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ABSTRACT

ULTRAFAST DYNAMICS OF CARRIERS IN GERMANIUM PROBED BY
BROADBAND FEMTOSECOND SPECTROSCOPIC ELLIPSOMETRY
BY

CARLOS ANTONIO ARMENTA, B.S., M.S.

Doctor of Philosophy
New Mexico State University
Las Cruces, New Mexico, 2025

Dr. , Chair

This dissertation aims to investigate the transient dielectric function (DF)
of Germanium at very high electron-hole pair densities using time-resolved spec-
troscopic ellipsometry. By employing a pump-probe technique, we explore the
evolution of the critical points near the L-valley on a femtosecond time scale.
Through modeling the DF of the material under different carrier temperatures,
we analyze the impact that the photo-induced phenomena, such as phase-filling

and many-body effects, have on the material’s optical properties.

viil



Pump-probe ellipsometry measurements were conducted on Ge from -10 ps to
1 ns delay time with a minimum step size of 50 fs. The pump pulse was energetic

enough to achieve carrier densities on the order of 10%° cm™.

The evolution of
the DF over delay time is dictated by the ultrafast dynamics of the photo-excited
carriers. Since the critical points (CPs) E; and F; + A; lie inside the energy
range of our probe (1.8 to 3 eV), the primary focus of our model is to describe
these features as a function of delay times. Given the two-dimensional character
of these CPs, the absorption of Ge is significantly enhanced by excitonic effects.
Furthermore, at high carrier densities, intervalley scattering and band saturation
will play a significant role in the optical response of the material. To address these
effects, we combined band-filling effects with a 2D excitonic line shape to model
the DF. We also simulated the Fermi energies and carrier temperatures governing
the measurements using Fermi-Dirac statistics. The relaxation of photoexcited
carriers occurs in very short timescales. As a result, this analysis focuses exclu-
sively on the first few picoseconds after excitation, which is the temporal regime
where carrier dynamics were modeled and simulated.

Our aim is to enhance our understanding of Ge’s optical behavior under intense
laser excitation. These findings provide quantitative insight into the timescales
and mechanisms governing carrier relaxation in Ge and demonstrate the utility

of femtosecond ellipsometry as a sensitive probe of nonequilibrium semiconductor

dynamics. Moreover, we seek to translate these results to describe other materials

1X



of interest, providing new insights into the ultrafast dynamics of carriers and their
influence on the optical properties of diverse materials. The results have impli-
cations for the design of high-speed optoelectronic devices and contribute to the

broader understanding of ultrafast processes in indirect bandgap semiconductors.
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1 INTRODUCTION

From the development of the first transistors to contemporary photonic and elec-
tronic devices, Germanium (Ge) has played a pivotal role in the semiconductor
industry. Beyond its historical significance, Ge exhibits unique electronic and opti-
cal properties, including a high carrier mobility, an indirect bandgap supplemented
by strong direct transitions near 2 eV, and pronounced excitonic effects close to
critical points in the Brillouin zone. These features make Ge an ideal candidate
for exploring fundamental carrier dynamics under non-equilibrium conditions.

When a semiconductor is exposed to ultrafast optical excitation, photoexcited
carriers are created with high excess energies and out-of-equilibrium distributions.
Their subsequent relaxation mediated by carrier-carrier interactions determine key
timescales for energy dissipation, recombination, and recovery of the equilibrium
electronic system and dielectric response. In Ge, these processes are particularly
interesting because of the interplay between indirect and direct transitions and
the pronounced role of excitonic effects in the two-dimensional van Hove singular-
ities Fy and F; + A;. Understanding these relaxation processes at femtosecond
timescales is essential for modeling the transient optical properties of Ge and for
the design of optoelectronic devices operating in high-field conditions.

Among the various techniques available to probe ultrafast carrier dynamics,



broadband femtosecond spectroscopic ellipsometry offers a unique combination
of temporal and spectral resolution. Unlike conventional transient reflectivity or
transmission measurements, ellipsometry provides access to the complex dielectric
function without relying on Kramers—Kronig transformations. This capability
enables direct observation of band filling, bandgap renormalization, and exciton
effects with femtosecond resolution across a broad energy range. In this thesis,
femtosecond ellipsometry is employed to disentangle the competing contributions
to the transient dielectric function of Ge following strong optical excitation.
This work aims to investigate the ultrafast carrier dynamics in Ge by mod-
eling the transient dielectric function obtained from time-resolved ellipsometric

measurements. The specific objectives are:

e To develop a model incorporating band filling and excitonic effects in Ge’s

dielectric function near the E; and E; + /A, transitions.

e To measure the time-resolved changes in the dielectric response following
femtosecond excitation and extract carrier temperatures and chemical po-

tentials as a function of delay time.

e To estimate the characteristic energy relaxation rates of hot carriers and

explain the mechanisms that govern the return to equilibrium.

e To evaluate the dependence of the dielectric function to the carrier density

and temperature under present experimental conditions.



The thesis is organized as follows: chapter 2 provides a theoretical background
on classical optics, polarization formalism, and the optical response of semicon-
ductors. Chapter 3 describes the experimental methods, including the broad-
band femtosecond ellipsometry setup and data acquisition procedures. Chapter 4
presents the modeling of the steady-state dielectric function of Ge based on spec-
troscopic ellipsometry measurements. Chapter 5 develops the transient dielectric
function model and details the fitting procedure used to obtain the carrier param-
eters. Chapter 6 discusses the results of time-resolved measurements, including
carrier cooling dynamics and their consequences. Finally, Chapter 7 summarizes

the main findings and outlines future research.

2 BACKGROUND AND THEORETICAL FRAMEWORK

2.1 Classical optics

Consider an electromagnetic (EM) field in a medium. Given the electric charges
that exist within the atoms of the medium, the presence of this EM field will induce
auxiliary fields that encompass polarization and magnetization effects. These

auxiliary fields are the electric displacement and macroscopic magnetic fields

D =¢cE+P, (1)
1

and H= —B — M, (2)
Ho



respectively. In Eq. (1), g9 is the permitivity of free space, E is the electric
component of the wave, and P is the electric dipole density induced by the electric
field within the dielectric medium. In Eq. (2), o is the permeability of free space,
B is the magnetic component of the wave, and M magnetization density of the
material. These charge and current densities and auxiliary fields play an important
role in the propagation of EM waves in a medium. We present the derivation of
the non-homogeneous EM wave equations by starting with Maxwell’s equations

in a macroscopic medium,

V.-D =p, (Gauss’ law) (3a)
V-.-B=0, (Gauss’ law for magnetism) (3b)
B
V XE = —aa—t, (Faraday’s law) (3¢)
oD : :
VxH=J+ a0 (Ampere’s law with Maxwell’s correction) (3d)

Taking the curl of Egs. (3c) and (3d), we can decouple this set of four 1% order
partial differential equations (PDE) into a set of two decoupled 2"¢ order PDE.

By doing so, we get the following EM waves equations:

O’E oJ P 1
°E — copto—— = flo— + po— + —V 4
0°B
VQB — 50,&0@ = —,U()V X J. (4b)



If we assume an isotropic, homogeneous, and nonconducting medium (p = 0 and

J =0), we can obtain the solutions to Eqs. (4) of the form

E(r,t) = Ege'kr=b (5)
and P(r,t) = Poelkr—et), (6)

This solutions hold true if
Py(w) = eox(w)Ep(w), (7)

where y(w) is the electric susceptibility [strictly speaking, y(w) is really a 274
rank tensor, but we have assumed that material at hand is isotropic]. With this

definition, we can redefine the electric displacement of Eq. (1) as
D=¢(14x)E =¢g¢s,E (8)

The new term ¢, is called the complex relative dielectric constant. For simplicity,
we will set the permittivity of free space to unity, making the dielectric constant
equal to its relative counterpart. In other words, € = pe, = ¢,. By inserting Eq.

(7) in Eq. (5), and then to Eq. (4a), we get the dispersion relation

k==yTHx=2ve (9)

In general, e(w) is a complex number [hence, x(w) is also complex|, which leads

to a complex index of refraction,

fl:n—i‘ifi:\/g:\/&fl—i‘ié‘g. (10)
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The extinction coefficient x accounts for the absorption of the medium. We see

this by explicitly placing Eq. (10) in Eq. (5):
E(r,t) = Eoe_%ﬁ'rei(%ﬁ'r_Wt), (11)

which conveys an exponential decay of the oscillatory behavior of a wave pro-
portional to k. In the literature, it is typical to use the absorption coefficient «

instead of the extinction coeflicient.
a=—. (12)

The derivations for the electric field and the polarization vector in Eq. (5) are
an oversimplification of the actual physical quantities at hand. The full definition

of the polarization vector is

P(r.t) — 2 //// Viille = v, |t — £ NE, ¢)dPrdt’ (13)

Here, the indices 7 and 7 run through the components of the second-rank tensor
Xij- However, it is easier to work with Eq. (13) by Fourier transforming it, which

changes (r,t) — (k,w). By doing this transformation, Eq. (13) reduces to
P(k,w) = goxij(k, w)E(k,w), (14)
which is similar to Eq. (7). The relation between ¢ and y

5ij<k7 w) =1 + Xij (k, CU). (15)



is still valid. The k dependence of ¢;; is called spatial dispersion. For simplicity,
we will ignore this dependence from now on [g;;(k, w) — €;;(w)]. If the material of
interest is isotropic or has a cubic crystal structure (as is the case with diamond
and zincblende semiconductors), we can simplify even further by noting that the
tensor ¢;; has only three identical diagonal elements. Hence, ¢;;(w) becomes the

usual dielectric function £(w) of the material.

2.2 Semiconductor optics

To calculate the dielectric function from first principles, we relate the light ab-
sorption of the material €5 to the power lost by the field due to absorption per
unit volume within the medium. This latter quantity is simply the transition

probability per unit volume, R, multiplied by the photon energy hw,

ar__dide_ e p (16)

RMZ_E_ dedt n

Eq. (16) makes explicit use of Beer’s law

dr

- — _ol 1
= —al, (17)

where the absorption coefficient o = eyw/nc and the EM wave intensity I =

cneo|E(w)]?/2. We can solve for the imaginary part of the dielectric function as

2hR
2(e) = o (18)

All is left in Eq. (18) is to find an expression for the transition probability rate
R. To do so, we start with Schrodinger’s equation. Treating incoming radiation

7



classically, the Hamiltonian for a single electron in the presence of an electric field

is given as

2|A|
2m

|p|

= o

+V()+ CA. p+———— (19)

74(0) H(1)

Notice that the first two terms represent the unperturbed Hamiltonian H(®). Us-
ing the Coulomb gauge (¢ = 0 and V-A = 0),! as well as ignoring the quadratic
term, we can treat H) as a perturbation.? Next, we use time-dependent pertur-
bation theory in the form of Fermi’s golden rule to get the transition probability

rate from the valence band state |V) to the conduction band state |C)
Ry_c = —\<C}H 1>|v>} § [Ec(k) — Ey(k) — hw]. (20)

The terms in Eq(k) and Ey(k) are the dispersion relations for the material at
hand. Fig. 1 shows the band structure for Ge. The Dirac delta function highlights
the absorption process at the bandgap energy [Ec(k)— Ey(k)]. Solving the matrix
element |(c|H™|v)| involves working with Bloch functions for the states [V) and
|C). For a detailed explanation of this calculation see Ref. [81]. Without explicitly

showing the details of the calculation, the matrix element is giving by

2
(CHOV) = (50 ) [BF Py (21)

In the Coulomb gauge the electric and magnetic fields are given by E = —%%—‘:‘ and B =

V X A respectively.

2This type of coupling between fields which involves only the charge distribution and not

higher multipole moments of the charge distribution is known as minimal coupling.



Energy

Wave Vector

Figure 1: Band structure of Ge. The arrows indicate interband transitions of the
critical points.

where |Pey|? is the average momentum matrix element. Substituting Eq. (21)
in Eq. (20) and then into Eq. (18) we get the imaginary part of the dielectric
function

ea(w) = (5)2 D |Povl?S [Ee(k) — Ey(k) — hw] . (22)

We obtain the real part

h2€2 2 |Pcv|2
A= [Z (zwzm) Ew-rwr=w @



from the Kramers-Kronig transformation of the imaginary part. We can rewrite

Eq. (22) as

27e?
eo(w) = gOmMQ‘PCVFJCVa (24)

where the joint density of states (JDOS) is defined as

1 dSy
Jov =5 / Vi [Ec(k) — Ev(k)]|

(25)

where Sy, is a constant energy surface F¢(k) — Ev(k) =const.

An important feature arises when |V [Ec(k) — Ev(k)]| &~ 0. At such points,
Jov becomes singular. These singularities in the JDOS (otherwise known as van
Hove singularities) point to an increase in the transition rate between bands,
and the energies at which they occur are labeled as critical points. The arrows
in Fig. 1 indicate the transitions from the VBs to the CBs. induced by these
singularities. In other words, where the gradient of the conduction band minus the
valence band is approximately zero, interband transitions are more prominent.
This happens at inflection points, local maxima or minima and where the bands
run parallel to each other. These critical points will show up as absorption peaks
and shoulders in the dielectric function of the material, namely in 5. Critical
points are typically classified by dimensionality. By expanding the energy gap

Ecv = Ec(k) — Ev(k) as[100]

(k1 — k0,1)2 " (k1 — k0,2)2 n (k1 — k‘o,3)2

1
2 ma mo ms

, (26)
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if one of the masses in a term is too big, the term will go to zero. Point sin-
gularity (0D) The singularity is localized at a single point, and it often leads to
sharp peaks or discontinuities in the density of states. Line singularity (1D) can
occur along specific lines in the Brillouin zone. This means that the singularity
extends along a certain direction in the crystal momentum space. Surface sin-
gularity (2D) can also be associated with entire surfaces in the Brillouin zone.
These are referred to as surface van Hove singularities and are related to changes
in the topology of the Fermi surface. Volume singularity (3D) in rare cases,
van Hove singularities can span a three-dimensional region in the Brillouin zone.
This implies that the singularity is not confined to a specific direction but exists
over a significant portion of the crystal momentum space. In the context of a
diamond or zinc-blende structure, in three-dimensional space there are four kinds

of singularities:

e My: This is the center of the Brillouin zone. In both diamond and zinc-
blende structures, it corresponds to the I'-point. The coordinates of the

[-point in the Brillouin zone are (0,0,0).

e M;: This is usually a high-symmetry point along a specific direction. In
cubic systems such as diamond or zincblende, it is often associated with a

point along the X direction (1,0, 0).

e M. Another high-symmetry point along a specific direction. In cubic sys-

11



tems, it is often associated with a point along the L direction (1,1, 1).

e Mj: Yet, another high-symmetry point often associated with a point along

the W (1,1,0) direction in cubic systems.

2.3 Excitonic effects

The absorption of energy greater than the bandgap of a semiconductor, optically
or otherwise, excites the electrons from the valence band into higher-energy states
in the conduction band. In doing so, the electrons leave positively charged holes
in the valence band. These newly created holes interact via the Coulomb force
with the electrons in the conduction band. This interaction not only increases
the probability of photon absorption, but can also lead to the formation of bound
electron-hole pairs known as excitons. In the simplest picture, an exciton is a
quasi-particle formed by an electron and a hole bound together in a hydrogen-like
system.

There are two types of excitons:|[2]

e Wannier-Mott excitons: Mainly observed in semiconductors, these exci-
tons are free to move throughout the crystal, hence, they are also known as
free excitons. Free excitons have a large enough radius to cover several unit

cells.

e Frenkel excitons: Common in insulators and molecular crystals, these

12



excitons are tightly bound and localized within a single unit cell. They are

sometimes referred to as tightly bound excitons.

In the present work, given that we are dealing with a semiconductor, we will focus
only on Wannier-Mott excitons.> These quasi-particles, similar to a hydrogen

atom, have a set of discrete energy states with a binding energy given by

R =L Ry, (27)

8s‘c

where = (1/me + 1/my)~" is the reduced mass of the electron-hole pair, e is
the static dielectric constant of the material, and Ry= 13.6 eV is the Rydberg

energy constant. The dispersion relations for excitons are[3]

R RK

Eex 7K =FE,— —
(n ) g n2+ 2M

(28)

In Eq. (28), E, is the energy bandgap, R is the excitonic binding energy given
in Eq. (53), and n, M = m, + my,, and K = k. + k;, are the principal quantum
number, the total mass, and center of mass wave vector of the exciton, respectively.
Figure 2 (a) shows the generation of en electron hole pair, as well as the continuum
and the discrete energy states of the exciton. Figure 2 (b) shows the imaginary

part of the dielectric function in the presence of excitons. The optical response of

excitons
A | X 4R/ R 2nvVRH(E — E,)
E)=— S| F—-—E,+— 9 29
#2(E) E? ; n3 ( gt n2) + 1 _ o=2m/RI(E-Ey) || (29)
Dis?:,rete Com;guum

3Since we chiefly deal with Waninier-Mott excitons, we will refer to them as simply excitons.
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Figure 2: (a) Excitation of an electron-hole pair and formation of discrete exciton
states below the conduction band. (b) Schematic of the imaginary part of the
dielectric function, showing discrete absorption lines below the band edge and

continuum absorption above Fj.

was first published by Elliot.[4] It incorporates the two absorption states, as seen
in Figure 2 (b). The expression in Eq. (29) is only valid for 3-dimensional excitons.

For 2-dimensional excitons, Shinado and Sugano give the following expression:|5]

gg(E)zi iié(E—Eng B )+12H(E_E~")

B2 e~ (n+1/2)° (n+1/2)2 _ o= 2m\/RI(E=E,)
) Dis?:;ete ’ Cont‘i;uum

(30)
Both expressions present a similar form. The first term in Eq. (29) and Eq. (30)
corresponds to discrete exciton states below the bandgap, each appearing as a
delta-function-like resonance. These represent the bound states of the electron-
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hole system. The second term represents continuum absorption by unbound,
free carriers above the bandgap. The prefactor A affects the amplitude of both
absorption states. The divergence near the band edge is known as Sommerfeld
enhancement and arises due to Coulomb interaction between the carriers in the

unbound regime.

2.4 Carrier dynamics

2.4.1 Ultrafast processes

In the absence of any external fields or strong optical excitations, the subsystem
of particles and quasi-particles within the lattice structure of a semiconductor re-
mains in thermal equilibrium. In a broad categorization, the distribution function
of carriers and phonons in this equilibrium state can be described by Fermi-Dirac
and Bose-Einstein statistics, respectively. Under certain circumstances, the be-
havior of both subsystems can also be approximated with Maxwell-Boltzmann
statistics. If, however, the equilibrium state is disrupted, the carriers will go out
of thermal equilibrium with the lattice, and their combined average momentum
will be non-zero. Furthermore, the carrier temperature may not only differ from
that of the lattice but also vary among carrier subspecies (electrons, holes, exci-
tons). In the case of optical excitation, if the energy of the light source used is
above the bandgap of the semiconductor, then the electrons are promoted from

the VB to the CB, thereby leaving positively charged holes in their place. Once
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these carriers populate the excited states in the bands, they will undergo several
relaxation processes that will aid dissipate their corresponding excess energy and
momentum. These processes occur on very short timescales that can be divided

into four different overlapping regimes:|71]

e Coherent regime: Neither energy nor momentum have had any time to relax.
Carriers have a strong coupling with the polarization of the electric field of
the incident excitation radiation. Because of this coupling, the occupied
states by the carriers are localized in energy and have a preferred direction
in momentum space. Carriers will decohere from this regime within tens of

femtoseconds.

e Non-thermal regime: After the coherence is broken, the distribution of the
carriers is likely to be non-thermal (it cannot be described by a distribution
function with a well defined temperature). Through different inelastic scat-

tering processes, the carriers will establish a hot thermalized distribution.

e Hot-carrier regime: Once inelastic scattering processes take place, the mo-
mentum of the carriers will have dissipated and there will be no preferred
direction in momentum space. However, since the excess energy of the car-
riers is yet to be dissipated, the occupied states are still localized in energy.
The momentum-relaxed carriers can now be described by a distribution func-

tion. Still, the temperature of this distribution function is usually greater
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than the lattice and might be different for each subspecies of carriers.

e [sothermal regime: Both energy and momentum begin to dissipate through
elastic as well as inelastic scattering processes. The carriers are now in
thermal equilibrium with the lattice. Diffusion and recombination of carriers

takes place, either radiatively or non-radiatively.

Although the different scattering processes are the means of energy and momen-
tum relaxation, it is only through scattering with the lattice that the carriers can
relax in energy. Any other scattering process only redistributes energy among the

different subspecies of carriers.[72] The excess energy of the carriers is given by|[64]

E. = Iipump — B (31a)
1 —me/my,
By = hwpamp — E, — B, (31b)

where E, is the bandgap energy, hwpump is the energy of the optical excitation
source, m is the effective mass and the subscripts e and h stand for electrons
and holes, respectively. By absorbing this excess energy, the carriers populate
higher-energy states within the bands. As a consequence, the material’s optical

properties are modified in several ways.
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2.4.2 Many-body effects

The presence of photo-excited carriers in the CB and VB modifies the energies
of interband transitions. Exchange-correlation effects renormalize the bands and
lower the transition energy of the bandgap and other critical points. On the other
hand, due to phase-space filling, the chemical potential y of the bands varies with
the charge carrier density n. An increase in photo-excited electrons raises the
quasi-Fermi energy E}C) above the CB minimum, while an increase in the hole

population lowers the quasi-Fermi energy El(mv) below the VB maximum. These

competing effects are described by[64, 73]

dExc

Eg:u—EF:EXC—I—n n

— Ep, (32)

where the over-line E, indicates the renormalized energy gap and Er is the total
quasi-Fermi level shift across the bands [Er = EI(;C)—FE;V)]. The chemical potential

depends on the charge carrier density and the exchange-correlation energy, which

is given by Vashishta and Kalia as[74]

a + brs

Exc = T i 5
c+drs+r?

(33)

In Eq. (33), 7s is the exciton Bohr radius and the coefficients have the values
a = —4.8316, b = —5.0879, ¢ = 0.0152, and d = 3.0426. Renormalization lowers
the energy of the gap and red-shifts interband transitions. Conversely, the filling

of the bands with photo-excited carriers has the opposite effect and raises the
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energies of these transitions. Since states at the absorption edge are unavailable,
bandgap or critical point transitions need to occur higher up in the band. This is
commonly known as a Moss-Burstein shift.[75, 76] Moreover, at sufficiently high
carrier densities, the absorption of the material decreases due to the saturation of
available states for interband transitions. In effect, the presence of photo-excited
carriers within the bands will not only affect the energy of the transitions, but

also decrease the absorption of the material.

2.4.3 Carrier diffusion

The last factor affecting the optical response of the material is the diffusion of
carriers. In the case of optical excitation, excess carriers are generated only within
the volume irradiated by the optical source. Once created, the carriers diffuse
outside of this photo-excited volume. Therefore, the carrier density depends on
both the penetration depth of the light source and the time after excitation. To get
the initial concentration of carriers ng, Richter et al.[67] give a simple expression

for the upper charge carrier concentration limit based on simple assumptions:*

Epulse 4
Nog ~ W [1 - R(Q, CU)] ngm. (34)

Here, R is the reflectance at a given angle of incidence 6 and frequency w, J is
the penetration depth of the material, E,yse is the energy of the pump pulse, and

hw is the photon energy of the pump. It is important to remark that the free

4This expression is simplified from the fact that we are dealing with a bare substrate.
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carriers are excited at the surface of the sample (as opposed to a homogeneous
excitation), and therefore this concentration varies within the depth profile of the
sample. Baron et al.[77, 78] expressed this concentration as a function of both of
these factors n(x,t). Their study gives the profile of the carrier concentration at

the surface where x = 0 as

t— a1
n(t) = "o [erf( 70) + 1] e P erfe ( ozth> , (35)

4 T0

where « is the absorption coefficient, D is the diffusion coefficient, 7, and 71 are
the relaxation time and characteristic recombination time respectively, and ~q is
the position of the inflection point of the error function.

The initial carrier density, although it decreases with time, remains approx-
imately constant during the first few picoseconds.[69] Furthermore, if the pene-
tration depth of our sample at the pump wavelength (the photoexcitation light
source) is significantly greater than at the probing wavelength, the carrier density
as a function of depth can be approximated as constant. Therefore, in the present
work, given the timescale and photon energy range at which we are probing, we
will only use Eq. (34) to estimate the carrier density and keep it constant through-
out time. These assumptions are further validated by previous studies on carrier

diffusion in highly excited bulk Ge.[79, 80]
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3 EXPERIMENTAL METHODS

3.1 Spectroscopic Ellipsometry

Detector Light

p-plane X
Eip source

Analyzer

Rotating Polarizer

compensator

Epp I

tan¥ = |rp|/|rs|

Figure 3: Schematic of a rotating compensator ellipsometry setup. The unpolar-
ized light has an angle of incidence 6, and its path comprises a polarizer, sample

stage, rotating compensator, and analyzer.

Spectroscopic ellipsometry is an optical technique used to characterize the
optical functions of bulk materials and thin films. To do this, an ellipsometer
measures the reflectance of the material while modulating the polarization of
both, the incident and reflected beam of light. Figure 3 shows the schematic for
a rotating compensator ellipsometry (RCE) experiment. The basic procedure for
this setup is to send unpolarized light through the following stages: a polarizer, the
sample, a rotating compensator, an analyzer, and the detector (this configuration

is denominated PSCgA). Initially, the incident beam of light of known intensity
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Iy is polarized at angle P with respect to the p-plane (plane of incidence). This
polarized pulse will have two components: One parallel to the plane of incidence
denoted as p-wave, and a second component perpendicular to this plane, which
is labeled as s-wave. Their corresponding amplitudes are E}, and FEj, respectively.
After this polarization stage, the incident beam is reflected by the sample at an
angle of incidence (AOI) 6. The reflected light then propagates through a rotating
compensator (a rotating retarder) and analyzer (another polarizer), before finally
being detected. Since this is a RCE setup, the polarizer and analyzer are fixed in
place while the compensator is the only optical element that varies its axis. This
compensator introduces a phase-shift § between the p- and s-components of the
polarized light. The final reflected intensity I is measured at several compensator
angles C. Using Jones vectors and matrices to describe the state of polarization

of the light L, the polarization state outcome for this PSCrA configuration is[19]

Low = AR(A)R(—C)CR(C)SR(—P)PL,,, (36)

where A and P are polarizer matrices, C is a retarder matrix, R(6) is a rotation
matrix by angle ¢, and the subscripts out and in stand for the final and incident
polarization states, respectively. A Jones vector gives the polarization of the
electric field E. However, since what is measured in practice is the light intensity

I = |E|, it is convenient to work with Stokes vectors S and Mueller matrices M.
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In this Mueller calculus formalism, the state of polarization is[87]

Sout = MAR(A)R(=C)McR(C)MsR(—P)MpSiy, (37)

where the subscripts A, C', and P, stand for analyzer, compensator, and polarizer,
respectively. The subscripts in and out have the same meaning as in Eq. (36).
Following Eq. (37), the intensity detected as a function of the compensator angle

has the form[8§]

I(C) = Iy (g + g cos 2C' + B2 sin 2C' + a4 cos 4C' + By sin4C) , (38)

where components have the explicit form|[88§]

1 J
ap = % (cos2A cos2P — cos 2P cos 2¥
+sin 2A sin 2P sin 2W cos A) — cos 2A cos 2¥ + 1, (39a)
ay = —sin2Asin 2P sin 6 sin 2¥ sin A, (39b)
Po = sin2A cos 2P sin § sin 2 sin A, (39¢)
1 —cosd : . :
Qy = — (cos2A cos 2P — cos 2P cos 2V — sin 2A sin 2P sin 2W cos A) |
(39d)
1 —cosd , , : .
and B, = — (cos2Asin 2P — sin 2P cos 2V + sin 2A cos 2P sin 2W cos A) .
(39e)

In Eq. (39), § refers to the phase shift induced by the rotating compensator. W
and A, on the other hand, are the angle and phase shift between the p- and s-
components, respectively (see the lower-left corner of Figure 3). Standard practice
calls for the polarizer angle P = 45°, while the analyzer is set either A = £45°.
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To solve for the ellipsometric angles U and A, we note that Eq. (38) has the form
of a Fourier series, where its coefficients refer to Eq. (39). We can solve for the
explicit values of the coefficients by fitting the first five terms of a Fourier series
to Eq. (38) (one term for each coefficient in Eq. (39)). Hence, the need for several
measurements at different compensator angles (at least five for RCE).[89] If we
know the values of the coefficients a; and S; in Eq. (39), the ellipsometric angles

have the form

V(a3 + B3)(1 — cos §)2/sin? § + 4(—ay sin 2P + B4 cos 2P)?

tan2¥ = —
o 2(cvg cos 2P + By sin 2P) ’
(40a)
1—cosd\ agsin2P — [y cos2P
d tanA = . 40b
anc tan < 2sind ) aysin2P — 34 cos 2P (40b)

In the case of negative tan 2¥ values, a correction of +7/2 to the ¥ value will be
needed. The information of these ellipsometric angles can be expressed in a single
complex variable

p = tan Ue'? = T—p, (41)
T's

known as the fundamental equation of ellipsometry. In Eq. (41), r, and 7y are
the complex p- and s-wave reflection coefficients, respectively. Explicitly stated,
tan W = |rp|/|rs| is the ratio of the electric field amplitudes of the reflected waves.
A, on the other hand, is the change in the phase difference of the p- and s-waves
induced by the reflection from the sample. Stated differently, if §; is the p-s phase
difference before light interacts with the sample and d5 is the p-s phase difference
after reflection, then A = 6; — d;. Once the complex quantity p in Eq. (41)
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has been calculated, it can be used to obtain the optical constants of the sample
via[90]

(€) = (n)? = sin 0 {1 4 tan?6 (%ﬁ)} | (42)

If the sample of interest were an ideal bulk specimen, then Eq. (42) would de-
scribe the actual complex DF ¢ (or complex index of refraction n) of the material.
In practice, however, this is rarely the case. In most cases, we deal with less-
than-ideal samples where surface roughness and back-side reflections cannot be
ignored. In such scenarios, we refer to (¢) as the pseudo-DF (or pseudo-index of
refraction (n)) because it describes the optical behavior of the sample as a whole,
rather than the optical response of the individual material of interest. The dis-
tinction between ¢ and (¢) is particularly relevant when dealing with multi-layered
samples. While in bulk samples the pseudo-DF might present similar features to
the DF| the pseudo-DF can look completely different in samples composed of two
or more films. In general, extracting € from (¢) requires extensive modeling of
the optical functions of the different films, as well as an estimation of their corre-
sponding thicknesses. It is only after this process of adjusting parameters to fit

the experimental data that one is able to obtain the desired optical functions.

3.2 Broadband Femtosecond Ellipsometry

Figure 4 shows the femtosecond ellipsometry configuration. The Coherent Astrella

(35 fs, max. 6mJ) laser emits pulses of 800 nm wavelength at 1 kHz repetition
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Figure 4: Schematic of the broadband femtosecond spectroscopic ellipsometry
setup. A beam splitter BS) splits the initial (35 fs and 800 nm wavelength) pulse
into the pump and probe. In the pump path, the pulse goes through a 250 Hz
chopper Ch, the delay line DL, a focusing lens L, and the sample S. On the probe
path, the pulse is redirected to CaFy plate that transforms the infrared pulse
into white light via supercontinuum generation (SCG). This white light probe
pulse then goes trough a PSCrA (polarizer, sample, rotating compensator, and

analyzer) ellipsometry configuration stage, before hitting the CCD detector.

rate.[91] This beam is then divided into the pump and probe pulses. The pump
pulse is directed to a 250 Hz chopper before propagating through the delay line

(DL). The temporal resolution of the DL is about 3 fs and is capable of up to a

26



6.67 ns pump-probe delay. After the DL, the beam is directed toward a focusing
mirror, which adjusts the pump beam-spot diameter before it reaches the sample
stage S. By adjusting this beam-spot, we are able to modulate the number of
photons per unit area. The probe pulse, on the other hand, is focused by a lens
onto a CaFy plate, which generates white light from the initial IR pulse by means
of supercontinuum generation (SCG). This probe pulse has a spectral range of
1.3 to 3.6 eV and accounts for only about 1 pJ of the energy of the original laser
pulse. After passing through a 500 Hz chopper, the probe then goes through the
conventional RCE stage in a PSCgrA configuration. Polarizer and analyzer are set
90° from each other (+—, —+, ——, and ++ are the possible configurations). The
compensator will typically rotate for a total of 36 different angles. Finally, the
probe pulse is dispersed by a prism before arriving to the CCD detector.

As it is the case in typical pump-probe spectroscopy setups, the measured
signal is not the same as in the steady state case (in our case, the ellipsometric
angles U and A), but rather the reflectance-difference spectra AR(E, At). This
reflectance-difference spectra is not only a function of wavelength (or photon en-
ergy F), but of time delay At as well. As depicted in Figure 7, the choppers of
this setup create four intensity signals: Pump-+probe, pump only, probe only, and

dark (we labeled these different intensities P1, P2, P3, and P4, respectively). The
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four measured intensities are related to the reflectance-difference by

AR(E, At)

_ R°(E,At) — R'(E)
RY(E)

RY(E)

_ R(E,A)

— IPl - IPQ
RO(E)

= ——= 1. 43
Ipz — Ipy (43)

In Eq. (43), RP(E,At) = Ipi(E, At) — Ipa(E, At) is the background-corrected
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Figure 5: Reflectance-difference spectra recorded for each compensator angle. The
y-axis shows detector pixel index (proportional to wavelength), and the z-axis

shows the delay steps. Compensator, polarizer, and analyzer angles are indicated

in the lower right corner of each panel

pump+probe spectra and R(E) = Ip3(FE, At) — Ips(E, At) is the probe only spec-

tra. In effect, the recorded data consist of a series of reflectance difference intensi-
ties as a function of wavelength and delay time. Each intensity entry corresponds
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to a set angle of the compensator. Figure 5 presents a total of 34 measurements at
different compensator angles. The reflectance difference is displayed as a function
of wavelength on the y-axis (the figure shows the number of pixel in the detector,
rather than the wavelength or energy value) and delay time on the z-axis (the axis
ticks correspond to the number of recorded delay point and not to actual delay
time). The compensator, polarizer, and analyzer angles are indicated in white
font at the bottom right corner of each measurement. Given that 180° constitutes
a complete compensator cycle, notice that some of the recorded angles are redun-
dant. This allows a direct comparison of the same angle after a certain amount
of time, to ensure that the signal did not degrade over time.

Due to the dispersion of the CakFsy, the SCG stage induces a spectral chirp to
the recorded intensity. To correct for the chirping in the probe pulse, we used a
retroactive correction. The zero-delay for each energy channel is determined by
fitting a polynomial to the energy dependence of the chirp, as shown in Figure 6.
This fit was applied to selected Mueller matrix components (N, C, and S), which
are explained below.

After the chirp correction, we use the reflectance-difference to obtain the in-

tensity of Eq. (38) with the expression

I(E,At) = I°(E) {1 + (%)} : (44)

where I°(E) is the pseudo-intensity spectra computed using U°(FE) and A°(F)
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Figure 6: The spectral chirp correction polynomial (black line) fitted to the N,
C, and S elements of the sample Mueller matrix. For reference, the differences of
these matrix elements relative to their steady-state values, AN, AC, and AS are

also shown.

from a reference steady-state ellipsometry measurement of the sample of inter-
est. Using this intensity, we can obtain the Mueller matrix of the sample Mg of
Eq. (37) by the Moore-Penrose pseudo-inversion formalism.[66] The final Mueller

matrix for an isotropic sample is given as

1 —-N 0 0
-N 1 0 0

Ms=143 o ¢ s
| 0 0o -S C
! —cos 20U 0 0
_ | —cos 20 1 0 0 (45)
0 0 sin2¥cos A sin2¥sin A |°
0 0 —sin2¥sin A sin 2V cos A

We can use Eq. (45) to obtain the ellipsometric angles in terms of the sample
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Mueller matrix components in the following form:

JOZ £ G2
U= larctan (ﬂ> (46a)
2 N
1 S
A= 5 arctan (6) . (46b)

Once the ellipsometric angles are known, we can use Eq. (42) to obtain the

pseudo-DF as a function of delay-time and energy.

—|aSEr
on probe

P1 P2 | Ps P4 PP

off

on

off

WENVEN]

Figure 7: The two choppers of the femtosecond setup give rise to four different

intensities. P1: Pump+probe, P2: Pump only, P3: Probe only, and P4: Dark.
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Because we are interested in only the bulk material, it is necessary to correct
for the oxide overlayer that is present at the moment of the measurement. To
make this oxide correction, we can use the optical properties of GeOs published
by Nunley et al.[33] The procedure consists of simulating the pseudo-DF using
Nunley’s GeOy and Emminger’s parametric semiconductor oscillator models. |33,
32] In this manner, we construct a point-by-point fit that extracts the DF of
the bulk material and removes any effects from the oxide layer. We achieved
this with the aid of the commercial software WVASE32, from the J. A. Woollam
company.[92]

A sample of bulk Ge was measured at an AOI of 65° and with p-polarization
state for the pump. Delay times ranged from -5 ps to 1 ns with varying step size.
The smallest step size measured was 50 fs (from -0.5 ps to 1.5 ps). The total
number of 34 compensator angles were measured. Figure 8 shows the real and
imaginary part of € on an energy range of 1.8 eV to 3 eV. To overcome statistical
fluctuations, about 400 reflectance-difference spectra per data point (after clearing
outliers) are averaged.

Figure 9 shows pictures of the most important part of the experimental setup:
(a) the delay line, (b) the SCG stage, where the CaFy plate and one of the choppers
are pointed out, and (c) the spectroscopy ellipsometry stage. From the pointed
components, it can be seen in the last picture that the ellipsometry stage is in a

RCE configuration, as previously stated. Additionally, the picture also shows the
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focusing lens for the pump beam, which is used to adjust the beam diameter.

Figure 9: Photographs of key components of the experimental setup: (a) the
delay line, (b) the supercontinuum generation stage, and (c) the spectroscopic
ellipsometry stage. In each panel, the red line indicates the 800 nm pump beam

path, while the white line traces the probe beam path.

34



4 MODELING THE STEADY-STATE DIELECTRIC FUNCTION

OF GE

4.1 Two-dimensional excitons

+
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Figure 10: Band structure of Ge in the A-direction, where the F; and E; + A,
transitions (black arrows) are located. The range of wave vectors k where these

transitions take place is labeled k.. (grey region).

The electronic band structure of Ge presents two van Hove singularities in the
[111]-direction (A) of the wave vector k in the Brillouin zone (see Fig. 10).[81]
These critical points (CPs) arise due to the conduction band (CB) running parallel
to the valence band (VB) over a certain range of k-vectors. Labeled as F; and

Ey + Ay, these CPs are transitions occurring from the heavy-hole (hh) and light-
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hole (Ih) VBs to the CB, respectively. Categorized[81, 13| as a two-dimensional
minimum critical point My, the literature gives the dielectric function (DF) versus

photon energy e(E) for such CPs as[14, 15, 16, 18, 17|

e(E) = C — Be®In(E — E, +il), (47a)

d’e(E) Be'®

with = :
dE*  (E— B, +4I)?

(47b)

In CP analysis, typically only Eq. (47b) is fitted to the data with amplitude
B, phase angle ¢, energy E;, and broadening I" as its free parameters.[19] Variable
C in Eq. (47a) is a constant. Unfortunately, this type of analysis only provides
information about the energy and broadening for the structures of interest, while
leaving the form of the DF without an accurate description. Eq. (47a) does not
yield a good description of the dielectric function or the CP parameters.[20]

Conversely, in cases where the calculation of the DF has been attempted, the
description of this CP lineshape has been limited to a qualitative discussion.[106,
107] A major pitfall in these calculations is the omission of the Coulomb inter-
action between the electrons excited to the CB and the holes left in the VB.
These electron-hole pairs tend to form excitons (bound together in a hydrogen-
like system). Because of the joint density of states (JDOS) of these transitions,
the excitonic systems for £; and E; + A; are confined to a two-dimensional plane.

Equation (78) shows the JDOS for the F; CP in a coordinate system where the

36



z-axis points along the [111]-direction. Naturally, in this coordinate system, the

z- and y-axis would be along the [110]- and [112]-direction, respectively.

K BRSO
Jov(E) o / %5 {Eﬁ + 5 (M—J_ + ,U_H) — E} . (48)

The longitudinal reduced effective mass p in Eq. (78) is significantly greater than
the transverse reduced effective mass p;.[107] As a result, the JDOS effectively
confines the motion of the exciton to the z-y plane, as depicted in Fig. 11.

In essence, an accurate description of the aforementioned CPs must take into
account the effects of the formation of these quasi-two-dimensional excitons. In
recent years, great progress has been made in the implementation of the GW-
method and the Bethe-Salpeter equations (BSE) to calculate the DF of different
semiconductors.[22, 23, 24] This approach accounts for excitons by making quasi-
particle energy corrections to the initial density functional theory calculations of
the band structure. It also accounts for the Sommerfeld enhancement of excitonic
absorption over the absorption by uncorrelated electron-hole pairs. Barker et
al.,[23] for instance, correctly resolve the E; and E; + A; CPs in the DF of GaSbh.
Unfortunately, this approach requires a significant amount of computing time and
provides only limited agreement when compared with experiment. Instead, we aim
to provide a closed-form expression for the DF that can easily be implemented on
a personal computer.

Culminating prior efforts of finding a solution to this problem,[5, 25] Tanguy
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provided an expression for the complex DF that incorporates the effects of two-
dimensional Wannier excitons.[26] Unlike GW-BSE, which requires large com-
putational resources and provides only an approximation to the DF, Tanguy’s
model offers a fully analytical solution.[26] This allows for direct comparison with
experimental data without the need for extensive numerical fitting. Still, despite
Tanguy’s work being published almost three decades ago,[26] comparison of the-
ory with experiment is lacking in the literature. In the present work, we will
bridge this gap by comparing Tanguy’s model to the DF of Ge near the E; and
E1 + Ay CPs. This model not only provides a better description of the DF than
previous attempts, but also requires no fitting parameters apart from energy and
broadening. Furthermore, having a reduced number of fitting parameters makes
this model highly applicable to other areas of research, such as the description of
band-filling effects[108, 109] and ultrafast phenomena.[68, 30, 31] Because of its
compact form, the model can also be applied to other semiconductor materials of
interest, such as InSh, GaAs, and Ge;_,Sn, alloys.

For comparison with experiment, we used data published by Emminger et
al.,[32] which comprises a temperature series of spectroscopic ellipsometry mea-
surements, ranging from 4 to 800 K. We will briefly discuss the acquisition, reduc-
tion, and modeling of the data. We will also analyze Tanguy’s DF expression, as
well as how it can be adapted to the material of interest. The fixed parameters of

the model tend to change with temperature, hence we will discuss the temperature
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dependence of both, the fixed and free parameters. Finally we will point out the

shortcomings of the model and how they can be improved upon.

® Hole L 5
e e
® Electron
Ge
ht ht h* ht
x
J > Z e” e
y

Figure 11: Because the longitudinal reduced mass g is much larger than the
transverse reduced mass y in the CPs E; and F;+ Ay, the excitons are restricted

to the plane perpendicular to the z-axis.

4.2 Experimental data

The experimental data consist of spectroscopic ellipsometry measurements of a
wafer of bulk Ge with (100) surface orientation. With a separation of 10 meV, the
data collected ranged from 0.7 to 6.3 eV. There were a total of 32 measurements
ranging from 4 to 800 K. We will not discuss the details of these measurements
any further. If interested in more information about the cleaning procedure,
acquisition settings, and temperature control methods, we encourage the reader

to look at the original publication.[32]
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What is relevant for our purposes is the effect of the native oxide layer em-
bedded in the data. Because we are interested in only the bulk material, it is
necessary to correct for the oxide overlayer that is present at the moment of the
measurement. To make this oxide correction, we can use the optical properties
of GeOs published by Nunley et al.[33] The procedure consist of simulating the
pseudo-DF using Nunley’s GeOs and Emminger’s parametric semiconductor os-
cillator models.[33, 32] In this manner, we construct a point-by-point fit that
extracts the DF of the bulk material and removes any effects from the oxide layer.
We achieved this with the aid of the commercial software WVASE32, from the J.
A. Woollam company.[92] We note that the oxide layer thickness varied slightly
at each temperature. Therefore, there could be small errors in the layer thickness
estimated by this oxide correction. If the wrong oxide thickness is used, it could
lead to surface effects that will affect the amplitude of the imaginary part of the

DF. We will expand on these surface effects in Sec. 4.5.

4.3 Tanguy model

At a two-dimensional CP with energy FE;, Tanguy[26] provides the optical dis-
persion for a two-dimensional exciton by incorporating broadening to both, the

continuum and discrete absorption spectra. This complex DF is given by[26]

e(E) . 7190 [E€(E+iD)] + 9a [((=F —il)] = 294 [€(0)]},  (49)

~ n(E+il)
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where

e le - My R
A= = 50
N (50

and 0,(6) =21n(©) ~ 26 (5 - €). (500)

In Eq. (74), the amplitude A depends on the electron charge e, the free elec-
tron mass myg, the permeability of free space ¢y, the reduced mass of the two-
dimensional exciton p,, and the transition matrix element e - My, whereas the
argument ¢ depends on the exciton’s binding energy R and the CP energy F;. In

Eq. (50b), ¥(2) is the complex digamma function

() = %mr(z) - d%ln (/Ooo tz—le—tdt) , (51)

where I'(2) is the complex gamma function. In the case of the CPs E and E; + A,

of Ge, we can replace the amplitude in Eq. (73) with[106, 108, 109]

4 2 (El)ﬁQ
AP = 2R g for By (52a)
3meeMy;
4e2 (E1+A1)F2
and AF1HAY) — €A 5 Fmax for By + Ay, (52b)
3megm
where uiEhEﬁAl) are the transverse reduced masses of the CPs, P is the average

transition matrix element, and k. is the maximum range along the k,-axis where
interband transitions take place. For details about these amplitudes, refer to Ap-
pendix B. Previous calculations of the DF for these CPs neglected the correlation
between electrons and holes, resulting in a step-like function[106, 107, 108, 109]
[see Eq. (107) in Sec. B of the Appendix for details on this step function].
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To illustrate these excitonic effects, Fig. 12 shows the comparison between the
DF for uncorrelated electron-hole pairs (blue dashed line) and the two-dimensional
excitonic line-shape (black solid line). Fig. 12 also shows the two components of
Eq. (73), the continuum and discrete absorption (shown by the red and green
dot-dashed lines, respectively). Fig. 12 shows that the DF for the uncorrelated
electron-hole pairs is almost identical to the exciton continuum absorption spectra.
We also observe that the peak absorption occurs at an energy equal to E; — R(1)

for[84, 5, 36]

R(n) = 5 s - sRy, wheren =1,2,3, ..., (53)
moes; (n — 5)

€st 1S the static dielectric constant, and Ry = 13.6 eV is the Rydberg energy
constant. Equation (53) gives the binding energy of the 2D exciton, which is the
same as for a 2D hydrogen-like system.[5, 84, 36] Fig. 12 also shows how the
oscillator strength in the imaginary part of the DF is enhanced significantly by
the discrete (bound exciton) absorption. This is a typical behavior of not only
two-dimensional M, excitons in bulk materials,[81] but also of excitonic absorp-
tion in two-dimensional materials, where the reduced dimensionality enhances the

Coulomb interaction due to the confinement of the carriers.[25, 37, 38|
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Figure 12: (a) Real and (b) imaginary part of the dielectric function of two-
dimensional Wannier excitons. This complex dielectric function (solid black line)
is composed of the continuum (red dot-dashed line) and bound states (green dot-
dashed line) of the exciton. Notice the similarity between the continuum state and
the optical dispersion for uncorrelated electron-hole pairs (blue dashed line). The
arbitrary values for the parameters are £; = 2.2 eV, ' = 37 meV, and A = 41.8

eV?2.
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4.3.1 Temperature dependence of the fixed parameters

As previously stated, other than energy and broadening, Eq. (73) combined with
the amplitudes in Eq. (52), provides a model absent of any fitting parameters
for the CPs near the L-valley of Ge. The matrix element Ep = P’ /mg and the
static dielectric constant g5 have well established values in the literature.[11, 108,
39, 40] Another required parameter is kp.x. In the rotated coordinate system,
the total distance from T' to L along the k.-axis (the A-direction) is 7v/3/ao.
Under visual inspection, however, the kpa. value lies between 37v/3/(5a0) and
3mv/3/(4ag).[41, 109] Therefore, for our purposes, we allowed the kya,. parameter
to vary within this range, but kept it fixed across all temperatures. Since we
are interested in the temperature effects of the DF, we can follow the procedure
described by Emminger et al.[70] to incorporate the temperature dependence of
the lattice constant,[11, 42] matrix element,[11] and dielectric constant[81] in the

following manner:

En(T) = Er(0 K) 205 (59
es(T) =1+ {%} 2 (56)

The term Epenn(T') in Eq. (56) is the Penn gap given by[81, 70]
Epenn(T) = 4.146 eV — (0.05 eV) [m +1]. (57)
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For the values at zero temperature, Ep(0 K) = 12.96 eV[108, 11] and a¢(0 K) =

5.6516 A.[42]

4.3.2 Unrenormalized effective mass

Yet another required parameter is the transverse reduced mass y , which is needed
to calculate the exciton binding energy using Eq. (53), as well as the amplitudes
in Eq. (52). While Dresselhaus et al. determined the effective electron mass
m=0.082 of the CB from cyclotron resonance measurements,[43] to calculate
11, we also require explicit values for the effective masses of the heavy and light
holes at the L-valley, for which reliable values are not available. Menéndez et al.

provide the reduced masses for both CPs as[11]

1 Ep { 2 N 1 } (582)
_— _— _—_— s a
uEDmo [EY (B A"
1 Ep [ 1 2 ]
and ———=—|—+——"-—1. 58b
pEFA) T mg [EBY T (Bt A (580)

These expressions come from a 6-band k- p-theory model (see Appendix Sec. A for
a derivation). In Egs. (58), however, one must be careful with the energy values of
Ey and E14+A;. Zollner et al.[44] point out that to calculate the effective mass, one
must use the unrenormalized energy values, rather than the experimental energies
of the CPs. This is the meaning of the superscripts u. The unrenormalized values
of the CPs incorporate the redshift due to thermal expansion, but not the self-

energy due to the deformation-potential electron-phonon coupling. We can obtain
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the unrenormalized energy as a function of temperature with the expression

exp

OF T
B (1) = B s, 080 =38 (50250 oo, (o)
T

where «(T') is the temperature-dependent thermal expansion coefficient, B =
7.58x10' Pa is the bulk modulus,[45] and (OEZP /0p)r = 7.5x107% eV-cm?-kg ™'
is the pressure coefficient of the £y CP.[46] For this calculation, we take the value
of (0F/0p)r =~ [0(Ey + Ay1)/0p]r. We justify this assumption by noting that
the spin-orbit splitting A; is related to atomic effects and it is, for the most part,
unaffected by the distance of the atoms within the lattice. The thermal expansion
coeflicient[47]
1 dao(T)

oT) = —ar (60)

can be calculated from the expression for the lattice constant in Eq. (54). Finally,
the unrenormalized energy at zero temperature can be obtained by the following
procedure: We first determine experimentally the energy of the CPs as a function
of temperature. These data points are then fitted with a Bose-Einstein (BE)

model[17]

2
EE1,E1+A1(T) =FE,— Ep <1 + m) . (61)

Once the fitted parameters E,, Fj, and 0 are determined, we set By, g A, (0 K) =
E,, where the parameter E, differs for each CP. Since we do not know the value
of E, a priori, we used the experimental value E7"; | 1 (0 K) from Ref. [18] as a
starting point for the fit. We then refitted the data using the updated value of E,
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obtained from the previous iteration. This process was repeated iteratively until

E, converged to a constant value.

4.3.3 Complete model

To encompass both CPs, we added two expressions similar to Eq. (73) with the
appropriate amplitudes and binding energies for £} and F;+A;. We also added a
constant offset e, to the real part of the DF, to account for additional nonresonant
contributions from other interband transitions. The complete form of our model

18

. AED) R(E1) R(E)
(%) C et e P\ VB B | T\ B E e

5 R(EY) AE1+A1) R(E1+41)
. £ i [E + T E+a0)? Yo W B + A — B — ilEra)
R(E1+A1) R(E1+A1)
tYa . — 200 [\ = | ¢ (62)
Ey 4+ Ay + E + D (ErtA) B+ A,

It is worth pointing out that, in the parabolic approximation of the reduced masses
of Eq. (58), the matrix element Ep cancels out in the amplitudes of Eq. (52).
The resulting amplitudes have the form

3me [2(E1 + Ay)v + EY]
and A(EH_Al) _ 462E%(E1 + Al)ul'{:max
377'50 [(El —+ Al)u + 2Eﬂ

for F4 (63a)

for E1 + Al. (63b)

With this definition, the ratio of the CPs amplitudes would be A1) /AF1+A1)
(3E1 + A1) /(3E1 + 2A), or about 0.97 for a temperature of 4 K.
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4.4 Results

4.4.1 Fitting procedure
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Figure 13: 2°¢ derivative of the real (a) and imaginary (b) part of the dielectric
function. The derivatives of the experimental data (translucent lines) were calcu-
lated using the EG digital filter in Eq. (64). The fitted 2" derivatives of Eq. (62)

for each temperature are shown by the solid lines.
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To fit the energy and broadening parameters, we performed a CP analysis by
fitting the 2" derivative of our model in Eq. (62) to the 2"d derivative of the
experimental data. We then compared their respective DFs. To obtain the 274
derivatives, we applied a digital filter to the DF to smooth the original signal and
suppress the noise in the experimental data. We then convoluted the DF with the
derivative of the filter to obtain the desired DF derivative (see Sec. D for more
information on this procedure). For the digital filter, we used the extended Gauss

(EG) filter, which is defined in direct space as[48, 49|

AE™ d™ | exp[—2?/(4AE?
bM(””):T;][(_l)m ml dAE™ p[Q\/;(A—E . (o)

where we selected M = 4 according to the discussion in Ref. [48]. The filter width
AFE was determined by identifying the white noise onset in the Fourier coefficients
of the data.[70] In general, given that noise increases with temperature, the se-
lected filter width also increased accordingly. To fit our model parameters, we
minimized the residuals between the DF derivatives of the experimental data and
the model. We performed this minimization procedure using MATLAB’s nonlin-
ear least-squares optimization function.[50] For consistency, the derivative of the
model must be computed in the same manner as the derivative of the experimental
data.[20] Therefore, we convoluted Eq. (62) with the same EG filter (and same
filter width AFE) while leaving the fitting parameters free. Fig. 13 shows that the

fitted derivative of the model is in good agreement with the experimental data.
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To make the critical point analysis more thorough, we repeated the mini-
mization procedure with a Savitzky-Golay (SG) digital filter.[51] To generate the
smoothing filter, we used MATLAB’s SG built-in function.[50] The order of the
polynomial to be fitted was selected according to the noise of the data. Again,
similar to the EG filter, the order of the polynomial needed to be adjusted at each
temperature. The frame length, on the other hand, was constrained to 5% of the
total number of data points. The results were nearly identical to the EG digital
filter. The values of the fitted parameters varied less than 1% between the two
digital filters. Hence, the derivatives for the SG filter are not shown in Fig. 13.
For a more in-depth discussion of the fitting procedure and comparison of the two

digital filters, see Sec. D in the Appendix.

4.4.2 Temperature dependence of the fitting parameters

We can use the fitted energies and broadenings of the entire temperature series to
characterize these parameters as a function of temperature. We do this by fitting

the BE model of Eq. (61) and (65) to the energy and broadening parameters:[17]

2
(Er,Er+A1) _

The squares in Fig. 14 show the fitted parameters from the 2" derivative analysis.
Along with the BE models of the present work, Fig. 14 also shows the BE models

for these CPs from the literature for comparison.[17, 18, 32] It is clear from Fig.
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14 that the energies of our model are greater than in the previous characteriza-
tion efforts. This is to be expected, since the fitted absorption maximum in our
model is not the energy of the CP, but rather the first discrete absorption peak
of the exciton, which is lower than the CP energy by the exciton binding energy.
Broadening also behaves differently. In Refs. [17, 18, 32|, the broadenings of the
CPs are fitted with Eq. (47b). In contrast, Eq. (73) incorporates broadening by
convolution with a Lorentzian. Although they are difficult to compare quantita-
tively given the two extra parameters B and ¢, the broadening of Eq. (47b) tends
to be larger than for a Lorentzian oscillator. Thus, our model requires a larger
broadening than the references values to match the experimental data. Table 1
shows the fitted parameters for the BE model, along with the parameters in the

literature.
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Figure 14: Bose-Einstein model fits for the energy (a) and broadening (b). Shown
by the squares are the fitted parameters, while the blue and red solid lines are

the Bose-Einstein models. For comparison, data from different references is also

shown.[17, 18, 32]
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4.4.3 Dielectric function
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Figure 15: Real (a) and imaginary (b) part of the dielectric function of Ge at 4
K. The translucent lines are the experimental data, the fitted model with masses
from the k - p-model in Egs. (58) is shown by the solid lines, and the model with

the reduced mass as an additional free parameter is shown by the dot-dashed lines.

At a temperature of 4 K, Fig. 15 shows the model DF (62) in comparison to

the experimental data. Fig.

from 100 to 600 K. These figures show an outstanding agreement between the

theoretical model and the experimental DF across the entire temperature range.
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This level of agreement is remarkable given that no free parameters other than
energy and broadening are fitted. Nonetheless, it is evident from Figs. 15 and
16 that, while the model is in excellent agreement with the data near the CPs,
it misses contributions from additional absorption processes. At lower energies,
the model underestimates the value of €5 by about 2 units. We attempted to re-
duce this mismatch by including the direct bandgap absorption of Ge. At around
0.9 eV, the direct bandgap of Ge Ej presents itself as the first CP contributing
to the absorption. The DF near Ej is categorized as a three-dimensional M,
van Hove singularity.[81] A description of this CP that not only accounts for the
formation of excitons, but also incorporates excitonic screening already exists in
the literature.[9, 52] More importantly for our purposes, this lineshape has previ-
ously been applied to Ge in a temperature series similar to our data.[70] In their
approach, Emminger et al.[70] used the experimental, rather than the unrenor-
malized Ey CP energies for the calculation of the effective masses. Unfortunately,
even with the corrected energies and incorporating non-parabolicity effects, Ejy
contributes less than 1 unit to the amplitude of 5. Therefore, we did not include
the CP Ej in our calculations (see Appendix Sec. E more information on Ej).
The E{ and E, CPs also contribute to €5 at higher energies. However, unlike the
direct bandgap FEj, there is no established lineshape for these CPs, hence these
contributions to the absorption are omitted as well.

A more significant issue than the mismatch at high and low energies is the
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deviation of €5 at E; (around 2.2 eV) and E; + A; (around 2.4 e¢V). At the
FE, CP, the g9 amplitude of our model is smaller than in the experimental data,
whereas for F; + A, the model overestimates the amplitude. This could be
due to an incorrect value of k..., which has been fixed at O.77T\/§/ ag for all our
calculations. As seen in Fig. 10, the range over which the hh-band (A4 @ As-band)
is parallel to the CB (Ag-band) could be different than for the lh-band (Ag-band).
This would lead to different values of k.. for E; and E; + A;. Moreover, with
increasing temperature, the bands renormalize and change their curvature slightly,
which would ultimately result in a different value of k.. at each temperature.
As the temperature increases, the agreement in the amplitude of the model and
experiment improves for both CPs (see Fig. 16). This could be explained by the
temperature dependence of k... Nevertheless, a different k., value for F; and
E1 + A is likely to have a small effect, considering how similar the hh and lh

bands are to each other near the L-point.
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Figure 16: Dielectric function of Ge from 100 to 600 K. The translucent lines
are the experimental data, the fitted model from the k - p-model in Eqgs. (58) is

shown by the solid lines, and the model with the reduced mass as an additional

free parameter by the dot-dashed lines.
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4.4.4 Fitting the effective mass

A bigger factor in the disagreement between model and experiment could be the
calculated reduced masses. The amplitudes in Eqgs. (63) are only valid in the
6-band k - p-theory model at the L-point, where the reduced masses are given
by Eq. (58). We resort to this definition of the masses in the absence of any
known values for the hh and lh effective masses. For the standard definition of

the reduced mass,

1 _ 1 . 1 (66)
#(lEl,EﬁAl) - m(fg) m&L;@L; Lg)’

the amplitudes of the DF in Eq. (62) revert to their original forms of Eq. (52). To
improve the agreement between theory and experiment, we can treat the reduced
masses for both CPs as additional free parameters and refit our data. To avoid
inconsistencies with the previously fitted values of broadening and energy, we
divided the fitting process in two steps. Initially, to fit the broadening and energy,
we performed a 2"¢ derivative fitting while holding the reduced masses constant
and equal to their theoretical values. Subsequently, we fitted uiEl’ElJrAl) and €.
to the DF. If any discrepancies in their corresponding 2"¢ derivatives appeared
between the model and experimental data, the two-step procedure was repeated
until no further change was observed.

The effective masses obtained from this new fitting procedure can be seen

in the dot-dashed lines of Figs. 15 and 16. Although the agreement between
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the model and the data improved significantly, there is no physical basis behind
the fitted reduced mass values. Fig. 17 shows the fitted masses in comparison
with the values calculated from Eq. (58). It also shows literature values of the
reduced masses at 4 K[11, 53] and at room temperature.[54] It can be seen that
the difference between the fitted masses of the CPs is larger than in any reference.
Furthermore, the fit suggests that the reduced mass for E; should be larger than
the mass for Fy + Ay, which is not the case according to the literature values.[55]

Nonetheless, it has been pointed out by Cardona that, in the A-direction,
but not at the L-point, linear terms proportional to &k, in the bands tend to
increase the reduced mass of F; while decreasing it for E; 4+ A;.[56, 17] This trend
is also seen in Fig. 17. In our calculations, we used the masses at the L-point
calculated from Eq. (58). However, this expression might not necessarily describe
the masses in the kp.c-region of the band structure (grey area in Fig. 10). In this
region, Cardona states that including linear k, terms in the band structure would
increase the reduced mass M(LEI). We would like to stress to the reader that, while
the fitted reduced masses improve significantly the agreement between model and
data, the strong temperature dependence seen in these fitted values should not be
overinterpreted. As discussed, these masses serve purely as empirical parameters
within the fitting procedure, and the effect of these linear terms in the reduced
masses needs a more thorough study, perhaps in comparison with larger k - p

models. In effect, this additional fitting parameter can be used to improve the
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agreement between model and data, but until further research clarifies the effects
of additional terms in the reduced masses of these CPs, we are unable to justify
this additional free parameter on theoretical grounds. Still, even without treating
the masses as free parameters, we emphasize the excellent agreement between
the theoretical model and the experimental data. Put another way, while the
empirical fitting of the masses improves the match in the DF, it is not essential

for obtaining remarkable results.
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Figure 17: Fitted reduced masses as a function of temperature for E; (O) and
Ey + Ay (). The solid lines show results from Eqgs. (58). The dot-dashed
and dashed lines are literature values at 4 K[11, 53] and room temperature,[54]

respectively.
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4.5 Discussion

One possibility for the difference between the measured and calculated DF is that
near the energy of Fj, there are interband transitions that do not occur along the
A-direction of the Brillouin zone (in the ¥-direction, for example). While there is
no CP present in this region, there is an energy separation between the CB and
VB similar to the energy of F;. Depending on the strength of these additional
absorption processes, they could affect the amplitude of each CP differently.
Additionally, surface effects could have an impact on the quality of the agree-
ment between model and experiment. The physical and numerical removal of the
oxide layer described in Sec. 4.2 has been proven to be effective previously.[33, 32,
70] Hence, there is no reason to think that our point-by-point fit has large errors,
or that temperature changes would affect this procedure significantly. Nonethe-
less, it is worth noting how this oxide layer affects the pseudo-DF (). As the
oxide layer gets thicker, it tends to increase the amplitude of E; in (g5), while
leaving the amplitude of E; + A; constant. In other words, an underestimation
of the oxide layer thickness will give an F; amplitude greater than it should be
in the extracted point-by-point fit for the substrate. Fig. 18 shows the DF of the
point-by-point fit with different oxide layer thicknesses compared to our model.
While the model resembles closer to the 30 A oxide layer fit, the previously men-

tioned procedure to estimate the oxide thickness yielded a GeO, layer of 11 A .
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Therefore there is no evidence from the fitting that this layer should be as thick
as 30 A. Hence, the match between our model and the overlayer fit seems to be
purely coincidental. On the other hand, different surface orientations of the bulk
Ge material lead to a different surface reconstructions, which also affects inter-
band transitions due to the different lattice periodicity at the surface.[57] These
effects, however, are too small to make a difference in the discrepancies between
our model and the experimental data (see Appendix Sec. F for data differences

depending on surface orientation).

30 T T T T

O 1 1 1 1
1.8 2 2.2 24 2.6

Energy (eV)

Figure 18: Comparison between the model at 4 K (red solid line) and the point-

by-point fits with different thicknesses for the oxide correction (translucent lines).
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Yet another factor to consider is excitonic screening. In the presence of ex-
cited electrons in the CB, the Coulomb interaction between the carriers gets
partially screened. In his DF expression for three-dimensional excitons, Tan-
guy accounts for excitonic screening by solving the Schrodinger equation for the
Hulthén potential.[52] In contrast, such a solution for screened two-dimensional
excitons does not exist in the literature.[60, 61, 62, 63] For this reduced dimen-
sionality problem, recent efforts have found the binding energy for screened ex-
citons in two-dimensional materials (these are solutions to the Rytova-Keldysh
potential).[58, 59] Unfortunately, an expression of the DF for this potential is yet
to be found. Moreover, given the low carrier densities at play, it is unlikely that
including excitonic screening effects would improve our model.

Therefore, we conclude that the most probable sources of the difference be-
tween experiment and theory are nonresonant interband transitions and the pre-

cise values of the reduced masses of the CPs.
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5 RESULTS AND ANALYSIS

5.1 Data presentation

104 P45 C-69 A-45 P45 C-19 A-45 P45 C31 A-45
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probe only
pump only
pump + probe

Intensity (a.u.)
&

0.5
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

wvl. channel wvl. channel wvl. channel

Figure 19: Intensities of the four acquisition channels: dark (blue), probe only
(red), pump only (yellow), and pump+probe (purple). The intensities are shown

for three compensator angles.

We recorded time-resolved reflectance-difference spectra over a delay range of -5
ps to 1 ns and a spectral range of 1.8 eV to 3.0 eV. Each delay point was sampled
by averaging approximately 400 laser shots after removing outliers exceeding three
standard deviations from the mean. Although extended delay times were acquired,
the carrier dynamics described in the following sections occur primarily within the
first picosecond. Consequently, time delays beyond 3 ps will not be considered
further in this analysis.

Figure 19 displays the intensities of the four acquisition channels generated
by the synchronized choppers: dark, probe only, pump only, and pump+probe,
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at three representative compensator angles. Using Eq. (43), these recorded in-
tensities were converted into the reflectance difference AR/R shown in Figure
20.

Before measurements were performed, the pump beam power and diameter
were measured at 3.0 mW and 305 pm, respectively. Using this quantities, we
can estimate a carrier density of 2.5 x 102! cm™ using Eq. (34). This calculated
density, however, is an overestimation which yields unphysical results, as will be

explained later in the chapter.

P45 C-69 A-45 - P45 C-19 A-45 P45 C31 A-45

AR/R

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
wvl. channel wvl. channel wuvl. channel

Figure 20: Reflectance difference for three compensator angles.

A reference measurement of the sample was obtained with a commercial el-
lipsometer. This reference, combined with Eq. (38), provided the time-resolved
ellipsometric angles, which in turn yield the dielectric function. Figure 21 presents
the resulting dielectric function after applying the oxide correction described in

Section 3.2.
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Figure 21: Real (left) and imaginary (right) parts of the experiential dielectric

function after an oxide correction from -1 to 3 ps delay time.

5.2 Ultrafast dynamics and band filling

The decoherence and thermalization timescales of Ge vary within the literature. |69,
93, 94] Nonetheless, the upper limit for the thermalization time of the initial pop-
ulation of photo-excited carriers is agreed upon as less than 100 fs.[94, 95] Once
thermalized, the carriers can be described by a distribution function which, given
the carrier densities generated in our experiment, is degenerate. Consequently,
we simulated the ultrafast dynamics of the carriers using Fermi-Dirac statistics,

which in turn enabled us to model the measured DF. Figure 22 provides a quali-
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Figure 22: The initial 1.55 eV pump pulse (red arrows) promotes electrons (gray
circles) from the heavy-hole (blue line), light-hole (light blue line), and split-off
(cyan line) valence band to the conduction band (black line) near the I'-point.
The pump pulse also creates holes (white circles) in the valence bands. Once in

the conduction band, the electrons thermalize and scatter to the L- and X-valley.

tative overview of the initial dynamics induced by the high-intensity laser during
the measurements. At 1.55 eV, the infrared pump laser is energetic enough to
promote electrons from the hh, 1h, and SO VBs to the CB. This excitation of
carriers occurs near the I'-point of the Brillouin zone. The excess energy of the
carriers in the CB of Eq. (31) has previously been correlated with the effective

electron temperature as[73]

E. = 3kgT.. (67)

Since this expression is valid for both electrons and holes, we used the subscript

¢ (which stands for carriers = e h). However, at high carrier densities, where the
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distribution is degenerate, obtaining the effective carrier temperature becomes a
more involved process. Nevertheless, by equating the energy of the total number

of absorbed photons nppetons to the total energy of the electron-hole distribution,

SN ER)£00) + 30D () (k) = Nphotons pramp. (68)

CB k VB k

Smirl obtained a similar expression for the effective carrier temperature in a
Fermi-like distribution.[99] Therefore, for the present work, we used Eq. (67)
to estimate the initial effective temperature of the carriers. The terms f. »(k) =
{elPentoEnl/kaTen 111 in Eq. (68) are the Fermi-Dirac distributions for the elec-
trons and holes, respectively. As the initial hot electrons cool down, they rapidly
scatter to the satellite valleys (L- and X-valley), eventually accumulating in the
L-valley due to its lower energy.[68, 69] Intervalley scattering in Ge has been
studied extensively over the years and the rates of scattering have (for the most
part) an agreed upon value.[80, 93, 94, 95, 96, 97, 98] However, we will not concern
ourselves with these scattering rates. Instead, our approach will be to calculate
the density of carriers that each valley allows as a function of temperature. The
carrier population at each valley will depend on their corresponding density of
states. Once we know how the carrier density behaves throughout the temper-
ature of the carriers, we can calculate the optical response as a function of this

carrier density and then compare it with the experimental data.
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5.2.1 Carrier statistics

L-valley X-valley
Scattering Scattering

e
EW
—CB
——hh VB
—lh VB
SO vB

Energy

Figure 23: Once the hot electrons (and holes) thermalize to a distribution with
a defined temperature, they raise the quasi-Fermi energy of the conduction band
E}C) (dark gray area) [and of the valence band E](;,V) (gray area)]. Because Ge is
an indirect semiconductor, the electrons do not return to the I'-valley. Instead,
they eventually relocate from the X-valley to the L-valley (the lowest conduction
valley). At this stage, the energy required to move the electrons from the valence
band to the conduction band is given by the quasi-Fermi energy E}C) [and E}V)]
plus the renormalized bandgap [this is the definition of the chemical potential u
(black arrow)]. In the case of the L-valley, it is the renormalized energy of the
critical points F; and E; + Ay, not the renormalized bandgap that influence the

interband transitions (green arrows).

As shown in Figure 23, the change in the electron population of the CB (and hole
population of the VB) yields a quasi-Fermi level E](;C) above the CB minimum [and
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E}V) below the VB maximum]|. After intervalley scattering takes place, the excited
electrons will populate the different valleys of the CB. When electrons occupy the
previously empty CB states, the band becomes partially filled, which reduces
interband transitions into those states. As a result, the material’s absorption is
diminished. Therefore, to account for band-filling effects, we must first estimate
the initial carrier density, which determines the shift in the Fermi level.

Previous studies have shown that, due to its higher density of states, electrons
scatter to the X-valley before settling at the L-valley.[69] Within a few picoseconds,
however, almost the entire X-valley electron population scatters out of this valley
and relocates to the L-valley.[98] This is shown by the dotted magenta arrows
in Figure 23. As a side note, in the present work, we will ignore the change in
the quasi-Fermi energy in the VB. This is because, while we are interested in
the chemical potential of Eq. (32), the photo-generated holes are confined to the
[-valley and do not influence the VB at other points in the band structure. The
zone at which we are probing, on the other hand, is near the L-valley (the E;
and E; + A; CPs). Therefore, the change in E}V) does not affect the interband
transitions in the probing region.

Although intervalley scattering redistributes the carriers among the entire CB,
the initial carrier density is determined solely by direct bandgap transitions (since
we are ignoring indirect bandgap transitions, only the I'-valley generates photo-

excited carriers). By measuring the power and beam-spot diameter of the pump,
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Figure 24: Charge carrier density as a function of temperature. The black line
is given by Eq. (71a), and the red line is the same density multiplied by 2. The

squares (O) show the density at the effective carrier temperature given in Eq.
(67).
we can use Eq. (34) to estimate the initial carrier density. With this estimation,

we can use the expression[100]
1 (2mpkpT\*? —
np(T):—(—mF > ) Fyjs (“ 0), (69)
B

to solve for the chemical potential y at a given temperature and carrier density.

The terms kg, h, and Fy/, in Eq. (69) are the Boltzmann constant, reduced Planck
constant, and the complete Fermi integral of order 1/2, respectively. Although Eq.
(69) is not analytically invertible, we can use Eq. (67) to calculate the effective
carrier temperature and transform the dependence of the carrier density from

nr(p, T) — nr(u). We then create the dummy function

f(1) = no — nr(p), (70)
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where ng is the initial density. By finding the root of Eq. (70), we can determine
the chemical potential at a given density and temperature. We can find this
root by using the MATLAB built-in function bisection(f,LB,UB,target).[101]
In this function, f is the dummy function of Eq. (70), LB and UB are the lower
and upper bounds of the root, respectively, and target is the value to find. In
our case, the target is ng. To compute the complete Fermi integral, we note that
Fj(x) = —Lij41(—€"), where Li is the polylogarithm function. This allows us to
use the MATLAB polylogarithm function polylog(n,x), where n is the order of
the polylogarithm and x is the argument. Unfortunately, the chemical potential
obtained in this manner yields unphysical results. Therefore, we take a different
approach to calculate the change in the chemical potential. Instead, we limit the
chemical potential in Eq. (69) to the excess energy induced by the pump (shown
in Eq. (31)). We also incorporate non-parabolicity effects by using the expressions

for the carrier densities at each valley given by Menéndez et al.:[102]

1/ 2mrksT\ > n—Ey\ 15 (kgT 1 — Ey
T) = 2B F, (BE—20) L 2 (B2 R
ne(T) 4( Th? ) 2\ et ) TR \ar ) e T

(71a)
ompksT \ >/ i — Eing ksT i — Fing
=|—— F F. T 1
ny,(T) ( —h? > 1/2 T + A, ) T (71b)
3 (2maksT\*? i—E

na) =3 (200) " re ()| (71c)

where the terms Ar = (3/2)[2/Fy + 1/(Fo + Qo))" and Ay, = [1/Ey + 1/(Ey +

A1)]7! are the characteristic non-parabolicity energies. With the chemical poten-
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tial limited by the excess energy of the pump, the argument of the Fermi integrals
in Eq. (71a) becomes F;(E./kgT.). Figure 24 shows the carrier density at the
[-valley as a function of the effective carrier temperature. Again, this tempera-
ture is calculated using Eq. (67). Because electrons quickly scatter to the L- or
X-valley (at a rate of up to 1014 s!), we do not expect saturation of carriers at the
I'-valley.[103] Therefore, to account for the additional carriers enabled by inter-
valley scattering, we also plot 2 X np(T), the same density of Eq. (71a) multiplied
by 2. The result is a density range between 5 x 10* and 10%° cm™ at an effective
carrier temperature of about 2500 K.

With this carrier density estimate, we include intervalley scattering by sum-

ming the carrier densities across all valleys,

ne(T) = n,(T) + ne(T) + nx(T), (72)

where ny,(T), nr(T), and nx(T") are given by Eq. (71). Since we know the effective
temperature of the carriers, we can solve for the chemical potential i in Eq. (72) as
a function of temperature in the same manner as before. It is important to remark
that, independently of the relative density of carriers at each valley, the chemical
potential is the same for all valleys. We make this assumption based on the
discussions of Ref. [103, 104]. Plot (a) in Figure 25 shows the chemical potential
as a function of the carrier temperature for the estimated densities (5 x 10 and

10%° cm™). At low temperatures, the chemical potential lies above the indirect
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bandgap, as expected and shown in Figure 23. At higher temperature, however,
the chemical potential drops below the bandgap. We can interpret this as follows:
elevated temperatures promote a larger number of carriers into states above the
chemical potential. Nonetheless, the number of occupied states above the bandgap
in the CB remains fixed. As a result, the chemical potential must decrease to allow
the presence of carriers above this energy but below the bandgap. The cooling
of the initial hot carriers in our experiment should lead to an increase in the
chemical potential, as indicated by the curves shown in plot (a). Plot (b) of Figure
25 shows the percentage of carriers at each valley as a function of temperature
for the aforementioned carrier densities. At high temperatures, the carriers are
roughly equally distributed between the L- and X-valley. However, as the carrier
cool down, they relax toward the L-valley. The density at the I'-valley, on the
other hand, remains close to zero at all temperatures. This confirms previous
observations of the insignificant role that the central valley plays in allocating
carriers.[103] Ultimately, any saturation in the absorption at the T'-valley is a

direct result of the buildup of the population of carriers at the satellite valleys.
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Figure 25: (a) Chemical potential as a function of temperature for a density of
5 x 10" e¢m™ (black line) and 10%° c¢m™ (red line). The squares (O) show the
chemical potential at the effective carrier temperature given in Eq. (67). (b)
The relative population density I'-, L-, and X-valley (black, blue, and red line,

respectively) with respect to the total density of Eq. (72).

5.2.2 Dielectric function

As seen in Figure 10, the VBs run parallel to the CB in the A-direction. This cre-

ates the van Hove singularities £y and E; + A;. These transitions occur from the
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hh and 1h band to the CB, respectively. Once the carriers are photo-generated, the
interaction between the electron-hole pairs tends to form excitons. Furthermore,
because of the joint density of states (JDOS) of these transitions, the excitonic sys-
tems for £ and E; + A; are confined to a two-dimensional plane. To describe the
optical response for this system, Tanguy provided an expression for the complex
DF that incorporates the effects of two-dimensional Wannier excitons.[26] More
importantly for the present work, Tanguy’s model has already been adapted for

the aforementioned CPs of Ge. For the CP FEj, the DF takes the form[105]

£(B) =~ €+ D) 4 g € B = )] =20, 6O} (7
where
A= s 0 =2 20 (€] and g =/
(1)

In Eq. (74), the amplitude A depends on the electron charge e, the free elec-
tron mass mg, the permeability of free space ¢y, the reduced mass of the two-
dimensional exciton x|, the average momentum matrix element P, and the max-
imum wave vector range k., where transitions take place, whereas the argument
¢ depends on the exciton’s binding energy R and the CP energy FE;. v is the com-
plex digamma function. Unfortunately, this model is only valid for steady-state
measurements and must be modified for non-equilibrium conditions.

To incorporate band-filling effects, we begin with the expression for the imag-
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inary part of the dielectric tensor[81, 3]

sz<E>W=( ! )‘”eh S (Vi [C)Cl [V

e m2E?
0 0 cv

< [ s = FECOON FIBOIS(EC() - Evil) — B). (79
where (V|p, |CXC|p,|V) is the element of row p and column v of the momen-
tum transition matrix between the CB state |C) and VB state |V). We have
incorporated the occupation probability of the CB and VB states with the Fermi
functions f[Ec(k)] and f[Ev(k)], respectively. Since we are dealing with a cubic
system, only the diagonal components of the tensor are non-zero. Therefore, we
can replace the dielectric tensor with the dielectric function by averaging the con-
tributing components o = (€44 + €4y + €22)/3. Moreover, from k - p theory, the
matrix elements reduce to[106]

2

> VIpuICXClp, V) = [ (CIP V)P + (IR IVIE + [{CIP V) = P

(2%

(76)

P’/2 P2 0

In addition, we multiply the DF by 4 to account for the L-valley degeneracy.

Finally, we set f[Ev(k)] — 1, since the VB is full at the L-point. The result is

_ Are2h2P

E)— 12"
=2(E) 3eomi E?

[ s (1= 10N} 5 Eck) - B0 ~ Bl (7D

In a cylindrical coordinate system where the x-, y-, and z-axis point along the
cubic [110]-, [112]-, and [111]-direction, respectively, the difference between the

CB and the VB is given by



Because the longitudinal reduced effective mass p in Eq. (78) is significantly
greater than the transverse reduced effective mass p,, we set k2/p — 0.[107]

The DF in Eq. (111) then simplifies to:

os(E) = Ame?h?P ///kdkdl%dk - i ()]}5(E1+7;2k§ E)

3€0m0 M1

(79)
Before solving this integral, we note that the only nonzero values of the integral
are when Ey + °k>/2p, — E = 0. Therefore, by solving for £2 in the argument

of the delta function, we can express the CB at the L-point as follows:

(k2 k?
Ec(k) = Eina + = (—p + —Z>

2 m m”
B2k R [2u)
= Lin = E—-F
d + 2m|| + 2 |: h2 ( 1):|
2 2
= Lin E-F 80
3 o (B ) 1 (80)

which simplifies f[Ec(k)] — f[Ec(E,k2)]. The integral [ dk, = 27 is trivial. To
integrate over k,, we make the substitution u = h*k2 /2, , which transforms the

integral

e’} h2k2 L 00
/ kydk,d ( By + —2 —E ) — —i/ dud (EBy +u — E). (81)
0 2p1 w o

Evaluating this integral yields the Heaviside step function H(E;—FE). The integral
over k, needs to be limited to the range where the transitions take place (kmpax)-

The final form of the DF for F; is[108, 109]

kmax

H(E — Ey) / dk. {1 - flEc(E, KD} (82)

_kmax

2e ,u(L P

E
=2(E) = 3regmiE?
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where Eq(E, k?) is given in Eq. (80).

The DF in Eq. (126) is valid for uncorrelated electron-hole pairs only. We
can incorporate excitonic effects into the band-filling model by noting that the
integral in Eq. (126) only modifies the amplitude of the DF. Therefore, we can
replace the amplitude in the excitonic DF with the one obtained from band-filling

considerations. The result for the CP FEj is

oy = X {ga [€(E + )] + ga [§(—E — iD)] — 294 [£(0)] }

3megm? (E +1T)>

kmax
x/_k dk. {1 — f [Ec(E, k)] }, (83)

where Eq(E,k?) is given by Eq. (80), and g,(£) and £(z) are given in Eq. (74).
The real part of Eq. (83) can be computed with a Kramers—Kronig transformation.
Our probing region is where the CPs F; and E; + A; are located. Therefore,
we require two expressions similar to Eq. (83) to account for both CPs. The
CP energies, reduced masses, and exciton binding energies need to be adjusted

separately for each CP.

5.2.3 Thermal equilibrium

To validate our band-filling model, we need to verify that the shape of Eq. (83)
at thermal equilibrium looks identical to Eq. (73). Before we can plot the DF,

however, we need to find the chemical potential at room temperature. For the
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Figure 26: Density of electrons and holes at 300 K as a function of chemical
potential in the parabolic (red and blue lines, respectively) and non-parabolic
approximation (dot-dashed black lines). The circles (O)) show the corresponding
intrinsic chemical potential for both approximations (purple for parabolic and

black for non-parabolic approximation).

non-degenerate case at temperature 7', the chemical potential is given by[100]

By +E T
_Evthe ks 1n<mh). (84)

2 2 Me
At zero temperature, the chemical potential lies halfway between the top of the
VB FEy and the bottom of the CB E¢. At room temperature and with no excess
of charge carriers, the chemical potential in the degenerate case should reduce
to Eq. (84). Nonetheless, it is illustrative to go through the exercise of finding
this chemical potential using Fermi-Dirac statistics. For the degenerate case, the

parabolic approximation for the density of electrons in the CB is given by

1/ 2mpkpT\ > — B,
o (T) = & (W_B) Fis (u) , (85)
B

mh?
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which is similar to the density expressed in Eq. (69). The density of Eq. (85),
however, gives the density at the L-valley. We use the lower valley because,
regardless of the zone in which the carriers were generated, at thermal equilibrium
the electrons will lie in the lowest point of the CB. Similarly, the holes will lie
in the highest point of the VB. In the case of Ge, these are the L-valley and I'-
point, respectively. Eq. (71b) incorporates non-parabolicity effects to the L-valley

density. For the density of the holes, the parabolic approximation is

1 (2mpksT Y m
P(T)—Z(—WW ) Fijs kel ) (86)

where the DOS mass of the holes is[110]

2/3
mp, = (mf’l{f + mf’hﬂ + e*AO/kBngg) . (87)

We can also incorporate non-parabolicity effects into the density of holes by

using the expressions for the VBs

1/ 2mupkpT\*? [ 3 1
T)=- | ——— Fipp | —-t=) —6.01 T)SFyy | ———
pm(7T) 4( s ) e\~ 6.0186 (kpT) - F/o T

15 o
+128.22 (kgT)* —F: (——ﬂ , 88a
(ksT) 155\ Tt (88a)

1 [ 2mpnksT\*? [ 3 [
T) = - (2B Fup [ -1 8263 (kgT) = _ B
phh( ) 4 ( 7Th2 ) 1/2 I{BT + 3.8 63( B ) 5 3/2 k‘BT

2 15 H
4.7446 (kgT) 1 F5/o ( el )| (88b)
1 2msok'BT 3/2 AO +u
T) = = [ 225982 ool =
pso(T) 4( 2 ) 1/2 T ) (88¢)
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Figure 27: Imaginary part of the two-dimensional excitonic dielectric function
(black solid line) along with the band-filling model using the chemical potential in
the parabolic and non-parabolic approximation (green dot-dashed and red dashed

lines, respectively).

given by Menéndez et al.[102] We then sum over the three VBs:

p(T) = pn(T) + pun(T) + pso(T). (89)

We note that electron and hole densities in an intrinsic semiconductor should
be the same. Therefore, we can equate the density of electrons and holes at
a constant temperature to find the corresponding chemical potential. Figure 26
shows the density of electrons (red line) and holes (blue line) at room temperature
(300 K), along with their corresponding non-parabolicity expressions (black dot-
dashed lines). The circles indicate the intrinsic chemical potential for the parabolic
(purple) and non-parabolic (black) cases. For reference, in the non-degenerate

approximation of Eq. (84), the chemical potential at room temperature is 324.0
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eV.

Once we know the intrinsic chemical potential at room temperature, we can
evaluate our band-filling model of Eq. (83) and then compare it with the two-
dimensional excitonic DF of Eq. (73). Figure 27 shows the steady state DF (black
solid line) alongside our band-filling model using the chemical potential obtained
from the parabolic and non-parabolic approximations (green dot-dashed and red
dashed lines, respectively). As seen in the figure, both models yield equivalent

results under thermal equilibrium conditions.

5.3 Final model and interpretation

As stated previously, since there are two CPs in the spectral region of interest, we

need to combine two expressions similar to Eq. (83). Our final model is

c (E) _ A(El) Im Ya [g(El)(E + ZF)} + Ga [g(El)(_E - ZF)} - 29a [5(&)(0)}
S [E + D]

[ fr - [ ]

kmax

LA 1 ) Yo [(EHAD(E +4D)] + g, [P T2 (—E —iT)] — 2g, [€FrF4D(0)]
[E + iD(Fi+A1))?
kmax
x/k dkz{l—f[EéElJrAl)(E,kf)”, (90)
where
Eq1)==2
3regmd E, -7
B2 k2 M1
d EPY(E k) = B, 4 (E— B ™=
and E¢ (B, k) d+2m”+( 1)m
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for F4, and

(E1+A1)12
A(El—i-Al) _ 26211“_ 1+ADD §(E1+A1)(Z) _ R(E1+A1)
377'507713 E1 + Al — Z,
21.2
d P (B k2 = By : L (E— B —A) 2L
an C ( ) z) d+ 2m||+( 1 1),,,”L

for F1+ A;. The real part ; can be computed with a Kramer-Kronig transforma-
tion (typically, e also add a constant offset £, to the real part of the DF, to account
for additional non-resonant contributions from other interband transitions).!0?!
The black curves in Eq. (28) show the imaginary part of the steady state DF for
E, and E; + A;. The additional curves in the figure show how the DF changes
with chemical potential and temperature as calculated in Sec. 5.2.1. Plot (a)
presents the evolution of the DF for a carrier density of 10*° cm™ and plot (b) for

5x10' cm™. The smaller plots to the right show the corresponding color-matched

chemical potential and temperature values for each of the curves.

5.4 Fitting procedure

We now proceed to fit our model to the experimental data. The expression in
Eq. (90) has six fitting parameters: carrier temperature 7T, carrier density n, and
energies and broadening of the critical points £y, E; + Ay, T¥) and DE1+A1),
At first glance, it might appear that the chemical potential p is another free
parameter, however, Eq. (72) restricts the values to be dependent on T, and

n. Moreover, based on our carrier density estimates in Eq. (5.2.1), the value
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Figure 28: Imaginary part of the dielectric function for the band-filling model
shown in Eq. (90). The black solid lines show the steady state dielectric function.
The colored curves shows the dielectric function at different points in the evolution
of the chemical potential [shown in the circles (o) of the right-side plots]. The
temperature and chemical potential for the steady-state DF is shown by the black
circle (o) in the right-side plots. (a) presents the evolution of the dielectric function
for a density of 10 cm™. (b) shows the same dielectric function for a density of
5 x 10! cm.

of the carrier density must be restrained to be between 5 x 10 and 10?° cm™.

Conventionally, the energies and broadenings of the critical points are extracted by
fitting the second derivative of the DF, rather than the DF itself. In contrast, the

change in chemical potential induced by variations in the carrier temperature and
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density affects primarily the DF, not its 2"¢ derivative. Furthermore, to capture
the induced reduction in the amplitude of the DF, we need a near perfect match
of the fitted model at the critical point absorption peaks.

To overcome these challenges, we introduced the reduced masses ,u(LEl’ElJFAl) as
additional fitting parameters and divided the fitting process into two steps. Ini-
tially, we performed a 2°¢ derivative fitting of Eq. (90) onto the negative delays
while holding the chemical potential to its theoretical value at room temperature
(T. = 295 K). This yielded the values for the energies and broadenings of the crit-
ical points. Subsequently, we fitted /,L(LEI’EIJFAI) to the DF. If any discrepancies in
their corresponding 2" derivatives appeared between the model and experimental
data, the two-step procedure was repeated until no further change was observed.
In this manner, we ensured that the final values of the reduced masses were those
required to achieve an accurate fit to both the DF and its second derivative. The
obtained values for the reduced masses were u(FY) = 0.0566 and p(F1+21) = 0.0558.

While the energies and broadenings of the critical points may vary with car-
rier temperature and density, we assume that the reduced masses will remain
constant. This assumption is based on the influence that temperature has on the
reduced masses. In essence, the reduced masses are only affected by the redshit
of the thermal expansion.[44, 105] Hence, they are not directly influenced by the

photoexcited carriers. Nevertheless, this additional free parameter is simply an

empirical parameter to improve the fittings and should not be overinterpreted.
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With this in mind, the positive delay data were fitted using the reduced masses
obtained from the previous fitting procedure. As before, the fitting was performed
in two steps: First, the critical point energies and broadenings were extracted via
274 derivative analysis. Then, the DF itself was fitted using the chemical poten-
tial and carrier temperature as the free parameters. This process was repeated
iteratively until no further change was observed. Figure 29 (a) and (b) show the
experimental data and fitting results for the the imaginary part of the DF ¢5 from
-0.5 ps to 2 ps. The model captures the decrease in the amplitude near the FE;
and E; + A; CPs very well. In (c), the fitted chemical potential is plotted against

carrier temperature.

5.5 Carrier relaxation

Figure 30 shows the same fitted chemical potential that is plotted in Figure 29
(c). The figure also shows the theoretical curves of Figure 25 from Sec. 5.2.1 for
comparison. The fitted chemical potential (circles) follows the chemical potential
for a carrier density of 102° cm™ quite closely. At 1 ps, the cooling of the carriers
seems to slow down, indicating the relaxation in energy of the electrons to the

bottom of the conduction band. By using the relation

() -on )
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Figure 29: (a) Transient dielectric function of Ge. Delay times range from -0.5 ps
up to the first 2 ps. (b) The model shown for the fitted chemical potentials and
carrier temperatures. (c¢) Experimentally fitted chemical potential of the model

as a function of the carrier temperature.
we can estimate the energy relaxation rate as a function of delay time, shown in
Figure 31. The solid red line shows an exponential fit for these values of the form

T.(t) = Ae' + T, (92)

As stated before, the cooling of the carriers comes to a stall at around 1 ps. This
is emphasized by the relaxation rate (shown by the green line) calculated with
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Figure 30: Experimentally fitted chemical potential of the model as a function of
the carrier temperature shown by the circles (o). For comparison, the theoretically
calculated chemical potential for the carrier densities 5 x 10 (red line) and 10%°

cm™ (black line).

Eq. (91). At delay times close to zero, we see the highest energy relaxation rate
on the order of ~2 meV-fst. The phonon branches associated with the intervalley
scattering differ for each relaxation pathway (see Figure 22 and 23). At room
temperature, forbidden transverse acoustic (TA) and longitudinal optical (LO)
phonons dominate the I' —L scattering mechanism over the allowed transverse
acoustic (TA) phonons.[116, 12] For I' —X and X—L scattering, the LO and
transverse optical (TO) phonon are the dominant branches.[118] At the L-point,
the phonon energies range from 8 to 36 meV,[119, 120] whereas for the X-point,
phonon energies range from 10 to 34 meV.[120] Quantitatively, we can infer that,

at the highest relaxation rate, energy is being dissipated by emitting a phonon
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around every 4 to 18 femtoseconds.
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Figure 31: The fitted carrier temperature is shown on the left axis by the circles
(o) as a function time delay. These experimentally obtained values are fitted with
an exponential function, shown by the red line. On the right axis, the rate of

energy relaxation is shown by the green line.

Finally, the fitted energies and boradenings of the CPs are presented in Figure
32. Under equilibrium conditions, the fitted critical point energies were found to
be approximately 2.175 eV and 2.37 eV for the F; and E;+ A, transitions, respec-
tively, with corresponding broadenings of 100 meV and 135 meV. These values are
consistent with previously reported room temperature ellipsometry measurements
of Ge.” Following photoexcitation, the CP energies exhibited a transient red-shift
of approximately 25 meV within the first few hundred femtoseconds, consistent

with bandgap renormalization effects. As stated in Sec. 2.4.2; the filling of con-

®See Sec. 4.4.2 and appendix D for the precise values of these parameters.
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duction band states tends to have the oppsite effect on the transition energies.
However, as discussed in appendix G, band-filling effects do not affect the transi-
tion energies for Ge. Hence, we only observe an energy red-shift. The broadenings
increased by roughly 30 meV compared to the equilibrium values for F; and 10
meV for F; + A;. This indicates an enhanced scattering and reduced quasipar-
ticle lifetimes during this initial regime. Over the subsequent 3 ps, energies and

broadenings for both CPs remain approximately constant.
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Figure 32: Fitted energy and broadening parameters for the critical points £
and E; + A;. Negative delays (grey area) show the parameters for a steady state

measurement.

Overall, the combination of broadband femtosecond ellipsometry measure-
ments and the developed band-filling model provides a comprehensive picture
of the ultrafast carrier dynamics in Ge. The extracted time-dependent DF reveals
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clear signatures of state filling, bandgap renormalization, and enhanced dephas-
ing during the initial picoseconds following excitation. The temporal evolution
of the chemical potential and carrier temperature is consistent with intervalley
scattering simulated in the previous sections. These findings establish a quanti-
tative framework for understanding nonequilibrium optical properties in indirect
bandgap semiconductors and lay the foundation for further studies of carrier re-

laxation and excitonic effects under high excitation densities.

6 CONCLUSION AND OUTLOOK

6.1 Summary of main findings

In this work, a broadband femtosecond spectroscopic ellipsometry approach was
developed and applied to investigate the ultrafast carrier dynamics in Ge. A
model incorporating band filling and excitonic effects near the F; and E; + A
CPs was implemented to reconstruct the time dependent DF. The model success-
fully reproduced the main features of the transient optical response, including the
decrease in the amplitude of €5 due to the filling of the bands and red shift of the
bandgap renormalization. From the fits, quantitative estimates of carrier tem-
perature, chemical potential, and energy relaxation rates were extracted. These
results provide a consistent framework for interpreting the influence of hot carriers

on the complex DF.
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6.2 Limitations of the model

Although the model captures the principal features of the transient response, sev-
eral limitations should be mentioned. In particular, the incorporation of excitonic
effects was restricted to their equilibrium states. However, at such high car-
rier densities, Coulomb interaction between electron-hole pairs is screened by the
presence of additional carriers. Under strong excitation conditions, screening can
significantly reduce exciton binding energies and alter the oscillator strength of
the absorption states near CPs.[64] As stated in Sec. 4.5, a solution to the optical
response for screening of 2D excitons is yet to be published in the literature. For
3D excitons, the optical response for Ge is given in Eq. (121), which introduces a
screening parameter g. Figure 33 shows the effects of excitonic screening on the
imaginary part of the DF. Excitonic screening increases as the value of g decreases.
The figure indicates that the reduction on the amplitude of 5 should be induced
excitonic screening in addition to band-filling effects. A more sophisticated model
is needed to account for these additional effects.

Moreover, the high carrier densities induce a transition of the carriers to an
electron-hole plasma. There exists several formulas for the value of the density
limit that induces this transition (known as Mott density). Additionally, the
model assumes a single effective carrier temperature and Fermi—Dirac distribution

at each time delay, thereby ignoring possible non-thermal carrier distributions
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Figure 33: Imaginary part of the dielectric function for the screening of 3D excitons

shown in Eq. (121). Smaller values of g give greater excitonic screening.

immediately after excitation. These simplifications, while necessary for our model,

limit the ability to describe the optical response in the earliest relaxation stages.

6.3 Future work

Several directions remain for improving and extending this study. First, measure-
ments over longer delay times beyond 3 ps would enable characterization of carrier
recombination and trapping dynamics, as well as recovery of excitonic absorption
features. Second, performing measurements varying pump energy and excitation
density would allow a more systematic assessment of screening effects, bandgap
renormalization, and many-body interactions. Incorporating a dynamic excitonic
model that explicitly accounts for screening and binding energy reduction is an-
other important objective for refining the accuracy of the extracted carrier pa-

rameters. Finally, extension of the technique to lower temperatures could help
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disentangle phonon-limited relaxation from intervalley scattering contributions.

6.4 Preliminary results on additional samples

To explore the applicability of this approach to other materials of interest, pre-
liminary measurements were performed on three additional samples: a Ge film
on a Si substrate, doped Ge on a Ge film on a Si substrate, and GeSn alloy on
a Si substrate. All measurements had similar settings to the bulk Ge measure-
ment. Table 2 shows the nominal thickness (and the thickness determined with
WVASE32), power of the pump, and beam-spot diameter. After extracting the
ellipsometric angles, we corrected for the effects of the oxide surface overlayer in
all samples using the same GeOy model. Future work should probe the additional
complexities that arises from strain-induced shifts in the CP energies, substrate

contributions to the measured signal, and alloy disorder broadening in GeSn.

Sample Film thickness (nm) Power (mW) Beam diameter (um)
Doped Ge on Ge on Si 200(169) 1.0 270
Ge on Si 600(661) 5.0 586
Geg.00sSM0.092 0N Si 345(344) 1.0 9241

Table 2: Samples with the pump power and beam diameter used for the measure-

ment. The thickness in parenthesis was determined with WVASE32.
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Figure 34: Transient dielectric function of 200 nm of n-dopped Ge on 840 nm of

Ge on Si (001). The time delays show data from -1 to 100 ps.
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Figure 35: Transient dielectric function 345 nm of Geg gpgSng.gg2 on Si (001). The

time delays show data from -1 to 100 ps.
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6.5 Conclusion

In conclusion, the present work establishes broadband femtosecond ellipsometry
as a powerful technique for probing ultrafast carrier dynamics in semiconductors.
The results provide quantitative insight into the optical response of band filling,
intervalley scattering, and excitonic effects in Ge, while highlighting areas where
more comprehensive modeling of excitonic screening and many-body effects is
needed. Future measurements to additional materials and excitation regimes will
further advance the understanding of nonequilibrium processes crucial for the

progress of the field.
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APPENDIX

A Effective masses

A.1 Parabolic approximation at the L-point

The E; and E;+ A, critical points (CPs) presented in Fig. 10 arise from interband
transitions taking place from the heavy-hole (L; @ L;-band) and light-hole (Lg -
band) valence band (VB) to the L{ conduction band (CB), respectively. The
symmetries associated with these bands correspond to the set of wave function

basis vectors[81, 106]

L 121,124,
Lol —ZX+iV Do X—iv ), (93)
1 1
Lg E\XJN‘Y@,E]X—@'YT).

Just like in Sec. 4.1, the z-axis was chosen along the A-direction. In this basis, and
with the aid of k - p theory, we can explicitly calculate the matrix (unolk + p|uno)
to get an expression for the effective masses of the bands (n is the index of the

band). We note that the only non-zero momentum matrix elements are[81, 106]

—i{Zlp.|X) = i (ZIpy|Y) = P. (94)
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Naturally, the states in (93) with opposite spins will not couple. Hence, the 6-band

k - p Hamiltonian will become a 3 x 3 matrix represented as follows:[81, 106]

[ (L¢|k-p|Lg) (L{|k-p|Ls) (L{|k-p|Ls)
(unolk + Pluno) = <L4|k'P’Lgr> (Lalk - p[La) <L4‘k-p|L5>
(Le|k-p|Ls) (Lo|k-p[Ls) (Ls|k-p|Lg)

iP iP
0 Bk Bh
= —%/ﬁ_ 0 0 |. (95)
iP
|~k 0 0

Since the only matrix elements that are nonzero are perpendicular to |Z), the
wave vector k reduces to k; and the motion of the carriers gets restricted to a

two-dimensional plane. The full Hamiltonian is given by[81, 106]

ihP ihP
N % mox/ikl mox/iku‘
Ho + Hyx = —nioh%/@_ 0 0 . (96)
ihP
_mm/ikl 0 AN

After diagonalizing the matrix (96), we get the characteristic equation

=0 97
= N

=2 =2
E3—(E1—A1)E2— <E1A1+h2p ki)E_m
0

2m?
where £ = E—h2k?/2my is the modified energy parameter introduced by Kane[111]

(where the kinetic energy of the free electron has been subtracted). For small val-

ues of k;, we can solve Eq. (97) perturbatively to get the 3 solutions (one for
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each band):[11, 53]

RE2 [ 1 FE 1 1
ECB:E1+ J_|:—+—P< + >:|

2 [mo  mg E B+ A |
1/7;%3)
Eny = thki (mio - mizgl)
. o
272
Eyn=-A+ h;ﬁ [mio — —mO(Eij— Al)‘|

. /

1/mfg>

(99)

(100)

To simplify the notation, we have made the substitution Ep = P /mg. Systems

of correlated electron-hole pairs generated at the L-point will have a transverse

reduced effective mass:[106]

-1
JCCAI R _ [& <i st
. m(fg) m(LL;@Lg)_ mo \E1 By + A
-1
(E1+A1) o 1 ]- - |:EP < 1 2
and = — - = | == =4+ —=
220 [m(fér) m(f6 )_ mg \ 1 Ei + Ay

corresponding to the two CPs E; and F; 4+ Ay, respectively.

)} B (101)
)} B (102)

A.2 Non-parabolicity at the L-point with small spin-orbit interaction

Instead of approximating for small values of k,, we can solve the characteristic

Eq. (97) exactly with Vieta’s solution for a cubic equation. These solutions,

however, are not useful for our purposes given that they cannot be inverted to

get the density of states as a function of energy. Instead, we can use the small
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spin-orbit (SO) approximation by letting A; — 0. If we do this, the characteristic

equation becomes

2.2
h° k.
mo

B3 — B E? — EpE =0, (103)

with one solution Ehh = 0, and the other two

. By +/E + 455,

Ecm = 5

I
mo

(104)

We can expand the square roots in Eq. (104) in k% to obtain

Wk E 102k E
Ecp = By + l+—1<1+ 14 L—P>

2m0 2 mo E12

] <1+ Ep IR ER B E%)

E1 2m0 E_f ng E_§
R’k* F 4h?k2 E
Ey = L+—1<1— 1+ L—S)
mo El
I (| Ee | REL W ELY

(105)

(106)

FIG. 36 shows the bands of the exact solution, the parabolic, and the small SO
approximation. The CB in the small SO approximation is almost identical to the
6-band solution. For the lh-band, the curvature of the small SO approximation
is similar to the exact solution, however, the parabolic approximation is in better
agreement to the exact solution. On the other hand, even in the 6-band model
solution, the hh-band shows the wrong curvature. The band seems almost flat,
indicating a nearly infinite transverse mass. Cardona states that including non-
parabolicity terms linear in k£, make the transverse reduce mass for £ infinite.[56]
However, this is in the A-region (and not at the L-valley). Unfortunately, this
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solution does not resemble what we see in k - p-theory calculations with higher
number of bands.[108] Further calculations probing not only the bottom of the

L-valley, but also the A-direction away from the L-valley are needed.

m— 3 x 3 Hamiltonian
Parab. Approx.
————— Small SO

08r

0.6
1.4

Energy (eV)

2.2

0 0.02 0.04 0.06 0.08 0.1 0.12
Perp. wave vector kL (atomic units ag)

Figure 36: Band structure of Ge at the L-valley. The perpendicular k -vector
is shown in atomic units where ay = 0.53 A. The thick solid lines represent the
exact solution to the 3 x 3 Hamiltonian in Eq. (96), the thin solid lines show
the parabolic approximation, and the dot-dashed lines are the small spin-orbit

approximation.
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B Dielectric function of Ge

Previous attempts to describe the CPs of interest give the line shape of the DF

as a step function[106]

52 (FE1)
(1) L\ Bk P o
_ _ 107
©2 (47r€0) 3m3E? (Ex ) (1072)
52 (E1+A1)
(E1+A) L 26kmaxe® P gt H(E, + A, — E
— — 1
“2 (47T€0) 3m3E? (B A ) (107b)

where H is the Heaviside step function, k. is the maximum range in the k-axis
where transitions take place, and P is the average momentum matrix element.[108,
109] The real part 1 can be calculated from the expression for €5 with a Kramers-
Kronig transformation. Alternatively, Humlicek gives the full expression for the

DF while adding broadening to Eq. (107) as[107]

1\ 16kmaxe?P pl®)  [2(E, —iT — E)
() = - max L] L 108
NG (47@) SminEr { By — il } ’ (1082)
SEA) () = 1\ 16kmaxe? P p{tan) | [2(BL A — i~ E)
N 47T€0 3777,%7TE2 E1 + Al — I ’
(108b)

Egs. (108) give the DF for uncorrelated electron-hole pairs shown by the blue
dashed lines in Figure 12.

In the following, we briefly describe how to derive Eq. (107a). We start by
computing the amplitude in Eq. (73) for the E; CP of Ge from the expression for

the imaginary part of the dielectric tensor[81, 3]

(B = ( ! ) RS Wi, IC) (ClplV) [ 45509~ B9~ .

212 3
drey ) mgE ~ 4m

(109)
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Since we are dealing with a cubic system, only the diagonal components of the
tensor are non-zero. Therefore, we can replace the dielectric tensor with the
dielectric function by averaging the contributing components ey = (€4, + €y +

€.:)/3. Moreover, from k - p theory, the matrix elements reduce to[106]

-2
> (VIpalC) (Clpul V) = [(CIP|V) 2 + | {CIP, V) + [ (CIPIV)" = P, (110)
oV P°)2 P2 0

hence we can replace the matrix element in Eq. (109) with the average transition
matrix element P. Finally, we multiply the DF by 4 to account for the L-valley

degeneracy. The result is

gQ(E):( 1 )4;(%613? (4133 )/fkg(s(Ec(k)_Ev(k)—hw). (111)

47T€0

To solve the integral in Eq. (111), we replace it with the JDOS in Eq. (78) and

switch to cylindrical coordinates. In the new coordinate system, the DF looks like

1\ 1672e2P 12 k,dk,dk,dk, nk?
E) = E,+—"_F 112
=2(B) <47r50) 3miE? /// 473 ( ' 2p) ) (112)

The integral [ dk, = 27 is trivial. To integrate over k,, we make the substitution

u = h?k2 /2y, , which transform the integral

00 h2k2 00
/ kodk,6 (Ey+ —2 —E) — “i/ dus (Ey +u—E).  (113)
0 241 w o

Its solution yields the Heaviside step function H(E; — E). Finally, the integral
over k, needs to be limited to the range where the transitions take place. We call

this kp.x. The final result for Fy is

A 4 2? (E1)
4" = S H(Ey - B), with A= ﬁkmax, (114)
0
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which is simply Eq. (107a). Notice the similarity between the amplitudes in
Eq. (114) and Eq. (74). These amplitudes are the same if we simply replace
the transition matrix element e - M¢cy — Fkaax /3 and multiply by the valley

degeneracy (multiply by 4 for L-valley).

C Unrenormalized energies

To get the unrenormalized energies of the CPs, we will follow the procedure by
Zollner et al.[44] where they give the unrenormalized value for the direct bandgap

FEy as

ENT) = BT = 0 K) — 3B (agixp> /OTa(H)dG, (115)

where the superscript u stands for unrenormalized, B is the bulk modulus, «(7T)
is the temperature-dependent thermal expansion coefficient, and p is the pressure.
For our purposes, we will replace the unrenormalized energy at zero temperature
with the fitted parameter £, in the Bose-Einstein model of Eq. (61). The fitted
parameters FE,, F,, and fg in Table 1 are obtained by fitting the experimental
CP energies of Table 3. Fig. 37 (b) shows the experimental energy of the E;
and F; + A; CPs as a function of temperature (dot-dashed lines). To subtract
the thermal effect, we use the thermal expansion coefficient given by Eq. (60).
Menéndez et al. obtained the values in Eq. (54) by fitting the experimental
thermal expansion data from Ma and Tse.[42] As an alternative to Eq. (54), we
could also use a more sophisticated expression for the thermal expansion coefficient
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provided by Roucka et al. as[112]

(T) dkp 2 O\’ eOra/T
(8% = — —
@B |37\ T ) (eomir 1)
T \? [O/T  ghen Oupt \2  €Oont/T
o —d o ° 7
+’YLA (@LA) /0' (6x - 1)2 x + ’Y pt ( T ) (eeopt/T . 1)2

(116)
where ay = 5.6568 A is the lattice constant,[113]  is the Griineisen parameter,
and © is the Debye temperature. The subscripts LA, TA, and opt stand for the
longitudinal acoustic, transverse acoustic, and optical modes, respectively. As
seen in Fig. 37 (a), the more complicated expression in Eq. (116) yields an almost
identical result to Eq. (60). Therefore, we settle on using Eq. (54) for this
work. Fig. 37 (a) also shows experimental thermal expansion coefficients from
the literature.[114, 115]

The result of the unrenormalized energy in Eq. (115) is shown in Fig. 37 (b)
(solid lines). For this calculation, we take the value of (OF;/0p)r ~ [0(E1 + A1) /0p]r.
We justify this assumption by noting that the SO shift A is related to atomic
effects and it is, for the most part, unaffected by the distance of the atoms within
the lattice. Finally, Fig. 37 (c) shows the exciton binding energies for both CPs in
the left axis (solid lines), as well as the reduced masses on the right axis (dashed

lines).
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Figure 37: (a) Thermal expansion coefficient from Eq. (60)[38] (blue solid line)
and Eq. (116)[112] (green solid line) compared to experimental data (().[114, 115]
(b) The experimental values for F; and E; + A; (blue and red dot-dashed line,
respectively) are shown along with their respective unrenormalized energy (red
and blue solid lines, respectively). (c) On the left axis is the binding energy of
the excitons of the critical points (black and red solid lines). On the right axis is

the transverse reduced effective masses (green and blue dot-dashed lines).
D Fitting procedure
To suppress the noise of the experimental data, we used a direct space convolution

of the experimental DF with a digital filter. The convolution f between f(x) and

b(x) has the following property:

/(@)

L.

dz' f(x — 2")b(x)
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dz' f(2")b(x — ).
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Note that, in light of Eq. (117), operations such as df(z)/dz produce the same
outcome whether they act on f(x — 2’) or b(xz — 2’). To compute the second
derivative of the experimental data, we take full advantage of this property by
differentiating the digital filter (an analytical function) instead of the experimental
data (a set of discrete points). To perform the convolution, we used MATLAB’s
built-in function conv(u,v), where u and v are the vectors being convoluted.
For the fitting procedure, we created a residual vector function with five free
parameters [E;, Ay, TFD T(E1+41) “and e.4]. The two components of this vector
function consisted of the real and imaginary part of the experimental 2" derivative

of the DF minus the corresponding parts of the numerical derivative of the model:

R d2EEXp2(E) . Re dQEmodel(El,A17F(E12>7F(E1+A1>7801:5,E)
res]dual — dQsexP(E) I d25m°del(E1,A1,F(E1),F(El"'Al):aoﬁ%E) (118)
152 —im dE?

After creating the residual vector function (118), we minimized it with the MAT-
LAB function 1sgnonlin(fun,x0,1b,ub), where the input fun is the function to
be minimized, x0 is the vector with the initial guess for the fitting parameters, 1b,
and ub are the vectors with the lower and upper bounds for the fitting parameters,

respectively.
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Table 3: Value of the fitting parameters and filter width AFE for the extended

Gauss digital filter. The step size selected was 1 meV from 1.0 to 3.2 eV (2201

points). (f) indicates a fixed parameter.

T | AE (meV) B, (eV) Ey+ A (eV) TE) (meV) TEFA) (meV)  euq
4K 12.0 2.2793 4+ 0.0009  2.4779 + 0.002 75+ 1 96 =4 2 6(f)
100 K 14.5 2.2599 4+ 0.0008  2.4600 =+ 0.002 79+ 1 103 4 2 6(f)
200 K 17.5 2.2187 4+ 0.0009 2.4176 + 0.002 8941 119 +2 7(f)
300 K 21.5 2.1674 +0.0009 2.3638 £0.002 10141 136 + 2 7(f)
400 K 27.5 2.1167 +0.0006 2.3147 £0.002 11541 157 + 2 8(f)
500 K 27.5 2.0656 & 0.0007 2.264240.003 128 +1 175+ 2 8(f)
600 K 25.0 2.0172 4 0.0009 2.2170 £0.003 14241 193 + 3 8(f)
700 K 33.0 1.968 £0.001  2.168340.004  155+1 212 +4 8(f)
800 K 35.0 1.9174+0.002 2.1182+0.006 171 +2 243 + 6 9(f)

109



Table 4: Value of the fitting parameters and order of polynomial n for the

Savitzky-Golay digital filter. The frame length was constrain to 5% of the number

of points (11 points). (f) indicates a fixed parameter.

T |n B, (eV) B+ A (eV) TE) (meV) TEFA) (meV) e
4K |7 2279+0.002 2.478 =+ 0.006 7643 96 + 6 6(f)
100 K | 7 2.260 +£0.002 2.460 + 0.006 80 & 2 10345 6(f)
200 K | 7 2.21940.003 2.418 & 0.005 8943 11947 7(f)
300K | 5 216740.003 2.36440.005 10242 137+5 7(f)
400 K |5 2.11740.002 2.31540.005 11642 15746 8(f)
500 K | 5 2.066=40.002 2.26440.007 12942 175+ 6 8(f)
600 K | 4 2.01740.002 22174+0.008 14243 193+9 8(f)
700 K | 3 1.968=+0.003 2.17+0.01 155 + 3 212 + 12 8(f)
800K | 3 1.91740.006 2.1240.02 171+ 6 234 + 18 9(f)
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D.1 Extended Gaussian digital filter

The extended Gaussian (EG) digital filter of Eq. (64) for M = 4 has the form[48,

49]
1 1008022  1512z* 7228 8 z?
by(z) = —————— (15120 — - - .
() 12288AE\/E< AEZ T AET MBS AES) eXp( 4AE2>
(119)

However, since we are interested in the 2" derivative of the data, we can compute

the second derivative of Eq. (119) and perform the convolution with ¢*P(E)

afterwards.
2 1 1 4 2 4 4 6
d?by(x) _ 110880 + 88496z B 5936z n 3608z
dz? 49152AF3\ /T AE? AFE4 AES
10628 10 x?
- — ) 12
N AElO) eXp( 4AE2) (120)

To select the filter width AFE, we Fourier-transform the experimental data and
plot the natural logarithm of the amplitude C), of the coefficients as seen Figure
38 (a). We then eliminate the higher order coefficients (noise) and retain the
lower ones which preserve the information of the original signal. The same cutoff
of the coefficients is also applied to the Fourier transform of the EG filter By(n),
shown in Figure 38 (a) as well. In this figure, we show the Fourier coefficients of
the experimental data as a function of the order of coefficients n at 200 K, along
with the Fourier transform of the extended Gaussian filter B,(n) for two different
filter widths. For this particular measurement, we selected the cutoff at the 315
coefficient. The reader might find this cutoff too conservative and that such a large
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filter width could suppress a portion of the signal. To address these concerns, we
repeated the fitting procedure with the cutoff at the 41 coefficient [see the cyan
dash-dotted line in Figure 38 (a)]. We find that including higher-order coefficients
increases noise but does not change the fitted energy and broadening parameters
beyond their uncertainty. Therefore, we settled with the larger filter width. The
dark circles in Figure 38 (b) show the EG derivatives for this measurement. One of
the advantages of this method is the increase in the number of points available in
the derivative. In our case, the EG filter produces 2201 derivative points, resulting
from the chosen energy step size of 1 meV over the range from 1.0 to 3.2 eV. This
is in contrast to the Savitsky-Golay (SG) derivative [shown by the red and blue
lines in Figure 38 (b)], where the derivative is limited to the number of points of
the original signal. Once the filter width has been selected, we can minimize the
residual function in Eq. (118) to fit the energy and broadening parameters. Table

3 shows the fitted parameters for this method.

D.2 Savitzky-Golay digital filter

To obtain the SG digital filter, we employed the built-in MATLAB function sgolay (m,f1).
This function gives a matrix of a finite impulse response smoothing filter. The
input m is the polynomial order and £1 is the frame length. We used 11 points for
the frame length, which is approximately 5% of the total number of data points

(this number must be odd). The order of the polynomial is listed in Table 4 for
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each temperature series. Once we have generated the SG filter, we can obtain the
n'™ derivative by convolving the experimental data with the (n + 1)™ column of
the filter matrix. The solid lines in Figure 38 (b) show the SG derivatives for the
experimental data at 200 K. Table 4 shows the final values of the fitted param-
eters with the SG filter. Notice the similarity of the fitted values for energy and

broadening between the two filters.

1 3000 1500
In(C) of ¢, SG:n=7andfl =11
In(C ) of EG: AE=17.5meV 11000
e 2000
n=31 0.8 500
n=41
B4(n) with 1000 0
AE=175meVg 6 o N
B, (n) with < % -500 %
AE =13 meV <+ 0 “w
o W 1000 oy”
0.4 © ©
T=200K -1000 O EGd% WE* {-1500
SG d2c, /dE?
\ 02 “ -2000
¢ 12 ’ -2000 O EGd?,/dE?
AR :
| (b) SG dzezldE2 2500
s 3000 v -3000
0 20 40 60 80 1.8 2 22 2.4 26 2.8

Energy (eV)

Figure 38: (a) Natural logarithm of the Fourier coefficient amplitude C,, of the
real (red) and imaginary (blue) parts of the dielectric function at 200 K. The
same plot also shows the Fourier transform of the extended Gaussian filter (O)
for different filter widths. (b) 2" derivative of the dielectric function calculated

with the extended Gauss filter (O)) and with the Savitzky-Golay filter (solid).
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Figure 39: (a) In addition to the parabolic approximation (thin solid line), we
show the exact solution (thick solid line) and the small spin-orbit approximation
(dot-dashed) to the 8-band model of the band structure of Ge. (b) Imaginary
part of the dielectric function at 4 K in the parabolic approximation (solid) and
including non-parabolicity linear terms in ae (dashed) and quadratic terms in e
(dot-dashed) of the density of states mass. (c) Parabolic (solid) and non-parabolic

(dashed, dot-dashed) models extended up to 3 eV.
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The lineshape of the Fy CP was presented previously by Emminger et al. as[70]

AVR

“() =~ €+ D)+ G[E(-E = D] =2 €O}, (121)
with 36) =26 (£) £ 20 1-9) - 3, €)= —— - —— —

and A = e —_— 3/2EP
\/_7T€0FL2 3

This model is quite similar to Eq. (73), since it also takes into account excitonic
(and screening) contributions to the CP. We can improve Eq. (121) by including
non-parabolicity contributions to the effective mass at the I'-point. By following
the procedure in Ref. [44] we use the small spin-orbit (SO) coupling approxima-
tion to get an analytical expression for the CB effective mass and, therefore, the
electron density of states (DOS) mass. If we consider an 8-band model (CB, hh,

lh, and SO band), our k - p Hamiltonian looks like[111]

E, 0 —Iip 0
/ 0 _% % 0 12
R U =
0 0 0 0

We can construct an exact solution of the band energies by solving the character-
istic equation to this eigenvalue problem. Similar to Eq. (97), the exact solutions
to Eq. (123) are not useful for our purposes because they cannot be inverted to
get the DOS as a function of energy. Instead, we assume that the spin-orbit (SO)
coupling is small and approximate Ay — 0. As a result, this approximation makes
the center terms in the Hamiltonian matrix (123) zero and gives two degenerate
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solutions of zero (the hh- and SO-band) and two non-zero solutions (the CB and
lh-band). In Figure 39 (a), we can see that in the small SO approximation, the
CB fits reasonable well to the exact solution of the band structure (at least in our
8-band 4 x 4 Hamiltonian model). Since there are two zero solutions in the small
SO approximation, the hh- and SO-VB are degenerate and lie on top of the exact
solution of the hh-band. The effective mass of the electron in CB and the hole in

the lh-band are, therefore, given as

Ey Fy
= =7, my = ———.
Ep + E, "B, —E,

Me
However, the band structure in Figure 39 (a) clearly shows that the small SO
approximation does not present a good match with the exact solution of the lh-
band. For this reason, we will only consider non-parabolicity effects in the CB,

while leaving the VB in its parabolic approximation form. Hence, we will only

consider m, to calculate the DOS mass[44]

Me.DOS = Me [(1 + e + Bee?) (1 4 2006 + 35662)2} 13 , (124)

where[44]

E}
Eo(Eo + Ep)?’

213

b =  Eo(Eo + Ep)t

a, = (125)

and € is the energy above the band minimum F,. Including a and (§ into the
DOS effective mass has the effect of overestimating e,. This can be seen in Figure
39 (b). To compensate this, we would have to consider the k-dependence of the
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matrix element Ep, which should bring e closer to the experimental value (we
do not pursue this here).[81, 111] Still, independently of the approximation, the
amplitude of €5 is around one between 1.5 and 3 eV. Therefore, including Ej in
the Tanguy line-shape would not be enough to match the experimental data in

the E; and E; + A region.

F Surface effects

To showcase the dielectric function for different surface orientations, we measured
Ge substrates with (100), (110), and (111) surface orientations. We then follow
the procedure explained in Sec. 4.2 to remove the effects of the oxide layer from
the data. The (110) surface orientation had an estimated oxide layer thickness
of about 28 A, whereas the (100) and (111) surfaces had a similar oxide layer
thickness of about 25 A. The resulting point-by-point fits are shown in Figure 40.
It can be seen that the difference between the samples is negligible. Therefore, we
find it unlikely that these surface-related effects are responsible for the discrep-
ancies between theory and experiment observed in our model for the dielectric

function near the E£; and E; + A; CPs.
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Figure 40: Real (a) and imaginary (b) parts of the dielectric function of Ge
from a point-by-point fit for three substrates with (100), (110), and (111) surface

orientations (black, blue, and red, respectively).

G Band-filling effects

The final form of the DF that encompasses band-filling effects is described in Sec.

5.2.2. For the critical point £, it has the form[108, 109]

2 PP :
F)=——F-—H(FEF—-F dk. 1 — flEc(E, k 126
f(B) =y i (E - B [ Tk (1 SEE ) ()

where Ec(E, k?) is given in Eq. (80). We can analyze the effects of the filling of the
bands by adding two similar expressions corresponding to the CPs £} and E;+ A,
at different points of the chemical potential curve of Figure 7?7 (a). Figure 41 (a)
3

shows e, at different points in the calculated chemical potential curve for 102° cm-

density. We can see that as the chemical potential increases, the amplitude of e
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decreases, consistent with what we see on experimentally. More importantly, as
seen in the corresponding 2°¢ derivative, the CP energies do not shift as the band
fills up. This indicates that the energy of the CPs are not affected by band-filling
effects. We also do not expect to see a Fermi singularity (the bump at around 2.6
eV), given that it is only present at low temperatures.
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