-dimensional excitons [C. Tanguy, Solid State Com-
mun. 98, 65 (1996)], we fitted the second derivative of the dielectric function to a temperature series of spectroscopic
ellipsometry measurements ranging from 4 K to 800 K [C. Emminger et al., J. Vac. Sci. Technol. B 38, 012202 (2020)].
We analyzed the temperature dependence of the effective masses, matrix elements, and exciton binding energies to
develop a model for the dielectric function that requires no fitting parameters, apart from energy and broadening. Our
calculations not only show a remarkable agreement between theory and experiment, but also provide a model for the
absorption by two-dimensional excitons that can be adapted to other applications and materials.

I. INTRODUCTION

Basic optical processes like the absorption or emission of
photons and the creation and recombination of electron-hole
pairs are discussed qualitatively in reference to experimen-
tal results in many popular textbooks,1–3 but a quantitative
comparison of theory and experiment has long been elusive.
Progress has been made recently by describing the local elec-
tronic band structure using k · p-theory1 and the Coulomb
interaction between the electron and hole with the Elliott-
Tanguy theory of excitons.4,5 This formalism has been ap-
plied to the direct6 and indirect7 gap absorption in Ge and
the lineshape of the photoluminescence of Ge as a function of
temperature.8

The present manuscript applies the same formalism to the
prominent E1 and E1 + ∆1 peaks in the complex dielectric
function of Ge. Our results are predictive, because only
known parameters (such as band gaps and effective masses)
are used to calculate the strength of the optical absorption.
They can therefore be applied universally to many different
diamond and compound semiconductors, including semicon-
ductor alloys important for electronic and optoelectronic ap-
plications.

II. TWO-DIMENSIONAL EXCITONS

The electronic band structure of Ge presents two van Hove
singularities in the [111]-direction (Λ) of the wave vector k in
the Brillouin zone (see Fig. 1b).1 These critical points (CPs)
arise due to the conduction band (CB) running parallel to the
valence band (VB) over a certain range of k-vectors. Labeled
as E1 and E1 +∆1, these CPs are transitions occurring from
the heavy-hole (hh) and light-hole (lh) VBs to the CB, respec-
tively. Categorized1,9 as a two-dimensional minimum critical
point M0, the literature gives the dielectric function (DF) ver-
sus photon energy ε(E) for such CPs as10–14

ε(E) =C−Beiφ ln(E −E1 + iΓ), (1a)

with
d2ε(E)

dE2 =
Beiφ

(E −E1 + iΓ)2 . (1b)

In CP analysis, typically only Eq. (1b) is fitted to the data
with amplitude B, phase angle φ , energy E1, and broadening
Γ as its free parameters.15 Variable C in Eq. (1a) is a con-
stant. Unfortunately, this type of analysis only provides infor-
mation about the energy and broadening for the structures of
interest, while leaving the form of the DF without an accurate
description. Eq. (1a) does not yield a good description of the
dielectric function or the CP parameters.16

Conversely, in cases where the calculation of the DF has
been attempted, the description of this CP lineshape has been
limited to a qualitative discussion.17,18 A major pitfall in these
calculations is the omission of the Coulomb interaction be-
tween the electrons excited to the CB and the holes left in the
VB. These electron-hole pairs tend to form excitons (bound
together in a hydrogen-like system). Because of the joint
(JDOS) of these transitions, the excitonic systems for E1 and
E1+∆1 are confined to a two-dimensional plane. Equation (2)
shows the JDOS for the E1 CP in a coordinate system where
the z-axis points along the [111]-direction. Naturally, in this
coordinate system, the x- and y-axis would be along the [110]-
and [112]-direction, respectively.

JCV(E) ∝

∫ dk
8π3 δ

[
E1 +

h̄2

2

(
k2

x + k2
y

µ⊥
+

k2
z

µ∥

)
−E

]
. (2)

The longitudinal reduced effective mass µ∥ in Eq. (2) is sig-
nificantly greater than the transverse reduced effective mass
µ⊥.18 As a result, the JDOS effectively confines the motion of
the exciton to the x-y plane, as depicted in Fig. 1a.

In essence, an accurate description of the aforementioned
CPs must take into account the effects of the formation of
these quasi-two-dimensional excitons. In recent years, great
progress has been made in the implementation of the GW -
method and the Bethe-Salpeter equations (BSE) to calculate
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the DF of different semiconductors.19–21 This approach ac-
counts for excitons by making quasi-particle energy correc-
tions to the initial density functional theory calculations of
the band structure. It also accounts for the Sommerfeld en-
hancement of excitonic absorption over the absorption by un-
correlated electron-hole pairs. Barker et al.,20 for instance,
correctly resolve the E1 and E1 +∆1 CPs in the DF of GaSb.
Unfortunately, this approach requires a significant amount of
computing time and provides only limited agreement when
compared with experiment. Instead, we aim to provide a
closed-form expression for the DF that can easily be imple-
mented on a personal computer.

Culminating prior efforts of finding a solution to this
problem,22,23 Tanguy provided an expression for the complex
DF that incorporates the effects of two-dimensional Wannier
excitons.24 Unlike GW -BSE, which requires large computa-
tional resources and provides only an approximation to the
DF, Tanguy’s model offers a fully analytical solution.24 This
allows for direct comparison with experimental data without
the need for extensive numerical fitting. Still, despite Tan-
guy’s work being published almost three decades ago,24 com-
parison of theory with experiment is lacking in the literature.
In the present work, we will bridge this gap by comparing
Tanguy’s model to the DF of Ge near the E1 and E1 +∆1 CPs.
This model not only provides a better description of the DF
than previous attempts, but also requires no fitting parameters
apart from energy and broadening. Furthermore, having a re-
duced number of fitting parameters makes this model highly
applicable to other areas of research, such as the description
of band-filling effects25,26 and ultrafast phenomena.27–29 Be-
cause of its compact form, the model can also be applied to
other semiconductor materials of interest, such as InSb, GaAs,
and Ge1−xSnx alloys.

For comparison with experiment, we used data published
by Emminger et al.,30 which comprises a temperature series
of spectroscopic ellipsometry measurements, ranging from 4
to 800 K. We will briefly discuss the acquisition, reduction,
and modeling of the data. We will also analyze Tanguy’s DF
expression, as well as how it can be adapted to the material
of interest. The fixed parameters of the model tend to change
with temperature, hence we will discuss the temperature de-
pendence of both, the fixed and free parameters. Finally we
will point out the shortcomings of the model and how they can
be improved upon.

III. EXPERIMENTAL DATA

The experimental data consist of spectroscopic ellipsome-
try measurements of a wafer of bulk Ge with (100) surface
orientation. With a separation of 10 meV, the data collected
ranged from 0.7 to 6.3 eV. There were a total of 32 measure-
ments ranging from 4 to 800 K. We will not discuss the details
of these measurements any further. If interested in more infor-
mation about the cleaning procedure, acquisition settings, and
temperature control methods, we encourage the reader to look
at the original publication.30

What is relevant for our purposes is the effect of the na-
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FIG. 1: (a) Because the longitudinal reduced mass µ∥ is much
larger than the transverse reduced mass µ⊥ in the CPs E1 and
E1 +∆1, the excitons are restricted to the plane perpendicu-
lar to the z-axis. (b) Band structure of Ge in the Λ-direction,
where the E1 and E1 +∆1 transitions (black arrows) are lo-
cated. The range of wave vectors k where these transitions
take place is labeled kmax (grey region).

tive oxide layer embedded in the data. Because we are in-
terested in only the bulk material, it is necessary to correct
for the oxide overlayer that is present at the moment of the
measurement. To make this oxide correction, we can use the
optical properties of GeO2 published by Nunley et al.31 The
procedure consist of simulating the pseudo-DF using Nunley’s
GeO2 and Emminger’s parametric semiconductor oscillator
models.30,31 In this manner, we construct a point-by-point fit
that extracts the DF of the bulk material and removes any ef-
fects from the oxide layer. We achieved this with the aid of
the commercial software WVASE32, from the J. A. Wool-
lam company.32 We note that the oxide layer thickness varied
slightly at each temperature. Therefore, there could be small
errors in the layer thickness estimated by this oxide correction.
If the wrong oxide thickness is used, it could lead to surface
effects that will affect the amplitude of the imaginary part of
the DF. We will expand on these surface effects in Sec. VI.
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IV. TANGUY MODEL

At a two-dimensional CP with energy E1, Tanguy24 pro-
vides the optical dispersion for a two-dimensional exciton by
incorporating broadening to both, the continuum and discrete
absorption spectra. This complex DF is given by24

ε(E) =
A

π(E + iΓ)2 {ga [ξ (E + iΓ)]

+ga [ξ (−E − iΓ)]−2ga [ξ (0)]} , (3)

where

A =
e2µ⊥|e ·MCV|2

πε0m2
0

, ξ (z) =

√
R

E1 − z
, (4a)

and ga(ξ ) = 2ln(ξ )−2ψ

(
1
2
−ξ

)
. (4b)

In Eq. (4a), the amplitude A depends on the electron charge
e, the free electron mass m0, the permeability of free space
ε0, the reduced mass of the two-dimensional exciton µ⊥, and
the transition matrix element e ·MCV, whereas the argument ξ

depends on the exciton’s binding energy R and the CP energy
E1. In Eq. (4b), ψ(z) is the complex digamma function

ψ(z) =
d
dz

lnΓ(z) =
d
dz

ln
(∫

∞

0
tz−1e−tdt

)
, (5)

where Γ(z) is the complex gamma function. In the case of the
CPs E1 and E1 +∆1 of Ge, we can replace the amplitude in
Eq. (3) with17,25,26

A(E1) =
4e2µ

(E1)
⊥ P2

3πε0m2
0

kmax for E1 (6a)

and A(E1+∆1) =
4e2µ

(E1+∆1)
⊥ P2

3πε0m2
0

kmax for E1 +∆1, (6b)

where µ
(E1,E1+∆1)
⊥ are the transverse reduced masses of the

CPs, P is the average transition matrix element, and kmax is the
maximum range along the kz-axis where interband transitions
take place. For details about these amplitudes, refer to the
supplementary material Sec. S2. Previous calculations of the
DF for these CPs neglected the correlation between electrons
and holes, resulting in a step-like function17,18,25,26 [see Eq.
(S15) in Sec. S2 of the supplementary material for details on
this step function].

To illustrate these excitonic effects, Fig. 2 shows the com-
parison between the DF for uncorrelated electron-hole pairs
(blue dashed line) and the two-dimensional excitonic line-
shape (black solid line). Fig. 2 also shows the two com-
ponents of Eq. (3), the continuum and discrete absorption
(shown by the red and green dot-dashed lines, respectively).
Fig. 2 shows that the DF for the uncorrelated electron-hole
pairs is almost identical to the exciton continuum absorption
spectra. We also observe that the peak absorption occurs at an
energy equal to E1 −R(1) for22,33,34

R(n) =
µ⊥

m0ε2
st
(
n− 1

2

)2 Ry, where n = 1,2,3, ..., (7)
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FIG. 2: (a) Real and (b) imaginary part of the dielectric func-
tion of two-dimensional Wannier excitons. This complex di-
electric function (solid black line) is composed of the contin-
uum (red dot-dashed line) and bound states (green dot-dashed
line) of the exciton. Notice the similarity between the contin-
uum state and the optical dispersion for uncorrelated electron-
hole pairs (blue dashed line). The arbitrary values for the pa-
rameters are E1 = 2.2 eV, Γ = 37 meV, and A = 41.8 eV2.

εst is the static dielectric constant, and Ry= 13.6 eV is the Ry-
dberg energy constant. Equation (7) gives the binding energy
of the 2D exciton, which is the same as for a 2D hydrogen-like
system.22,33,34 Fig. 2 also shows how the oscillator strength in
the imaginary part of the DF is enhanced significantly by the
discrete (bound exciton) absorption. This is a typical behavior
of not only two-dimensional M0 excitons in bulk materials,1

but also of excitonic absorption in two-dimensional materi-
als, where the reduced dimensionality enhances the Coulomb
interaction due to the confinement of the carriers.23,35,36

A. Temperature dependence of the �xed parameters

As previously stated, other than energy and broadening,
Eq. (3) combined with the amplitudes in Eq. (6), provides
a model absent of any fitting parameters for the CPs near
the L-valley of Ge. The matrix element EP = P2

/m0 and the
static dielectric constant εst have well established values in the
literature.7,25,37,38 Another required parameter is kmax. In the
rotated coordinate system, the total distance from Γ to L along
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the kz-axis (the Λ-direction) is π
√

3/a0. Under visual inspec-
tion, however, the kmax value lies between 3π

√
3/(5a0) and

3π
√

3/(4a0).26,39 Therefore, for our purposes, we allowed
the kmax parameter to vary within this range, but kept it fixed
across all temperatures. Since we are interested in the tem-
perature effects of the DF, we can follow the procedure de-
scribed by Emminger et al.6 to incorporate the temperature
dependence of the lattice constant,7,40 matrix element,7 and
dielectric constant1 in the following manner:

a0(T ) = a0(0 K)+
1.315×10−2 Å

exp[(355.14 K)/T ]−1
, (8)

EP(T ) = EP(0 K)
a0(0 K)2

a0(T )2 , (9)

εst(T ) = 1+
[

15.6 eV
EPenn(T )

]2

. (10)

The term EPenn(T ) in Eq. (10) is the Penn gap given by1,6

EPenn(T ) = 4.146 eV− (0.05 eV)

[
2

e(217 K)/T −1
+1
]
.

(11)
For the values at zero temperature, EP(0 K) = 12.96 eV7,25

and a0(0 K) = 5.6516 Å.40

B. Unrenormalized e�ective mass

Yet another required parameter is the transverse reduced
mass µ⊥, which is needed to calculate the exciton bind-
ing energy using Eq. (7), as well as the amplitudes in Eq.
(6). While Dresselhaus et al. determined the effective elec-
tron mass m⊥=0.082 of the CB from cyclotron resonance
measurements,41 to calculate µ⊥, we also require explicit val-
ues for the effective masses of the heavy and light holes at the
L-valley, for which reliable values are not available. Menén-
dez et al. provide the reduced masses for both CPs as7

1

µ
(E1)
⊥

=
EP

m0

[
2

Eu
1
+

1
(E1 +∆1)u

]
, (12a)

and
1

µ
(E1+∆1)
⊥

=
EP

m0

[
1

Eu
1
+

2
(E1 +∆1)u

]
. (12b)

These expressions come from a 6-band k·p-theory model (see
supplementary materials Sec. S1 A for a derivation). In Eqs.
(12), however, one must be careful with the energy values of
E1 and E1 +∆1. Zollner et al.42 point out that to calculate the
effective mass, one must use the unrenormalized energy val-
ues, rather than the experimental energies of the CPs. This is

the meaning of the superscripts u. The unrenormalized val-
ues of the CPs incorporate the redshift due to thermal expan-
sion, but not the self-energy due to the deformation-potential
electron-phonon coupling. We can obtain the unrenormalized
energy as a function of temperature with the expression

Eu
E1,E1+∆1

(T ) = Eu
E1,E1+∆1

(0 K)

−3B

(
∂Eexp

E1,E1+∆1

∂ p

)
T

∫ T

0
α(θ)dθ , (13)

where α(T ) is the temperature-dependent thermal expansion
coefficient, B = 7.58 × 1010 Pa is the bulk modulus,43 and
(∂Eexp

E1

/
∂ p )T = 7.5 × 10−6 eV · cm2 · kg−1 is the pressure

coefficient of the E1 CP.44 For this calculation, we take the
value of (∂E1

/
∂ p )T ≈ [∂ (E1 +∆1)

/
∂ p ]T . We justify this

assumption by noting that the spin-orbit splitting ∆1 is related
to atomic effects and it is, for the most part, unaffected by the
distance of the atoms within the lattice. The thermal expan-
sion coefficient45

α(T ) =
1

a0(T )
da0(T )

dT
, (14)

can be calculated from the expression for the lattice constant
in Eq. (8). Finally, the unrenormalized energy at zero tem-
perature can be obtained by the following procedure: We first
determine experimentally the energy of the CPs as a function
of temperature. These data points are then fitted with a Bose-
Einstein (BE) model13

EE1,E1+∆1(T ) = Ea −Eb

(
1+

2
eθB/T −1

)
. (15)

Once the fitted parameters Ea, Eb, and θB are determined, we
set Eu

E1,E1+∆1
(0 K) = Ea, where the parameter Ea differs for

each CP. Since we do not know the value of Ea a priori, we
used the experimental value Eexp

E1,E1+∆1
(0 K) from Ref. 14 as

a starting point for the fit. We then refitted the data using
the updated value of Ea obtained from the previous iteration.
This process was repeated iteratively until Ea converged to a
constant value.

C. Complete model

To encompass both CPs, we added two expressions similar
to Eq. (3) with the appropriate amplitudes and binding ener-
gies for E1 and E1+∆1. We also added a constant offset εoff to
the real part of the DF, to account for additional nonresonant
contributions from other interband transitions. The complete
form of our model is
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ε(E) = εoff +
A(E1)[

E + iΓ(E1)
]2
ga

√ R(E1)

E1 −E − iΓ(E1)

+ga

√ R(E1)

E1 +E + iΓ(E1)

−2ga

√R(E1)

E1


+

A(E1+∆1)[
E + iΓ(E1+∆1)

]2
ga

√ R(E1+∆1)

E1 +∆1 −E − iΓ(E1+∆1)

+ga

√ R(E1+∆1)

E1 +∆1 +E + iΓ(E1+∆1)

−2ga

√R(E1+∆1)

E1 +∆1

 .

(16)

It is worth pointing out that, in the parabolic approximation of
the reduced masses of Eq. (12), the matrix element EP cancels
out in the amplitudes of Eq. (6). The resulting amplitudes
have the form

A(E1) =
4e2Eu

1 (E1 +∆1)
ukmax

3πε0
[
2(E1 +∆1)u +Eu

1

] for E1 (17a)

and A(E1+∆1) =
4e2Eu

1 (E1 +∆1)
ukmax

3πε0
[
(E1 +∆1)u +2Eu

1

] for E1 +∆1.

(17b)

With this definition, the ratio of the CPs amplitudes would be
A(E1)/A(E1+∆1) ∝ (3E1+∆1)/(3E1+2∆1), or about 0.97 for a
temperature of 4 K.

V. RESULTS

A. Fitting procedure

To fit the energy and broadening parameters, we performed
a CP analysis by fitting the 2nd derivative of our model in Eq.
(16) to the 2nd derivative of the experimental data. We then
compared their respective DFs. To obtain the 2nd derivatives,
we applied a digital filter to the DF to smooth the original sig-
nal and suppress the noise in the experimental data. We then
convoluted the DF with the derivative of the filter to obtain
the desired DF derivative (see Sec. S4 for more information
on this procedure). For the digital filter, we used the extended
Gauss (EG) filter, which is defined in direct space as46,47

bM(x) =
M

∑
m=0

[
(−1)m ∆Em

m!
dm

d∆Em

]
exp
[
−x2/(4∆E2)

]
2
√

π∆E
, (18)

where we selected M = 4 according to the discussion in Ref.
46. The filter width ∆E was determined by identifying the
white noise onset in the Fourier coefficients of the data.6

In general, given that noise increases with temperature, the
selected filter width also increased accordingly. To fit our
model parameters, we minimized the residuals between the
DF derivatives of the experimental data and the model. We
performed this minimization procedure using MATLAB’s non-
linear least-squares optimization function.48 For consistency,
the derivative of the model must be computed in the same
manner as the derivative of the experimental data.16 There-
fore, we convoluted Eq. (16) with the same EG filter (and

FIG. 3: 2nd derivative of the real (a) and imaginary (b) part
of the dielectric function. The derivatives of the experimental
data (translucent lines) were calculated using the EG digital
filter in Eq. (18). The fitted 2nd derivatives of Eq. (16) for
each temperature are shown by the solid lines.

same filter width ∆E) while leaving the fitting parameters free.
Fig. 3 shows that the fitted derivative of the model is in good
agreement with the experimental data.

To make the critical point analysis more thorough, we re-
peated the minimization procedure with a Savitzky-Golay
(SG) digital filter.49 To generate the smoothing filter, we used
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FIG. 4: Bose-Einstein model fits for the energy (a) and broad-
ening (b). Shown by the squares are the fitted parameters,
while the blue and red solid lines are the Bose-Einstein mod-
els. For comparison, data from different references is also
shown.13,14,30

MATLAB’s SG built-in function.48 The order of the polyno-
mial to be fitted was selected according to the noise of the
data. Again, similar to the EG filter, the order of the polyno-
mial needed to be adjusted at each temperature. The frame
length, on the other hand, was constrained to 5% of the total
number of data points. The results were nearly identical to the
EG digital filter. The values of the fitted parameters varied less
than 1% between the two digital filters. Hence, the derivatives
for the SG filter are not shown in Fig. 3. For a more in-depth
discussion of the fitting procedure and comparison of the two
digital filters, see Sec. S4 in the supplementary material.

B. Temperature dependence of the �tting parameters

We can use the fitted energies and broadenings of the entire
temperature series to characterize these parameters as a func-
tion of temperature. We do this by fitting the BE model of Eq.
(15) and (19) to the energy and broadening parameters:13

Γ
(E1,E1+∆1)(T ) = Γ1 +Γ0

(
1+

2
eθB/T −1

)
. (19)

The squares in Fig. 4 show the fitted parameters from the 2nd

derivative analysis. Along with the BE models of the present
work, Fig. 4 also shows the BE models for these CPs from the
literature for comparison.13,14,30 It is clear from Fig. 4 that the

energies of our model are greater than in the previous char-
acterization efforts. This is to be expected, since the fitted
absorption maximum in our model is not the energy of the
CP, but rather the first discrete absorption peak of the exciton,
which is lower than the CP energy by the exciton binding en-
ergy. Broadening also behaves differently. In Refs. 13,14,30,
the broadenings of the CPs are fitted with Eq. (1b). In con-
trast, Eq. (3) incorporates broadening by convolution with a
Lorentzian. Although they are difficult to compare quantita-
tively given the two extra parameters B and φ , the broadening
of Eq. (1b) tends to be larger than for a Lorentzian oscillator.
Thus, our model requires a larger broadening than the refer-
ences values to match the experimental data. Table I shows the
fitted parameters for the BE model, along with the parameters
in the literature.

C. Dielectric function

At a temperature of 4 K, Fig. 5 shows the model DF (16) in
comparison to the experimental data. Fig. 6 shows the same
comparison for temperatures from 100 to 600 K. These fig-
ures show an outstanding agreement between the theoretical
model and the experimental DF across the entire temperature
range. This level of agreement is remarkable given that no
free parameters other than energy and broadening are fitted.
Nonetheless, it is evident from Figs. 5 and 6 that, while the
model is in excellent agreement with the data near the CPs,
it misses contributions from additional absorption processes.
At lower energies, the model underestimates the value of ε2
by about 2 units. We attempted to reduce this mismatch by
including the direct bandgap absorption of Ge. At around 0.9
eV, the direct bandgap of Ge E0 presents itself as the first CP
contributing to the absorption. The DF near E0 is categorized
as a three-dimensional M0 van Hove singularity.1 A descrip-
tion of this CP that not only accounts for the formation of exci-
tons, but also incorporates excitonic screening already exists
in the literature.5,50 More importantly for our purposes, this
lineshape has previously been applied to Ge in a temperature
series similar to our data.6 In their approach, Emminger et al.6

used the experimental, rather than the unrenormalized E0 CP
energies for the calculation of the effective masses. Unfor-
tunately, even with the corrected energies and incorporating
non-parabolicity effects, E0 contributes less than 1 unit to the
amplitude of ε2. Therefore, we did not include the CP E0 in
our calculations (see supplementary material Sec. S5 more in-
formation on E0). The E ′

0 and E2 CPs also contribute to ε2
at higher energies. However, unlike the direct bandgap E0,
there is no established lineshape for these CPs, hence these
contributions to the absorption are omitted as well.

A more significant issue than the mismatch at high and low
energies is the deviation of ε2 at E1 (around 2.2 eV) and E1 +
∆1 (around 2.4 eV). At the E1 CP, the ε2 amplitude of our
model is smaller than in the experimental data, whereas for
E1 +∆1, the model overestimates the amplitude. This could
be due to an incorrect value of kmax, which has been fixed
at 0.7π

√
3/a0 for all our calculations. As seen in Fig. 1b,

the range over which the hh-band (Λ4 ⊕Λ5-band) is parallel
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TABLE I: Fitted parameters of the Bose-Einstein model for the energy and broadening of the E1 and E1 +∆1 critical points.

Ea (eV) Eb (eV) θBE (K) Γ1 (meV) Γ0 (meV) θBΓ
(K)

E1
a 2.32±0.01 0.04±0.01 176±54 56±7 19±10 276(f)

E1 (Ref. 13) 2.33±0.03 0.12±0.04 360±120 12±9 25±3 376(f)
E1 (Ref. 14) 2.295±0.002 0.063±0.004 218±14 11±1 14.2±0.3 218(f)
E1 (Ref. 30) 2.292±0.002 0.059±0.003 198±10 6±2 25±3 341±34
E1 +∆1

a 2.52±0.01 0.04±0.02 165±79 77±8 19±11 198(f)
E1 +∆1 (Ref. 13) - - - 9±8 43±5 484(sic)
E1 +∆1 (Ref. 14) 2.494±0.002 0.064±0.001 218(f) 22±3 15.1±0.6 218(f)
E1 +∆1 (Ref. 30) 2.494±0.002 0.064±0.003 213±9 14±1 20(f) 250(f)

a Present work.

FIG. 5: Real (a) and imaginary (b) part of the dielectric func-
tion of Ge at 4 K. The translucent lines are the experimental
data, the fitted model with masses from the k ·p-model in Eqs.
(12) is shown by the solid lines, and the model with the re-
duced mass as an additional free parameter is shown by the
dot-dashed lines.

to the CB (Λ6-band) could be different than for the lh-band
(Λ6-band). This would lead to different values of kmax for
E1 and E1 +∆1. Moreover, with increasing temperature, the
bands renormalize and change their curvature slightly, which
would ultimately result in a different value of kmax at each
temperature. As the temperature increases, the agreement in
the amplitude of the model and experiment improves for both
CPs (see Fig. 6). This could be explained by the temperature
dependence of kmax. Nevertheless, a different kmax value for
E1 and E1 +∆1 is likely to have a small effect, considering
how similar the hh and lh bands are to each other near the
L-point.

FIG. 6: Dielectric function of Ge from 100 to 600 K. The
translucent lines are the experimental data, the fitted model
from the k ·p-model in Eqs. (12) is shown by the solid lines,
and the model with the reduced mass as an additional free
parameter by the dot-dashed lines.

D. Fitting the e�ective mass

A bigger factor in the disagreement between model and ex-
periment could be the calculated reduced masses. The am-
plitudes in Eqs. (17) are only valid in the 6-band k ·p-theory
model at the L-point, where the reduced masses are given by
Eq. (12). We resort to this definition of the masses in the ab-
sence of any known values for the hh and lh effective masses.
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For the standard definition of the reduced mass,

1

µ
(E1,E1+∆1)
⊥

=
1

m
(L+6 )

⊥

+
1

m
(L−4 ⊕L−5 ,L−6 )

⊥

, (20)

the amplitudes of the DF in Eq. (16) revert to their original
forms of Eq. (6). To improve the agreement between theory
and experiment, we can treat the reduced masses for both CPs
as additional free parameters and refit our data. To avoid in-
consistencies with the previously fitted values of broadening
and energy, we divided the fitting process in two steps. Ini-
tially, to fit the broadening and energy, we performed a 2nd

derivative fitting while holding the reduced masses constant
and equal to their theoretical values. Subsequently, we fitted
µ
(E1,E1+∆1)
⊥ and εoff to the DF. If any discrepancies in their cor-

responding 2nd derivatives appeared between the model and
experimental data, the two-step procedure was repeated until
no further change was observed.

The effective masses obtained from this new fitting pro-
cedure can be seen in the dot-dashed lines of Figs. 5 and 6.
Although the agreement between the model and the data im-
proved significantly, there is no physical basis behind the fitted
reduced mass values. Fig. 7 shows the fitted masses in com-
parison with the values calculated from Eq. (12). It also shows
literature values of the reduced masses at 4 K7,51 and at room
temperature.52 It can be seen that the difference between the
fitted masses of the CPs is larger than in any reference. Fur-
thermore, the fit suggests that the reduced mass for E1 should
be larger than the mass for E1 +∆1, which is not the case ac-
cording to the literature values.53

Nonetheless, it has been pointed out by Cardona that, in the
Λ-direction, but not at the L-point, linear terms proportional
to k⊥ in the bands tend to increase the reduced mass of E1
while decreasing it for E1 +∆1.13,54 This trend is also seen in
Fig. 7. In our calculations, we used the masses at the L-point
calculated from Eq. (12). However, this expression might not
necessarily describe the masses in the kmax-region of the band
structure (grey area in Fig. 1b). In this region, Cardona states
that including linear k⊥ terms in the band structure would in-
crease the reduced mass µ

(E1)
⊥ . We would like to stress to

the reader that, while the fitted reduced masses improve sig-
nificantly the agreement between model and data, the strong
temperature dependence seen in these fitted values should not
be overinterpreted. As discussed, these masses serve purely as
empirical parameters within the fitting procedure, and the ef-
fect of these linear terms in the reduced masses needs a more
thorough study, perhaps in comparison with larger k ·p mod-
els. In effect, this additional fitting parameter can be used
to improve the agreement between model and data, but un-
til further research clarifies the effects of additional terms in
the reduced masses of these CPs, we are unable to justify this
additional free parameter on theoretical grounds. Still, even
without treating the masses as free parameters, we emphasize
the excellent agreement between the theoretical model and the
experimental data. Put another way, while the empirical fitting
of the masses improves the match in the DF, it is not essential
for obtaining remarkable results.
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FIG. 7: Fitted reduced masses as a function of temperature
for E1 (□) and E1 + ∆1 (⃝). The solid lines show results
from Eqs. (12). The dot-dashed and dashed lines are literature
values at 4 K7,51 and room temperature,52 respectively.

VI. DISCUSSION

One possibility for the difference between the measured and
calculated DF is that near the energy of E1, there are interband
transitions that do not occur along the Λ-direction of the Bril-
louin zone (in the Σ-direction, for example). While there is
no CP present in this region, there is an energy separation be-
tween the CB and VB similar to the energy of E1. Depending
on the strength of these additional absorption processes, they
could affect the amplitude of each CP differently.

Additionally, surface effects could have an impact on the
quality of the agreement between model and experiment. The
physical and numerical removal of the oxide layer described
in Sec. III has been proven to be effective previously.6,30,31

Hence, there is no reason to think that our point-by-point fit
has large errors, or that temperature changes would affect this
procedure significantly. Nonetheless, it is worth noting how
this oxide layer affects the pseudo-DF ⟨ε⟩. As the oxide layer
gets thicker, it tends to increase the amplitude of E1 in ⟨ε2⟩,
while leaving the amplitude of E1 + ∆1 constant. In other
words, an underestimation of the oxide layer thickness will
give an E1 amplitude greater than it should be in the extracted
point-by-point fit for the substrate. Fig. 8 shows the DF of the
point-by-point fit with different oxide layer thicknesses com-
pared to our model. While the model resembles closer to the
30 Å oxide layer fit, the previously mentioned procedure to
estimate the oxide thickness yielded a GeO2 layer of 11 Å .
Therefore there is no evidence from the fitting that this layer
should be as thick as 30 Å. Hence, the match between our
model and the overlayer fit seems to be purely coincidental.
On the other hand, different surface orientations of the bulk
Ge material lead to a different surface reconstructions, which
also affects interband transitions due to the different lattice pe-
riodicity at the surface.55 These effects, however, are too small
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FIG. 8: Comparison between the model at 4 K (red solid
line) and the point-by-point fits with different thicknesses for
the oxide correction (translucent lines).

to make a difference in the discrepancies between our model
and the experimental data (see supplementary material Sec.
S6 for data differences depending on surface orientation).

Yet another factor to consider is excitonic screening. In
the presence of excited electrons in the CB, the Coulomb
interaction between the carriers gets partially screened. In
his DF expression for three-dimensional excitons, Tanguy ac-
counts for excitonic screening by solving the Schrödinger
equation for the Hulthén potential.50 In contrast, such a so-
lution for screened two-dimensional excitons does not exist in
the literature.58–61 For this reduced dimensionality problem,
recent efforts have found the binding energy for screened ex-
citons in two-dimensional materials (these are solutions to the
Rytova-Keldysh potential).56,57 Unfortunately, an expression
of the DF for this potential is yet to be found. Moreover, given
the low carrier densities at play, it is unlikely that including
excitonic screening effects would improve our model.

Therefore, we conclude that the most probable sources of
the difference between experiment and theory are nonresonant
interband transitions and the precise values of the reduced
masses of the CPs.

VII. CONCLUSION

In this work, we have demonstrated the importance of ex-
citonic effects in the optical constants of Ge near the E1
and E1 + ∆1 CPs. By applying Tanguy’s model for two-
dimensional Wannier excitons, we provided an improved de-
scription of the DF that, despite not agreeing perfectly with
the data, describes experimental results better than any efforts
published so far. Furthermore, in the temperature character-
ization of the fitted CP parameters, our results show greater
transition energies and broadenings due to the inclusion of ex-

citonic contributions.
Despite these advances, some discrepancies still persist in

the amplitude of the CPs which require further revision of the
theory. Specifically, future work should probe the effects of
including linear k⊥ terms in the reduced masses of the CPs, the
influence of remote bands, and potential contributions from
nonresonant interband transitions. Moreover, extending this
analysis to other semiconductor materials could help improve
our calculations to refine the model even further.

SUPPLEMENTARY MATERIAL

See the supplementary material for a discussion of the
parabolic approximation of the effective masses and how they
are implemented to calculate the DF. Furthermore, a brief
discussion of the unrenormalized masses and how they vary
with temperature. We also discuss how the second derivatives
are obtained numerically with the EG and SG digital filters.
An analysis of the direct bandgap of Ge that includes non-
parabolicity terms is presented as well. Finally, we discuss
the impact of the surface orientation on the bulk DF.
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Babiński, K. Watanabe, T. Taniguchi, C. Faugeras, and M. Potemski, Phys.
Rev. Lett. 123, 136801 (2019).

57H. T. Nguyen-Truong, Phys. Rev. B 105, L201407 (2022).
58F. Stern and W. E. Howard, Phys. Rev. 163, 816 (1967).
59D. G. W. Parfitt and M. E. Portnoi, Physica E 17, 212 (2003).
60D. G. W. Parfitt and M. E. Portnoi, in Mathematical Physics, Proceedings of

the XI Regional Conference, Tehran, Iran, 3-6 May 2004 (World Scientific,
Singapore, 2005), p. 52.

61A. J. Makowski, Phys. Rev. A 84, 022108 (2011).



Supplementary Material: Excitonic e�ects at the temperature-dependent

E1 and E1 +∆1 critical points of Ge

(*Electronic mail: cobhc14@nmsu.edu.)

(Dated: 1 June 2025)

Carlos A. Armenta∗ and Stefan Zollner
Department of Physics, New Mexico State University, Las Cruces, NM 88003-8001, USA

S1. EFFECTIVE MASSES

A. Parabolic approximation at the L-point

The E1 and E1+∆1 critical points (CPs) presented in Fig. 1b arise from interband transitions taking place from the heavy-hole
(L−

4 ⊕L−
5 -band) and light-hole (L−

6 -band) valence band (VB) to the L+
6 conduction band (CB), respectively. The symmetries

associated with these bands correspond to the set of wave function basis vectors1,17

L+
6 : |Z ↑⟩ , |Z ↓⟩ ,

L−
4 ⊕L−

5 :
1√
2
|X + iY ↑⟩ , 1√

2
|X − iY ↓⟩ , (S1)

L−
6 :

1√
2
|X + iY ↓⟩ , 1√

2
|X − iY ↑⟩ .

Just like in Sec. II, the z-axis was chosen along the Λ-direction. In this basis, and with the aid of k ·p theory, we can explicitly
calculate the matrix ⟨un0|k ·p|un′0⟩ to get an expression for the effective masses of the bands (n is the index of the band). We
note that the only non-zero momentum matrix elements are1,17

−i⟨Z|px|X⟩=−i⟨Z|pY |Y ⟩= P. (S2)

Naturally, the states in (S1) with opposite spins will not couple. Hence, the 6-band k ·p Hamiltonian will become a 3×3 matrix
represented as follows:1,17

⟨un0|k ·p|un′0⟩=

〈L+
6

∣∣k ·p
∣∣L+

6

〉 〈
L+

6

∣∣k ·p
∣∣L4
〉 〈

L+
6

∣∣k ·p
∣∣L−

6

〉〈
L4
∣∣k ·p

∣∣L+
6

〉
⟨L4|k ·p|L4⟩

〈
L4
∣∣k ·p

∣∣L−
6

〉〈
L−

6

∣∣k ·p
∣∣L+

6

〉 〈
L−

6

∣∣k ·p
∣∣L4
〉 〈

L−
6

∣∣k ·p
∣∣L−

6

〉


=


0 iP√

2
k⊥ iP√

2
k⊥

− iP√
2
k⊥ 0 0

− iP√
2
k⊥ 0 0

. (S3)

Since the only matrix elements that are nonzero are perpendicular to |Z⟩, the wave vector k reduces to k⊥ and the motion of the
carriers gets restricted to a two-dimensional plane. The full Hamiltonian is given by1,17

H0 +H̃k =


E1

ih̄P
m0

√
2
k⊥ ih̄P

m0
√

2
k⊥

− ih̄P
m0

√
2
k⊥ 0 0

− ih̄P
m0

√
2
k⊥ 0 −∆1

. (S4)

After diagonalizing the matrix (S4), we get the characteristic equation

Ẽ3 − (E1 −∆1) Ẽ2 −

(
E1∆1 +

h̄2P2k2
⊥

m2
0

)
Ẽ −

h̄2P2k2
⊥∆1

2m2
0

= 0, (S5)



S2

where Ẽ = E − h̄2k2/2m0 is the modified energy parameter introduced by Kane62 (where the kinetic energy of the free electron
has been subtracted). For small values of k⊥, we can solve Eq. (S5) perturbatively to get the 3 solutions (one for each band):7,51

ECB = E1 +
h̄2k2

⊥
2

[
1

m0
+

EP

m0

(
1

E1
+

1
E1 +∆1

)]
︸ ︷︷ ︸

1/m
(L+6 )

⊥

(S6)

Ehh =
h̄2k2

⊥
2

(
1

m0
− EP

m0E1

)
︸ ︷︷ ︸

1/m
(L−4 ⊕L−5 )

⊥

(S7)

Elh =−∆1 +
h̄2k2

⊥
2

[
1

m0
− EP

m0(E1 +∆1)

]
︸ ︷︷ ︸

1/m
(L−6 )

⊥

(S8)

To simplify the notation, we have made the substitution EP = P2
/m0. Systems of correlated electron-hole pairs generated at the

L-point will have a transverse reduced effective mass:17

µ
(E1)
⊥ =

 1

m
(L+6 )

⊥

− 1

m
(L−4 ⊕L−5 )

⊥

−1

=

[
EP

m0

(
2

E1
+

1
E1 +∆1

)]−1

(S9)

and µ
(E1+∆1)
⊥ =

 1

m
(L+6 )

⊥

− 1

m
(L−6 )

⊥

−1

=

[
EP

m0

(
1

E1
+

2
E1 +∆1

)]−1

(S10)

corresponding to the two CPs E1 and E1 +∆1, respectively.

B. Non-parabolicity at the L-point with small spin-orbit interaction

Instead of approximating for small values of k⊥, we can solve the characteristic Eq. (S5) exactly with Vieta’s solution for a
cubic equation. These solutions, however, are not useful for our purposes given that they cannot be inverted to get the density of
states as a function of energy. Instead, we can use the small spin-orbit (SO) approximation by letting ∆1 → 0. If we do this, the
characteristic equation becomes

Ẽ3 −E1Ẽ2 −
h̄2k2

⊥
m0

EPẼ = 0, (S11)

with one solution Ẽhh = 0, and the other two

ẼCB,lh =
E1 ±

√
E2

1 +4 h̄2k2
⊥

m0
EP

2
. (S12)

We can expand the square roots in Eq. (S12) in k2
⊥ to obtain

ECB = E1 +
h̄2k2

⊥
2m0

+
E1

2

1+

√
1+

4h̄2k2
⊥

m0

EP

E2
1

≈ E1 +
h̄2k2

⊥
2m0

(
1+

EP

E1
−

h̄2k2
⊥

2m0

E2
P
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⊥
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⊥
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P
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1

)
. (S14)

FIG. S1 shows the bands of the exact solution, the parabolic, and the small SO approximation. The CB in the small SO
approximation is almost identical to the 6-band solution. For the lh-band, the curvature of the small SO approximation is similar
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to the exact solution, however, the parabolic approximation is in better agreement to the exact solution. On the other hand,
even in the 6-band model solution, the hh-band shows the wrong curvature. The band seems almost flat, indicating a nearly
infinite transverse mass. Cardona states that including non-parabolicity terms linear in k⊥ make the transverse reduce mass for
E1 infinite.54 However, this is in the Λ-region (and not at the L-valley). Unfortunately, this solution does not resemble what we
see in k ·p-theory calculations with higher number of bands.25 Further calculations probing not only the bottom of the L-valley,
but also the Λ-direction away from the L-valley are needed.

0.6

0.8

1

1.2

1.4

CB

3 3 Hamiltonian

Parab. Approx.

Small SO

0 0.02 0.04 0.06 0.08 0.1 0.12

Perp. wave vector k  (atomic units a
0
-1)

-2.2

-2

-1.8

-1.6

-1.4

hh

lh

E
n
e
rg

y
 (

e
V

)

FIG. S1: Band structure of Ge at the L-valley. The perpendicular k⊥-vector is shown in atomic units where a0 = 0.53 Å.
The thick solid lines represent the exact solution to the 3× 3 Hamiltonian in Eq. (S4), the thin solid lines show the parabolic
approximation, and the dot-dashed lines are the small spin-orbit approximation.

S2. DIELECTRIC FUNCTION OF GE

Previous attempts to describe the CPs of interest give the line shape of the DF as a step function17

ε
(E1)
2 =

(
1

4πε0

)
16kmaxe2P2

µ
(E1)
⊥

3m2
0E2 H(E1 −E), (S15a)

ε
(E1+∆1)
2 =

(
1

4πε0

)
16kmaxe2P2

µ
(E1+∆1)
⊥

3m2
0E2 H(E1 +∆1 −E), (S15b)

where H is the Heaviside step function, kmax is the maximum range in the k-axis where transitions take place, and P is the
average momentum matrix element.25,26 The real part ε1 can be calculated from the expression for ε2 with a Kramers-Kronig
transformation. Alternatively, Humlíček gives the full expression for the DF while adding broadening to Eq. (S15) as18

ε
(E1)(E) =−

(
1

4πε0

)
16kmaxe2P2

µ
(E1)
⊥

3m2
0πE2 ln

[
2(E1 − iΓ−E)

E1 − iΓ

]
, (S16a)

ε
(E1+∆1)(E) =−

(
1

4πε0

)
16kmaxe2P2

µ
(E1+∆1)
⊥

3m2
0πE2 ln

[
2(E1 +∆1 − iΓ−E)

E1 +∆1 − iΓ

]
. (S16b)

Eqs. (S16) give the DF for uncorrelated electron-hole pairs shown by the blue dashed lines in Fig. 2.
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In the following, we briefly describe how to derive Eq. (S15a). We start by computing the amplitude in Eq. (3) for the E1 CP
of Ge from the expression for the imaginary part of the dielectric tensor1,63

ε2(E)µν =

(
1

4πε0

)
4π2e2h̄2

m2
0E2 ∑

CV
⟨V|pµ |C⟩ ⟨C|pν |V⟩

∫ dk
4π3 δ (EC(k)−EV(k)− h̄ω). (S17)

Since we are dealing with a cubic system, only the diagonal components of the tensor are non-zero. Therefore, we can replace
the dielectric tensor with the dielectric function by averaging the contributing components ε2 = (εxx + εyy + εzz)/3. Moreover,
from k ·p theory, the matrix elements reduce to17

∑
CV

⟨V|pµ |C⟩ ⟨C|pν |V⟩= | ⟨C|Px|V⟩|2︸ ︷︷ ︸
P2

/2

+
∣∣⟨C|Py|V⟩

∣∣2︸ ︷︷ ︸
P2

/2

+ | ⟨C|Pz|V⟩|2︸ ︷︷ ︸
0

= P2
, (S18)

hence we can replace the matrix element in Eq. (S17) with the average transition matrix element P. Finally, we multiply the DF
by 4 to account for the L-valley degeneracy. The result is

ε2(E) =
(

1
4πε0

)
4π2e2h̄2

m2
0E2

(
4P2

3

)∫ dk
4π3 δ (EC(k)−EV(k)− h̄ω). (S19)

To solve the integral in Eq. (S19), we replace it with the JDOS in Eq. (2) and switch to cylindrical coordinates. In the new
coordinate system, the DF looks like

ε2(E) =
(

1
4πε0

)
16π2e2P2h̄2

3m2
0E2

∫∫∫ kρ dkρ dkϕ dkz

4π3 δ

(
E1 +

h̄2k2
ρ

2µ⊥
−E

)
. (S20)

The integral
∫

dkϕ = 2π is trivial. To integrate over kρ , we make the substitution u = h̄2k2
ρ/2µ⊥, which transform the integral

∫
∞

0
kρ dkρ δ

(
E1 +

h̄2k2
ρ

2µ⊥
−E

)
→ µ⊥

h̄2

∫
∞

0
duδ (E1 +u−E) . (S21)

Its solution yields the Heaviside step function H(E1 −E). Finally, the integral over kz needs to be limited to the range where the
transitions take place. We call this kmax. The final result for E1 is

ε
(E1)
2 =

A
E2 H(E1 −E), with A =

4e2P2
µ
(E1)
⊥

3πε0m2
0

kmax, (S22)

which is simply Eq. (S15a). Notice the similarity between the amplitudes in Eq. (S22) and Eq. (4a). These amplitudes are the
same if we simply replace the transition matrix element e ·MCV → P2kmax/3 and multiply by the valley degeneracy (multiply
by 4 for L-valley).

S3. UNRENORMALIZED ENERGIES

To get the unrenormalized energies of the CPs, we will follow the procedure by Zollner et al.42 where they give the unrenor-
malized value for the direct bandgap E0 as

Eu
0 (T ) = Eu

0 (T = 0 K)−3B
(

∂Eexp
0

∂ p

)
T

∫ T

0
α(θ)dθ , (S23)

where the superscript u stands for unrenormalized, B is the bulk modulus, α(T ) is the temperature-dependent thermal expansion
coefficient, and p is the pressure. For our purposes, we will replace the unrenormalized energy at zero temperature with the
fitted parameter Ea in the Bose-Einstein model of Eq. (15). The fitted parameters Ea, Eb, and θB in Table I are obtained by
fitting the experimental CP energies of Table SI. Fig. S2 (b) shows the experimental energy of the E1 and E1 +∆1 CPs as a
function of temperature (dot-dashed lines). To subtract the thermal effect, we use the thermal expansion coefficient given by Eq.
(14). Menéndez et al. obtained the values in Eq. (8) by fitting the experimental thermal expansion data from Ma and Tse.40 As
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an alternative to Eq. (8), we could also use a more sophisticated expression for the thermal expansion coefficient provided by
Roucka et al. as64

α(T ) =
4kB

a3
0B

[
2
3

γTA

(
ΘTA

T

)2 eΘTA/T(
eΘTA/T −1

)2 + γLA

(
T

ΘLA

)3 ∫ ΘLA/T

0

x4ex

(ex −1)2 dx+ γopt

(
Θopt

T

)2 eΘopt/T(
eΘopt/T −1

)2

]
, (S24)

where a0 = 5.6568 Å is the lattice constant,65 γ is the Grüneisen parameter, and Θ is the Debye temperature. The subscripts LA,
TA, and opt stand for the longitudinal acoustic, transverse acoustic, and optical modes, respectively. As seen in Fig. S2 (a), the
more complicated expression in Eq. (S24) yields an almost identical result to Eq. (14). Therefore, we settle on using Eq. (8) for
this work. Fig. S2 (a) also shows experimental thermal expansion coefficients from the literature.66,67

The result of the unrenormalized energy in Eq. (S23) is shown in Fig. S2 (b) (solid lines). For this calculation, we take the
value of (∂E1

/
∂ p )T ≈ [∂ (E1 +∆1)

/
∂ p ]T . We justify this assumption by noting that the SO shift ∆1 is related to atomic effects

and it is, for the most part, unaffected by the distance of the atoms within the lattice. Finally, Fig. S2 (c) shows the exciton
binding energies for both CPs in the left axis (solid lines), as well as the reduced masses on the right axis (dashed lines).
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FIG. S2: (a) Thermal expansion coefficient from Eq. (14)36 (blue solid line) and Eq. (S24)64 (green solid line) compared to
experimental data (⃝).66,67 (b) The experimental values for E1 and E1 +∆1 (blue and red dot-dashed line, respectively) are
shown along with their respective unrenormalized energy (red and blue solid lines, respectively). (c) On the left axis is the
binding energy of the excitons of the critical points (black and red solid lines). On the right axis is the transverse reduced
effective masses (green and blue dot-dashed lines).

S4. FITTING PROCEDURE

To suppress the noise of the experimental data, we used a direct space convolution of the experimental DF with a digital filter.
The convolution f between f (x) and b(x) has the following property:

f (x) =
∫

∞

−∞

dx′ f (x− x′)b(x′) =
∫

∞

−∞

dx′ f (x′)b(x− x′). (S25)

Note that, in light of Eq. (S25), operations such as d f (x)
/

dx produce the same outcome whether they act on f (x− x′) or
b(x− x′). To compute the second derivative of the experimental data, we take full advantage of this property by differentiating
the digital filter (an analytical function) instead of the experimental data (a set of discrete points). To perform the convolution,
we used MATLAB’s built-in function conv(u,v), where u and v are the vectors being convoluted. For the fitting procedure, we
created a residual vector function with five free parameters [E1, ∆1, Γ(E1), Γ(E1+∆1), and εoff]. The two components of this vector
function consisted of the real and imaginary part of the experimental 2nd derivative of the DF minus the corresponding parts of
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TABLE SI: Value of the fitting parameters and filter width ∆E for the extended Gauss digital filter. The step size selected was 1
meV from 1.0 to 3.2 eV (2201 points). (f) indicates a fixed parameter.

T ∆E (meV) E1 (eV) E1 +∆1 (eV) Γ(E1) (meV) Γ(E1+∆1) (meV) εoff
4 K 12.0 2.2793±0.0009 2.4779±0.002 75±1 96±2 6(f)

100 K 14.5 2.2599±0.0008 2.4600±0.002 79±1 103±2 6(f)
200 K 17.5 2.2187±0.0009 2.4176±0.002 89±1 119±2 7(f)
300 K 21.5 2.1674±0.0009 2.3638±0.002 101±1 136±2 7(f)
400 K 27.5 2.1167±0.0006 2.3147±0.002 115±1 157±2 8(f)
500 K 27.5 2.0656±0.0007 2.2642±0.003 128±1 175±2 8(f)
600 K 25.0 2.0172±0.0009 2.2170±0.003 142±1 193±3 8(f)
700 K 33.0 1.968±0.001 2.1683±0.004 155±1 212±4 8(f)
800 K 35.0 1.917±0.002 2.1182±0.006 171±2 243±6 9(f)

TABLE SII: Value of the fitting parameters and order of polynomial n for the Savitzky-Golay digital filter. The frame length was
constrain to 5% of the number of points (11 points). (f) indicates a fixed parameter.

T n E1 (eV) E1 +∆1 (eV) Γ(E1) (meV) Γ(E1+∆1) (meV) εoff
4 K 7 2.279±0.002 2.478±0.006 76±3 96±6 6(f)

100 K 7 2.260±0.002 2.460±0.006 80±2 103±5 6(f)
200 K 7 2.219±0.003 2.418±0.005 89±3 119±7 7(f)
300 K 5 2.167±0.003 2.364±0.005 102±2 137±5 7(f)
400 K 5 2.117±0.002 2.315±0.005 116±2 157±6 8(f)
500 K 5 2.066±0.002 2.264±0.007 129±2 175±6 8(f)
600 K 4 2.017±0.002 2.217±0.008 142±3 193±9 8(f)
700 K 3 1.968±0.003 2.17±0.01 155±3 212±12 8(f)
800 K 3 1.917±0.006 2.12±0.02 171±6 234±18 9(f)

the numerical derivative of the model:

residual(E1,∆1,Γ
(E1),Γ(E1+∆1),εoff,E) =

Re
{

d2εexp(E)
dE2

}
−Re

{
d2εmodel(E1,∆1,Γ

(E1),Γ(E1+∆1),εoff,E)
dE2

}
Im
{

d2εexp(E)
dE2

}
− Im

{
d2εmodel(E1,∆1,Γ

(E1),Γ(E1+∆1),εoff,E)
dE2

}
. (S26)

After creating the residual vector function (S26), we minimized it with the MATLAB function lsqnonlin(fun,x0,lb,ub),
where the input fun is the function to be minimized, x0 is the vector with the initial guess for the fitting parameters, lb, and ub
are the vectors with the lower and upper bounds for the fitting parameters, respectively.

A. Extended Gaussian digital �lter

The extended Gaussian (EG) digital filter of Eq. (18) for M = 4 has the form46,47

b4(x) =
1

12288∆E
√

π

(
15120− 10080x2

∆E2 +
1512x4

∆E4 − 72x6

∆E6 +
x8

∆E8

)
exp
(
− x2

4∆E2

)
. (S27)

However, since we are interested in the 2nd derivative of the data, we can compute the second derivative of Eq. (S27) and perform
the convolution with εexp(E) afterward.

d2b4(x)
dx2 =

1
49152∆E3

√
π

(
−110880+

188496x2

∆E2 − 45936x4

∆E4 +
3608x6

∆E6 − 106x8

∆E8 +
x10

∆E10

)
exp
(
− x2

4∆E2

)
. (S28)

To select the filter width ∆E, we Fourier-transform the experimental data and plot the natural logarithm of the amplitude Cn
of the coefficients as seen Fig. S3 (a). We then eliminate the higher order coefficients (noise) and retain the lower ones which
preserve the information of the original signal. The same cutoff of the coefficients is also applied to the Fourier transform of
the EG filter B4(n), shown in Fig. S3 (a) as well. In this figure, we show the Fourier coefficients of the experimental data as a
function of the order of coefficients n at 200 K, along with the Fourier transform of the extended Gaussian filter B4(n) for two
different filter widths. For this particular measurement, we selected the cutoff at the 31st coefficient. The reader might find this
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cutoff too conservative and that such a large filter width could suppress a portion of the signal. To address these concerns, we
repeated the fitting procedure with the cutoff at the 41st coefficient [see the cyan dash-dotted line in Fig. S3 (a)]. We find that
including higher-order coefficients increases noise but does not change the fitted energy and broadening parameters beyond their
uncertainty. Therefore, we settled with the larger filter width. The dark circles in Fig. S3 (b) show the EG derivatives for this
measurement. One of the advantages of this method is the increase in the number of points available in the derivative. In our
case, the EG filter produces 2201 derivative points, resulting from the chosen energy step size of 1 meV over the range from 1.0
to 3.2 eV. This is in contrast to the Savitsky-Golay (SG) derivative [shown by the red and blue lines in Fig. S3 (b)], where the
derivative is limited to the number of points of the original signal. Once the filter width has been selected, we can minimize the
residual function in Eq. (S26) to fit the energy and broadening parameters. Table SI shows the fitted parameters for this method.

B. Savitzky-Golay digital �lter

To obtain the SG digital filter, we employed the built-in MATLAB function sgolay(m,fl). This function gives a matrix of
a finite impulse response smoothing filter. The input m is the polynomial order and fl is the frame length. We used 11 points
for the frame length, which is approximately 5% of the total number of data points (this number must be odd). The order of
the polynomial is listed in Table SII for each temperature series. Once we have generated the SG filter, we can obtain the nth

derivative by convolving the experimental data with the (n+1)th column of the filter matrix. The solid lines in Fig. S3 (b) show
the SG derivatives for the experimental data at 200 K. Table SII shows the final values of the fitted parameters with the SG filter.
Notice the similarity of the fitted values for energy and broadening between the two filters.
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S5. DIRECT BANDGAP

The lineshape of the E0 CP was presented previously by Emminger et al. as6

ε(E) =
A
√

R
π(E + iΓ)2 {g̃ [ξ (E + iΓ)]+ g̃ [ξ (−E − iΓ)]−2g̃ [ξ (0)]} , (S29)

with g̃(ξ ) =−2ψ

(
g
ξ

)
− ξ

g
−2ψ (1−ξ )− 1

ξ
, ξ (z) =

2√
E0−z

R +
√

E0−z
R + 4

g

, and A =
e2√m0√
2πε0h̄2 µ

3/2
h

EP

3
.

This model is quite similar to Eq. (3), since it also takes into account excitonic (and screening) contributions to the CP. We can
improve Eq. (S29) by including non-parabolicity contributions to the effective mass at the Γ-point. By following the procedure
in Ref. 42 we use the small spin-orbit (SO) coupling approximation to get an analytical expression for the CB effective mass
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FIG. S4: (a) In addition to the parabolic approximation (thin solid line), we show the exact solution (thick solid line) and the
small spin-orbit approximation (dot-dashed) to the 8-band model of the band structure of Ge. (b) Imaginary part of the dielectric
function at 4 K in the parabolic approximation (solid) and including non-parabolicity linear terms in αε (dashed) and quadratic
terms in βε2 (dot-dashed) of the density of states mass. (c) Parabolic (solid) and non-parabolic (dashed, dot-dashed) models
extended up to 3 eV.

and, therefore, the electron density of states (DOS) mass. If we consider an 8-band model (CB, hh, lh, and SO band), our k ·p
Hamiltonian looks like62

H0 +H̃k =


E0 0 − h̄k

m0
iP 0

0 − 2∆0
3

2∆0
3 0

h̄k
m0

iP 2∆0
3 − 2∆0

3 0
0 0 0 0

. (S30)

We can construct an exact solution of the band energies by solving the characteristic equation to this eigenvalue problem. Similar
to Eq. (S5), the exact solutions to Eq. (S30) are not useful for our purposes because they cannot be inverted to get the DOS as
a function of energy. Instead, we assume that the spin-orbit (SO) coupling is small and approximate ∆0 → 0. As a result, this
approximation makes the center terms in the Hamiltonian matrix (S30) zero and gives two degenerate solutions of zero (the hh-
and SO-band) and two non-zero solutions (the CB and lh-band). In Fig. S4 (a), we can see that in the small SO approximation,
the CB fits reasonable well to the exact solution of the band structure (at least in our 8-band 4× 4 Hamiltonian model). Since
there are two zero solutions in the small SO approximation, the hh- and SO-VB are degenerate and lie on top of the exact solution
of the hh-band. The effective mass of the electron in CB and the hole in the lh-band are, therefore, given as

me =
E0

EP +E0
, mlh =

E0

EP −E0
.

However, the band structure in Fig. S4 (a) clearly shows that the small SO approximation does not present a good match with
the exact solution of the lh-band. For this reason, we will only consider non-parabolicity effects in the CB, while leaving the VB
in its parabolic approximation form. Hence, we will only consider me to calculate the DOS mass42

me,DOS = me
[
(1+αeε+βeε

2)(1+2αeε+3βeε
2)2]1/3

, (S31)

where42

αe =
E2

P
E0(E0 +EP)2 , βe =− 2E3

P
E0(E0 +EP)4 , (S32)
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and ε is the energy above the band minimum E0. Including α and β into the DOS effective mass has the effect of overestimating
ε2. This can be seen in Fig. S4 (b). To compensate this, we would have to consider the k-dependence of the matrix element EP,
which should bring ε2 closer to the experimental value (we do not pursue this here).1,62 Still, independently of the approximation,
the amplitude of ε2 is around one between 1.5 and 3 eV. Therefore, including E0 in the Tanguy line-shape would not be enough
to match the experimental data in the E1 and E1 +∆1 region.

S6. SURFACE EFFECTS

To showcase the dielectric function for different surface orientations, we measured Ge substrates with (100), (110), and (111)
surface orientations. We then follow the procedure explained in Sec. III to remove the effects of the oxide layer from the data.
The (110) surface orientation had an estimated oxide layer thickness of about 28 Å, whereas the (100) and (111) surfaces had
a similar oxide layer thickness of about 25 Å. The resulting point-by-point fits are shown in Fig. S5. It can be seen that the
difference between the samples is negligible. Therefore, we find it unlikely that these surface-related effects are responsible for
the discrepancies between theory and experiment observed in our model for the dielectric function near the E1 and E1 +∆1 CPs.
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FIG. S5: Real (a) and imaginary (b) parts of the dielectric function of Ge from a point-by-point fit for three substrates with (100),
(110), and (111) surface orientations (black, blue, and red, respectively).
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